cfb/internal/
minialloc.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
use crate::internal::{
    consts, Chain, DirEntry, Directory, Entries, MiniChain, ObjType, Sector,
    SectorInit, Version,
};
use byteorder::{LittleEndian, WriteBytesExt};
use fnv::FnvHashSet;
use std::io::{self, Seek, SeekFrom, Write};
use std::mem::size_of;
use std::path::Path;

//===========================================================================//

macro_rules! malformed {
    ($e:expr) => { invalid_data!("Malformed MiniFAT ({})", $e) };
    ($fmt:expr, $($arg:tt)+) => {
        invalid_data!("Malformed MiniFAT ({})", format!($fmt, $($arg)+))
    };
}

//===========================================================================//

/// A wrapper around the directory manager that additionally provides
/// mini-sector allocation via the MiniFAT.
pub struct MiniAllocator<F> {
    directory: Directory<F>,
    minifat: Vec<u32>,
    minifat_start_sector: u32,
}

impl<F> MiniAllocator<F> {
    pub fn new(
        directory: Directory<F>,
        minifat: Vec<u32>,
        minifat_start_sector: u32,
    ) -> io::Result<MiniAllocator<F>> {
        let minialloc =
            MiniAllocator { directory, minifat, minifat_start_sector };
        minialloc.validate()?;
        Ok(minialloc)
    }

    pub fn version(&self) -> Version {
        self.directory.version()
    }

    pub fn next_mini_sector(&self, sector_id: u32) -> io::Result<u32> {
        let index = sector_id as usize;
        if index >= self.minifat.len() {
            invalid_data!(
                "Found reference to mini sector {}, but MiniFAT has only {} \
                 entries",
                index,
                self.minifat.len()
            );
        }
        let next_id = self.minifat[index];
        if next_id != consts::END_OF_CHAIN
            && (next_id > consts::MAX_REGULAR_SECTOR
                || next_id as usize >= self.minifat.len())
        {
            invalid_data!("next_id ({}) is invalid", next_id);
        }
        Ok(next_id)
    }

    pub fn into_inner(self) -> F {
        self.directory.into_inner()
    }

    pub fn stream_id_for_name_chain(&self, names: &[&str]) -> Option<u32> {
        self.directory.stream_id_for_name_chain(names)
    }

    /// Returns an iterator over the entries within the root storage object.
    pub fn root_storage_entries(&self) -> Entries {
        self.directory.root_storage_entries()
    }

    /// Returns an iterator over the entries within a storage object.
    pub fn storage_entries(&self, path: &Path) -> io::Result<Entries> {
        self.directory.storage_entries(path)
    }

    /// Returns an iterator over all entries within the compound file, starting
    /// from and including the root entry.  The iterator walks the storage tree
    /// in a preorder traversal.
    pub fn walk(&self) -> Entries {
        self.directory.walk()
    }

    /// Returns an iterator over all entries under a storage subtree, including
    /// the given path itself.  The iterator walks the storage tree in a
    /// preorder traversal.
    pub fn walk_storage(&self, path: &Path) -> io::Result<Entries> {
        self.directory.walk_storage(path)
    }

    pub fn open_chain(
        &mut self,
        start_sector_id: u32,
        init: SectorInit,
    ) -> io::Result<Chain<F>> {
        self.directory.open_chain(start_sector_id, init)
    }

    pub fn open_mini_chain(
        &mut self,
        start_sector_id: u32,
    ) -> io::Result<MiniChain<F>> {
        MiniChain::new(self, start_sector_id)
    }

    pub fn root_dir_entry(&self) -> &DirEntry {
        self.directory.root_dir_entry()
    }

    pub fn dir_entry(&self, stream_id: u32) -> &DirEntry {
        self.directory.dir_entry(stream_id)
    }

