cfb/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
//! A library for reading/writing [Compound File Binary](
//! https://en.wikipedia.org/wiki/Compound_File_Binary_Format) (structured
//! storage) files.  See [MS-CFB](
//! https://msdn.microsoft.com/en-us/library/dd942138.aspx) for the format
//! specification.
//!
//! A Compound File Binary (CFB) file, also called a *structured storage file*
//! or simply a *compound file*, is a bit like a simple file system within a
//! file.  A compound file contains a tree of *storage* objects
//! (i.e. directories), each of which can contain *stream* objects (i.e. files)
//! or other storage objects.  The format is designed to allow reasonably
//! efficient in-place mutation and resizing of these stream and storage
//! objects, without having to completely rewrite the CFB file on disk.
//!
//! # Example usage
//!
//! ```no_run
//! use cfb;
//! use std::io::{Read, Seek, SeekFrom, Write};
//!
//! // Open an existing compound file in read-write mode.
//! let mut comp = cfb::open_rw("path/to/cfb/file").unwrap();
//!
//! // Read in all the data from one of the streams in that compound file.
//! let data = {
//!     let mut stream = comp.open_stream("/foo/bar").unwrap();
//!     let mut buffer = Vec::new();
//!     stream.read_to_end(&mut buffer).unwrap();
//!     buffer
//! };
//!
//! // Append that data to the end of another stream in the same file.
//! {
//!     let mut stream = comp.open_stream("/baz").unwrap();
//!     stream.seek(SeekFrom::End(0)).unwrap();
//!     stream.write_all(&data).unwrap();
//! }
//!
//! // Now create a new compound file, and create a new stream with the data.
//! let mut comp2 = cfb::create("some/other/path").unwrap();
//! comp2.create_storage("/spam/").unwrap();
//! let mut stream = comp2.create_stream("/spam/eggs").unwrap();
//! stream.write_all(&data).unwrap();
//! ```

#![warn(missing_docs)]

use crate::internal::consts::{self, NO_STREAM};
use crate::internal::{
    Allocator, DirEntry, Directory, Header, MiniAllocator, ObjType,
    SectorInit, Sectors,
};
pub use crate::internal::{Entries, Entry, Version};
use byteorder::{LittleEndian, ReadBytesExt, WriteBytesExt};
use fnv::FnvHashSet;
use std::fs;
use std::io::{self, BufRead, Read, Seek, SeekFrom, Write};
use std::mem::size_of;
use std::path::{Path, PathBuf};
use uuid::Uuid;

#[macro_use]
mod internal;

//===========================================================================//

/// Opens an existing compound file at the given path in read-only mode.
pub fn open<P: AsRef<Path>>(path: P) -> io::Result<CompoundFile<fs::File>> {
    CompoundFile::open(fs::File::open(path)?)
}

/// Opens an existing compound file at the given path in read-write mode.
pub fn open_rw<P: AsRef<Path>>(path: P) -> io::Result<CompoundFile<fs::File>> {
    open_rw_with_path(path.as_ref())
}

fn open_rw_with_path(path: &Path) -> io::Result<CompoundFile<fs::File>> {
    let file = fs::OpenOptions::new().read(true).write(true).open(path)?;
    CompoundFile::open(file)
}

/// Creates a new compound file with no contents at the given path.
///
/// The returned `CompoundFile` object will be both readable and writable.  If
/// a file already exists at the given path, this will overwrite it.
pub fn create<P: AsRef<Path>>(path: P) -> io::Result<CompoundFile<fs::File>> {
    create_with_path(path.as_ref())
}

fn create_with_path(path: &Path) -> io::Result<CompoundFile<fs::File>> {
    let file = fs::OpenOptions::new()
        .read(true)
        .write(true)
        .create(true)
        .truncate(true)
        .open(path)?;
    CompoundFile::create(file)
}

//===========================================================================//

/// A compound file, backed by an underlying reader/writer (such as a
/// [`File`](https://doc.rust-lang.org/std/fs/struct.File.html) or
/// [`Cursor`](https://doc.rust-lang.org/std/io/struct.Cursor.html)).
pub struct CompoundFile<F> {
    minialloc: MiniAllocator<F>,
}

impl<F> CompoundFile<F> {
    /// Returns the CFB format version used for this compound file.
    pub fn version(&self) -> Version {
        self.minialloc.version()
    }

    fn stream_id_for_name_chain(&self, names: &[&str]) -> Option<u32> {
        self.minialloc.stream_id_for_name_chain(names)
    }

    /// Returns information about the root storage object.  This is equivalent
    /// to `self.entry("/").unwrap()` (but always succeeds).
    pub fn root_entry(&self) -> Entry {
        Entry::new(self.minialloc.root_dir_entry(), PathBuf::from("/"))
    }

    /// Given a path within the compound file, get information about that
    /// stream or storage object.
    pub fn entry<P: AsRef<Path>>(&self, path: P) -> io::Result<Entry> {
        self.entry_with_path(path.as_ref())
    }

    fn entry_with_path(&self, path: &Path) -> io::Result<Entry> {
        let names = internal::path::name_chain_from_path(path)?;
        let path = internal::path::path_from_name_chain(&names);
        let stream_id = match self.stream_id_for_name_chain(&names) {
            Some(stream_id) => stream_id,
            None => not_found!("No such object: {:?}", path),
        };
        Ok(Entry::new(self.minialloc.dir_entry(stream_id), path))
    }

    /// Returns an iterator over the entries within the root storage object.
    /// This is equivalent to `self.read_storage("/").unwrap()` (but always
    /// succeeds).
    pub fn read_root_storage(&self) -> Entries {
        self.minialloc.root_storage_entries()
    }

    /// Returns an iterator over the entries within a storage object.
    pub fn read_storage<P: AsRef<Path>>(
        &self,
        path: P,
    ) -> io::Result<Entries> {
        self.minialloc.storage_entries(path.as_ref())
    }

    /// Returns an iterator over all entries within the compound file, starting
    /// from and including the root entry.  The iterator walks the storage tree
    /// in a preorder traversal.  This is equivalent to
    /// `self.walk_storage("/").unwrap()` (but always succeeds).
    pub fn walk(&self) -> Entries {
        self.minialloc.walk()
    }

    /// Returns an iterator over all entries under a storage subtree, including
    /// the given path itself.  The iterator walks the storage tree in a
    /// preorder traversal.
    pub fn walk_storage<P: AsRef<Path>>(
        &self,
        path: P,
    ) -> io::Result<Entries> {
        self.minialloc.walk_storage(path.as_ref())
    }

    /// Returns true if there is an existing stream or storage at the given
    /// path, or false if there is nothing at that path.
    pub fn exists<P: AsRef<Path>>(&self, path: P) -> bool {
        match internal::path::name_chain_from_path(path.as_ref()) {
            Ok(names) => self.stream_id_for_name_chain(&names).is_some(),
            Err(_) => false,
        }
    }

    /// Returns true if there is an existing stream at the given path, or false
    /// if there is a storage or nothing at that path.
    pub fn is_stream<P: AsRef<Path>>(&self, path: P) -> bool {
        match internal::path::name_chain_from_path(path.as_ref()) {
            Ok(names) => match self.stream_id_for_name_chain(&names) {
                Some(stream_id) => {
                    self.minialloc.dir_entry(stream_id).obj_type
                        == ObjType::Stream
                }
                None => false,
            },
            Err(_) => false,
        }
    }

    /// Returns true if there is an existing storage at the given path, or
    /// false if there is a stream or nothing at that path.
    pub fn is_storage<P: AsRef<Path>>(&self, path: P) -> bool {
        match internal::path::name_chain_from_path(path.as_ref()) {
            Ok(names) => match self.stream_id_for_name_chain(&names) {
                Some(stream_id) => {
                    self.minialloc.dir_entry(stream_id).obj_type
                        != ObjType::Stream
                }
                None => false,
            },
            Err(_) => false,
        }
    }