    fn validate(&self) -> io::Result<()> {
        let root_entry = self.directory.root_dir_entry();
        let root_stream_mini_sectors =
            root_entry.stream_len / (consts::MINI_SECTOR_LEN as u64);
        if root_stream_mini_sectors < (self.minifat.len() as u64) {
            malformed!(
                "MiniFAT has {} entries, but root stream has only {} mini \
                 sectors",
                self.minifat.len(),
                root_stream_mini_sectors
            );
        }
        let mut pointees = FnvHashSet::default();
        for (from_mini_sector, &to_mini_sector) in
            self.minifat.iter().enumerate()
        {
            if to_mini_sector <= consts::MAX_REGULAR_SECTOR {
                if to_mini_sector as usize >= self.minifat.len() {
                    malformed!(
                        "MiniFAT has {} entries, but mini sector {} points to \
                         {}",
                        self.minifat.len(),
                        from_mini_sector,
                        to_mini_sector
                    );
                }
                if pointees.contains(&to_mini_sector) {
                    malformed!(
                        "mini sector {} pointed to twice",
                        to_mini_sector
                    );
                }
                pointees.insert(to_mini_sector);
            }
        }
        Ok(())
    }
}

impl<F: Seek> MiniAllocator<F> {
    pub fn seek_within_mini_sector(
        &mut self,
        mini_sector: u32,
        offset_within_mini_sector: u64,
    ) -> io::Result<Sector<F>> {
        debug_assert!(
            offset_within_mini_sector < consts::MINI_SECTOR_LEN as u64
        );
        let mini_stream_start_sector =
            self.directory.root_dir_entry().start_sector;
        let chain = self
            .directory
            .open_chain(mini_stream_start_sector, SectorInit::Fat)?;
        chain.into_subsector(
            mini_sector,
            consts::MINI_SECTOR_LEN,
            offset_within_mini_sector,
        )
    }
}

impl<F: Write + Seek> MiniAllocator<F> {
    /// Given the start sector of a chain, deallocates the entire chain.
    pub fn free_chain(&mut self, start_sector_id: u32) -> io::Result<()> {
        self.directory.free_chain(start_sector_id)
    }

    /// Inserts a new directory entry into the tree under the specified parent
    /// entry, then returns the new stream ID.
    pub fn insert_dir_entry(
        &mut self,
        parent_id: u32,
        name: &str,
        obj_type: ObjType,
    ) -> io::Result<u32> {
        self.directory.insert_dir_entry(parent_id, name, obj_type)
    }

    /// Removes a directory entry from the tree and deallocates it.
    pub fn remove_dir_entry(
        &mut self,
        parent_id: u32,
        name: &str,
    ) -> io::Result<()> {
        self.directory.remove_dir_entry(parent_id, name)
    }

    /// Calls the given function with a mutable reference to the specified
    /// directory entry, then writes the updated directory entry to the
    /// underlying file once the function returns.
    pub fn with_dir_entry_mut<W>(
        &mut self,
        stream_id: u32,
        func: W,
    ) -> io::Result<()>
    where
        W: FnOnce(&mut DirEntry),
    {
        self.directory.with_dir_entry_mut(stream_id, func)
    }

    /// Allocates a new mini chain with one sector, and returns the starting
    /// sector number.
    pub fn begin_mini_chain(&mut self) -> io::Result<u32> {
        self.allocate_mini_sector(consts::END_OF_CHAIN)
    }

    /// Given the starting mini sector (or any internal mini sector) of a mini
    /// chain, extends the end of that chain by one mini sector and returns the
    /// new mini sector number, updating the MiniFAT as necessary.
    pub fn extend_mini_chain(
        &mut self,
        start_mini_sector: u32,
    ) -> io::Result<u32> {
        debug_assert_ne!(start_mini_sector, consts::END_OF_CHAIN);
        let mut last_mini_sector = start_mini_sector;
        loop {
            let next = self.minifat[last_mini_sector as usize];
            if next == consts::END_OF_CHAIN {
                break;
            }
            last_mini_sector = next;
        }
        let new_mini_sector =
            self.allocate_mini_sector(consts::END_OF_CHAIN)?;
        self.set_minifat(last_mini_sector, new_mini_sector)?;
        Ok(new_mini_sector)
    }