    // TODO: pub fn copy_stream

    // TODO: pub fn rename

    /// Consumes the `CompoundFile`, returning the underlying reader/writer.
    pub fn into_inner(self) -> F {
        self.minialloc.into_inner()
    }
}

impl<F: Seek> CompoundFile<F> {
    /// Opens an existing stream in the compound file for reading and/or
    /// writing (depending on what the underlying file supports).
    pub fn open_stream<P: AsRef<Path>>(
        &mut self,
        path: P,
    ) -> io::Result<Stream<F>> {
        self.open_stream_with_path(path.as_ref())
    }

    fn open_stream_with_path(&mut self, path: &Path) -> io::Result<Stream<F>> {
        let names = internal::path::name_chain_from_path(path)?;
        let path = internal::path::path_from_name_chain(&names);
        let stream_id = match self.stream_id_for_name_chain(&names) {
            Some(stream_id) => stream_id,
            None => not_found!("No such stream: {:?}", path),
        };
        if self.minialloc.dir_entry(stream_id).obj_type != ObjType::Stream {
            invalid_input!("Not a stream: {:?}", path);
        }
        Ok(Stream::new(self, stream_id))
    }
}

impl<F: Read + Seek> CompoundFile<F> {
    /// Opens an existing compound file, using the underlying reader.  If the
    /// underlying reader also supports the `Write` trait, then the
    /// `CompoundFile` object will be writable as well.
    pub fn open(mut inner: F) -> io::Result<CompoundFile<F>> {
        let inner_len = inner.seek(SeekFrom::End(0))?;
        if inner_len < consts::HEADER_LEN as u64 {
            invalid_data!(
                "Invalid CFB file ({} bytes is too small)",
                inner_len
            );
        }
        inner.seek(SeekFrom::Start(0))?;

        let header = Header::read_from(&mut inner)?;
        let sector_len = header.version.sector_len();
        if inner_len
            > ((consts::MAX_REGULAR_SECTOR + 1) as u64) * (sector_len as u64)
        {
            invalid_data!(
                "Invalid CFB file ({} bytes is too large)",
                inner_len
            );
        }

        if inner_len < header.version.sector_len() as u64 {
            invalid_data!(
                "Invalid CFB file (length of {} < sector length of {})",
                inner_len,
                header.version.sector_len()
            );
        }
        let mut sectors = Sectors::new(header.version, inner_len, inner);
        let num_sectors = sectors.num_sectors();

        // Read in DIFAT.
        let mut difat = Vec::<u32>::new();
        difat.extend_from_slice(&header.initial_difat_entries);
        let mut seen_sector_ids = FnvHashSet::default();
        let mut difat_sector_ids = Vec::new();
        let mut current_difat_sector = header.first_difat_sector;
        while current_difat_sector != consts::END_OF_CHAIN {
            if current_difat_sector > consts::MAX_REGULAR_SECTOR {
                invalid_data!(
                    "DIFAT chain includes invalid sector index {}",
                    current_difat_sector
                );
            } else if current_difat_sector >= num_sectors {
                invalid_data!(
                    "DIFAT chain includes sector index {}, but sector count \
                     is only {}",
                    current_difat_sector,
                    num_sectors
                );
            }
            if seen_sector_ids.contains(&current_difat_sector) {
                invalid_data!(
                    "DIFAT chain includes duplicate sector index {}",
                    current_difat_sector,
                );
            }
            seen_sector_ids.insert(current_difat_sector);
            difat_sector_ids.push(current_difat_sector);
            let mut sector = sectors.seek_to_sector(current_difat_sector)?;
            for _ in 0..(sector_len / size_of::<u32>() - 1) {
                let next = sector.read_u32::<LittleEndian>()?;
                if next != consts::FREE_SECTOR
                    && next > consts::MAX_REGULAR_SECTOR
                {
                    invalid_data!(
                        "DIFAT refers to invalid sector index {}",
                        next
                    );
                }
                difat.push(next);
            }
            current_difat_sector = sector.read_u32::<LittleEndian>()?;
        }
        if header.num_difat_sectors as usize != difat_sector_ids.len() {
            invalid_data!(
                "Incorrect DIFAT chain length (header says {}, actual is {})",
                header.num_difat_sectors,
                difat_sector_ids.len()
            );
        }
        while difat.last() == Some(&consts::FREE_SECTOR) {
            difat.pop();
        }
        if header.num_fat_sectors as usize != difat.len() {
            invalid_data!(
                "Incorrect number of FAT sectors (header says {}, DIFAT says \
                 {})",
                header.num_fat_sectors,
                difat.len()
            );
        }

        // Read in FAT.
        let mut fat = Vec::<u32>::new();
        for &sector_index in difat.iter() {
            if sector_index >= num_sectors {
                invalid_data!(
                    "DIFAT refers to sector {}, but sector count is only {}",
                    sector_index,
                    num_sectors
                );
            }
            let mut sector = sectors.seek_to_sector(sector_index)?;
            for _ in 0..(sector_len / size_of::<u32>()) {
                fat.push(sector.read_u32::<LittleEndian>()?);
            }
        }
        // If the number of sectors in the file is not a multiple of the number
        // of FAT entries per sector, then the last FAT sector must be padded
        // with FREE_SECTOR entries (see MS-CFB section 2.3).  However, some
        // CFB implementations incorrectly pad the last FAT sector with zeros
        // (see https://github.com/mdsteele/rust-cfb/issues/8).  Since zero is
        // normally a meaningful FAT entry (referring to sector 0), we only
        // want to strip zeros from the end of the FAT if they are beyond the
        // number of sectors in the file.
        while fat.len() > num_sectors as usize && fat.last() == Some(&0) {
            fat.pop();
        }
        // Strip FREE_SECTOR entries from the end of the FAT.  Unlike the zero
        // case above, we can remove these even if it makes the number of FAT
        // entries less than the number of sectors in the file; the allocator
        // will implicitly treat these extra sectors as free.
        while fat.last() == Some(&consts::FREE_SECTOR) {
            fat.pop();
        }

        let mut allocator =
            Allocator::new(sectors, difat_sector_ids, difat, fat)?;

        // Read in directory.
        let mut dir_entries = Vec::<DirEntry>::new();
        let mut seen_dir_sectors = FnvHashSet::default();
        let mut current_dir_sector = header.first_dir_sector;
        while current_dir_sector != consts::END_OF_CHAIN {
            if current_dir_sector > consts::MAX_REGULAR_SECTOR {
                invalid_data!(
                    "Directory chain includes invalid sector index {}",
                    current_dir_sector
                );
            } else if current_dir_sector >= num_sectors {
                invalid_data!(
                    "Directory chain includes sector index {}, but sector \
                     count is only {}",
                    current_dir_sector,
                    num_sectors
                );
            }
            if seen_dir_sectors.contains(&current_dir_sector) {
                invalid_data!(
                    "Directory chain includes duplicate sector index {}",
                    current_dir_sector,
                );
            }
            seen_dir_sectors.insert(current_dir_sector);
            {
                let mut sector =
                    allocator.seek_to_sector(current_dir_sector)?;
                for _ in 0..header.version.dir_entries_per_sector() {
                    dir_entries.push(DirEntry::read_from(
                        &mut sector,
                        header.version,
                    )?);
                }
            }
            current_dir_sector = allocator.next(current_dir_sector)?;
        }

        let mut directory =
            Directory::new(allocator, dir_entries, header.first_dir_sector)?;

        // Read in MiniFAT.
        let minifat = {
            let mut chain = directory
                .open_chain(header.first_minifat_sector, SectorInit::Fat)?;
            if header.num_minifat_sectors as usize != chain.num_sectors() {
                invalid_data!(
                    "Incorrect MiniFAT chain length (header says {}, actual \
                     is {})",
                    header.num_minifat_sectors,
                    chain.num_sectors()
                );
            }
            let num_minifat_entries = (chain.len() / 4) as usize;
            let mut minifat = Vec::<u32>::with_capacity(num_minifat_entries);
            for _ in 0..num_minifat_entries {
                minifat.push(chain.read_u32::<LittleEndian>()?);
            }
            while minifat.last() == Some(&consts::FREE_SECTOR) {
                minifat.pop();
            }
            minifat
        };

        let minialloc = MiniAllocator::new(
            directory,
            minifat,
            header.first_minifat_sector,
        )?;