    /// Allocates a new entry in the MiniFAT, sets its value to `value`, and
    /// returns the new mini sector number.
    fn allocate_mini_sector(&mut self, value: u32) -> io::Result<u32> {
        // If there's an existing free mini sector, use that.
        for mini_sector in 0..self.minifat.len() {
            if self.minifat[mini_sector] == consts::FREE_SECTOR {
                let mini_sector = mini_sector as u32;
                self.set_minifat(mini_sector, value)?;
                return Ok(mini_sector);
            }
        }
        // Otherwise, we need a new mini sector; if there's not room in the
        // MiniFAT to add it, then first we need to allocate a new MiniFAT
        // sector.
        let minifat_entries_per_sector = self.directory.sector_len() / 4;
        if self.minifat_start_sector == consts::END_OF_CHAIN {
            debug_assert!(self.minifat.is_empty());
            self.minifat_start_sector =
                self.directory.begin_chain(SectorInit::Fat)?;
            let mut header = self.directory.seek_within_header(60)?;
            header.write_u32::<LittleEndian>(self.minifat_start_sector)?;
            header.write_u32::<LittleEndian>(1)?;
        } else if self.minifat.len() % minifat_entries_per_sector == 0 {
            let start = self.minifat_start_sector;
            self.directory.extend_chain(start, SectorInit::Fat)?;
            let num_minifat_sectors = self
                .directory
                .open_chain(start, SectorInit::Fat)?
                .num_sectors() as u32;
            let mut header = self.directory.seek_within_header(64)?;
            header.write_u32::<LittleEndian>(num_minifat_sectors)?;
        }
        // Add a new mini sector to the end of the mini stream and return it.
        let new_mini_sector = self.minifat.len() as u32;
        self.set_minifat(new_mini_sector, value)?;
        self.append_mini_sector()?;
        Ok(new_mini_sector)
    }

    /// Adds a new mini sector to the end of the mini stream.
    fn append_mini_sector(&mut self) -> io::Result<()> {
        let mini_stream_start_sector =
            self.directory.root_dir_entry().start_sector;
        let mini_stream_len = self.directory.root_dir_entry().stream_len;
        debug_assert_eq!(mini_stream_len % consts::MINI_SECTOR_LEN as u64, 0);
        let sector_len = self.directory.sector_len();

        // If the mini stream doesn't have room for new mini sector, add
        // another regular sector to its chain.
        let new_start_sector =
            if mini_stream_start_sector == consts::END_OF_CHAIN {
                debug_assert_eq!(mini_stream_len, 0);
                self.directory.begin_chain(SectorInit::Zero)?
            } else {
                if mini_stream_len % sector_len as u64 == 0 {
                    self.directory.extend_chain(
                        mini_stream_start_sector,
                        SectorInit::Zero,
                    )?;
                }
                mini_stream_start_sector
            };

        // Update length of mini stream in root directory entry.
        self.directory.with_root_dir_entry_mut(|dir_entry| {
            dir_entry.start_sector = new_start_sector;
            dir_entry.stream_len += consts::MINI_SECTOR_LEN as u64;
        })
    }

    /// Deallocates the specified mini sector.
    fn free_mini_sector(&mut self, mini_sector: u32) -> io::Result<()> {
        self.set_minifat(mini_sector, consts::FREE_SECTOR)?;
        let mut mini_stream_len = self.directory.root_dir_entry().stream_len;
        debug_assert_eq!(mini_stream_len % consts::MINI_SECTOR_LEN as u64, 0);
        while self.minifat.last() == Some(&consts::FREE_SECTOR) {
            mini_stream_len -= consts::MINI_SECTOR_LEN as u64;
            self.minifat.pop();
            // TODO: Truncate MiniFAT if last MiniFAT sector is now all free.
        }

        if mini_stream_len != self.directory.root_dir_entry().stream_len {
            self.directory.with_root_dir_entry_mut(|dir_entry| {
                dir_entry.stream_len = mini_stream_len;
            })?;
        }
        Ok(())
    }

    /// Given the start sector of a mini chain, deallocates the entire chain.
    pub fn free_mini_chain(
        &mut self,
        start_mini_sector: u32,
    ) -> io::Result<()> {
        let mut mini_sector = start_mini_sector;
        while mini_sector != consts::END_OF_CHAIN {
            let next = self.minifat[mini_sector as usize];
            self.free_mini_sector(mini_sector)?;
            mini_sector = next;
        }
        Ok(())
    }