        Ok(CompoundFile { minialloc })
    }

    fn read_data_from_stream(
        &mut self,
        stream_id: u32,
        buf_offset_from_start: u64,
        buf: &mut [u8],
    ) -> io::Result<usize> {
        let (start_sector, stream_len) = {
            let dir_entry = self.minialloc.dir_entry(stream_id);
            debug_assert_eq!(dir_entry.obj_type, ObjType::Stream);
            (dir_entry.start_sector, dir_entry.stream_len)
        };
        let num_bytes = if buf_offset_from_start >= stream_len {
            0
        } else {
            let remaining = stream_len - buf_offset_from_start;
            if remaining < buf.len() as u64 {
                remaining as usize
            } else {
                buf.len()
            }
        };
        if num_bytes > 0 {
            if stream_len < consts::MINI_STREAM_CUTOFF as u64 {
                let mut chain =
                    self.minialloc.open_mini_chain(start_sector)?;
                chain.seek(SeekFrom::Start(buf_offset_from_start))?;
                chain.read_exact(&mut buf[..num_bytes])?;
            } else {
                let mut chain = self
                    .minialloc
                    .open_chain(start_sector, SectorInit::Zero)?;
                chain.seek(SeekFrom::Start(buf_offset_from_start))?;
                chain.read_exact(&mut buf[..num_bytes])?;
            }
        }
        Ok(num_bytes)
    }
}

impl<F: Read + Write + Seek> CompoundFile<F> {
    /// Creates a new compound file with no contents, using the underlying
    /// reader/writer.  The reader/writer should be initially empty.
    pub fn create(inner: F) -> io::Result<CompoundFile<F>> {
        CompoundFile::create_with_version(Version::V4, inner)
    }

    /// Creates a new compound file of the given version with no contents,
    /// using the underlying writer.  The writer should be initially empty.
    pub fn create_with_version(
        version: Version,
        mut inner: F,
    ) -> io::Result<CompoundFile<F>> {
        let mut header = Header {
            version,
            num_dir_sectors: 1,
            num_fat_sectors: 1,
            first_dir_sector: 1,
            first_minifat_sector: consts::END_OF_CHAIN,
            num_minifat_sectors: 0,
            first_difat_sector: consts::END_OF_CHAIN,
            num_difat_sectors: 0,
            initial_difat_entries: [consts::FREE_SECTOR;
                consts::NUM_DIFAT_ENTRIES_IN_HEADER],
        };
        header.initial_difat_entries[0] = 0;
        header.write_to(&mut inner)?;

        // Pad the header with zeroes so it's the length of a sector.
        let sector_len = version.sector_len();
        debug_assert!(sector_len >= consts::HEADER_LEN);
        if sector_len > consts::HEADER_LEN {
            inner.write_all(&vec![0; sector_len - consts::HEADER_LEN])?;
        }

        // Write FAT sector:
        let fat: Vec<u32> = vec![consts::FAT_SECTOR, consts::END_OF_CHAIN];
        for &entry in fat.iter() {
            inner.write_u32::<LittleEndian>(entry)?;
        }
        for _ in fat.len()..(sector_len / size_of::<u32>()) {
            inner.write_u32::<LittleEndian>(consts::FREE_SECTOR)?;
        }
        let difat: Vec<u32> = vec![0];
        let difat_sector_ids: Vec<u32> = vec![];

        // Write directory sector:
        let root_dir_entry = DirEntry::empty_root_entry();
        root_dir_entry.write_to(&mut inner)?;
        for _ in 1..version.dir_entries_per_sector() {
            DirEntry::unallocated().write_to(&mut inner)?;
        }

        let sectors = Sectors::new(version, 3 * sector_len as u64, inner);
        let allocator = Allocator::new(sectors, difat_sector_ids, difat, fat)
            .expect("allocator");
        let directory = Directory::new(allocator, vec![root_dir_entry], 1)
            .expect("directory");
        let minialloc =
            MiniAllocator::new(directory, vec![], consts::END_OF_CHAIN)
                .expect("minialloc");
        Ok(CompoundFile { minialloc })
    }