    /// Sets the given mini sector to point to `END_OF_CHAIN`, and deallocates
    /// all subsequent mini sectors in the chain.
    pub fn free_mini_chain_after(
        &mut self,
        mini_sector: u32,
    ) -> io::Result<()> {
        let next = self.minifat[mini_sector as usize];
        self.set_minifat(mini_sector, consts::END_OF_CHAIN)?;
        self.free_mini_chain(next)?;
        Ok(())
    }

    /// Sets `self.minifat[index] = value`, and also writes that change to the
    /// underlying file.  The `index` must be <= `self.minifat.len()`.
    fn set_minifat(&mut self, index: u32, value: u32) -> io::Result<()> {
        debug_assert!(index as usize <= self.minifat.len());
        let mut chain = self
            .directory
            .open_chain(self.minifat_start_sector, SectorInit::Fat)?;
        let offset = (index as u64) * size_of::<u32>() as u64;
        debug_assert!(chain.len() >= offset + size_of::<u32>() as u64);
        chain.seek(SeekFrom::Start(offset))?;
        chain.write_u32::<LittleEndian>(value)?;
        if (index as usize) == self.minifat.len() {
            self.minifat.push(value);
        } else {
            self.minifat[index as usize] = value;
        }
        Ok(())
    }

    /// Flushes all changes to the underlying file.
    pub fn flush(&mut self) -> io::Result<()> {
        self.directory.flush()
    }
}

//===========================================================================//

#[cfg(test)]
mod tests {
    use super::MiniAllocator;
    use crate::internal::{
        consts, Allocator, DirEntry, Directory, ObjType, Sectors, Version,
    };
    use std::io::Cursor;

    fn make_minialloc(minifat: Vec<u32>) -> MiniAllocator<Cursor<Vec<u8>>> {
        let root_stream_len = (consts::MINI_SECTOR_LEN * minifat.len()) as u64;
        make_minialloc_with_root_stream_len(minifat, root_stream_len)
    }

    fn make_minialloc_with_root_stream_len(
        minifat: Vec<u32>,
        root_stream_len: u64,
    ) -> MiniAllocator<Cursor<Vec<u8>>> {
        let version = Version::V3;
        let num_sectors = 4; // FAT, Directory, MiniFAT, and mini chain
        let data_len = (1 + num_sectors) * version.sector_len();
        let cursor = Cursor::new(vec![0; data_len]);
        let sectors = Sectors::new(version, data_len as u64, cursor);
        let mut fat = vec![consts::END_OF_CHAIN; num_sectors];
        fat[0] = consts::FAT_SECTOR;
        let allocator = Allocator::new(sectors, vec![], vec![0], fat).unwrap();
        let mut root_entry = DirEntry::empty_root_entry();
        root_entry.child = 1;
        root_entry.start_sector = 3;
        root_entry.stream_len = root_stream_len;
        let mut stream_entry = DirEntry::new("foo", ObjType::Stream, 0);
        stream_entry.start_sector = 0;
        stream_entry.stream_len = root_entry.stream_len;
        let entries = vec![root_entry, stream_entry];
        let directory = Directory::new(allocator, entries, 1).unwrap();
        MiniAllocator::new(directory, minifat, 2).unwrap()
    }

    #[test]
    #[should_panic(
        expected = "Malformed MiniFAT (MiniFAT has 3 entries, but root stream \
                    has only 2 mini sectors)"
    )]
    fn root_stream_too_short() {
        let minifat = vec![1, 2, consts::END_OF_CHAIN];
        let root_stream_len = (2 * consts::MINI_SECTOR_LEN) as u64;
        make_minialloc_with_root_stream_len(minifat, root_stream_len);
    }

    #[test]
    #[should_panic(
        expected = "Malformed MiniFAT (MiniFAT has 2 entries, but mini sector \
                    1 points to 3)"
    )]
    fn pointee_out_of_range() {
        let minifat = vec![1, 3];
        make_minialloc(minifat);
    }

    #[test]
    #[should_panic(
        expected = "Malformed MiniFAT (mini sector 1 pointed to twice)"
    )]
    fn double_pointee() {
        let minifat = vec![1, 2, 1];
        make_minialloc(minifat);
    }
}

//===========================================================================//