    /// Creates a new, empty storage object (i.e. "directory") at the provided
    /// path.  The parent storage object must already exist.
    pub fn create_storage<P: AsRef<Path>>(
        &mut self,
        path: P,
    ) -> io::Result<()> {
        self.create_storage_with_path(path.as_ref())
    }

    fn create_storage_with_path(&mut self, path: &Path) -> io::Result<()> {
        let mut names = internal::path::name_chain_from_path(path)?;
        if let Some(stream_id) = self.stream_id_for_name_chain(&names) {
            let path = internal::path::path_from_name_chain(&names);
            if self.minialloc.dir_entry(stream_id).obj_type != ObjType::Stream
            {
                already_exists!(
                    "Cannot create storage at {:?} because a \
                                 storage already exists there",
                    path
                );
            } else {
                already_exists!(
                    "Cannot create storage at {:?} because a \
                                 stream already exists there",
                    path
                );
            }
        }
        // If names is empty, that means we're trying to create the root.  But
        // the root always already exists and will have been rejected above.
        debug_assert!(!names.is_empty());
        let name = names.pop().unwrap();
        let parent_id = match self.stream_id_for_name_chain(&names) {
            Some(stream_id) => stream_id,
            None => {
                not_found!("Parent storage doesn't exist");
            }
        };
        self.minialloc.insert_dir_entry(parent_id, name, ObjType::Storage)?;
        Ok(())
    }

    /// Recursively creates a storage and all of its parent storages if they
    /// are missing.
    pub fn create_storage_all<P: AsRef<Path>>(
        &mut self,
        path: P,
    ) -> io::Result<()> {
        self.create_storage_all_with_path(path.as_ref())
    }

    fn create_storage_all_with_path(&mut self, path: &Path) -> io::Result<()> {
        let names = internal::path::name_chain_from_path(path)?;
        for length in 1..(names.len() + 1) {
            let prefix_path =
                internal::path::path_from_name_chain(&names[..length]);
            if self.is_storage(&prefix_path) {
                continue;
            }
            self.create_storage_with_path(&prefix_path)?;
        }
        Ok(())
    }

    /// Removes the storage object at the provided path.  The storage object
    /// must exist and have no children.
    pub fn remove_storage<P: AsRef<Path>>(
        &mut self,
        path: P,
    ) -> io::Result<()> {
        self.remove_storage_with_path(path.as_ref())
    }

    fn remove_storage_with_path(&mut self, path: &Path) -> io::Result<()> {
        let mut names = internal::path::name_chain_from_path(path)?;
        let stream_id = match self.stream_id_for_name_chain(&names) {
            Some(parent_id) => parent_id,
            None => not_found!("No such storage: {:?}", path),
        };
        {
            let dir_entry = self.minialloc.dir_entry(stream_id);
            if dir_entry.obj_type == ObjType::Root {
                invalid_input!("Cannot remove the root storage object");
            }
            if dir_entry.obj_type == ObjType::Stream {
                invalid_input!("Not a storage: {:?}", path);
            }
            debug_assert_eq!(dir_entry.obj_type, ObjType::Storage);
            if dir_entry.child != NO_STREAM {
                invalid_input!("Storage is not empty: {:?}", path);
            }
        }
        debug_assert!(!names.is_empty());
        let name = names.pop().unwrap();
        let parent_id = self.stream_id_for_name_chain(&names).unwrap();
        self.minialloc.remove_dir_entry(parent_id, name)?;
        Ok(())
    }

    /// Recursively removes a storage and all of its children.  If called on
    /// the root storage, recursively removes all of its children but not the
    /// root storage itself (which cannot be removed).
    pub fn remove_storage_all<P: AsRef<Path>>(
        &mut self,
        path: P,
    ) -> io::Result<()> {
        self.remove_storage_all_with_path(path.as_ref())
    }

    fn remove_storage_all_with_path(&mut self, path: &Path) -> io::Result<()> {
        let mut stack = Vec::<Entry>::new();
        for entry in self.minialloc.walk_storage(path)? {
            stack.push(entry);
        }
        while let Some(entry) = stack.pop() {
            if entry.is_stream() {
                self.remove_stream_with_path(entry.path())?;
            } else if !entry.is_root() {
                self.remove_storage_with_path(entry.path())?;
            }
        }
        Ok(())
    }

    /// Sets the CLSID for the storage object at the provided path.  (To get
    /// the current CLSID for a storage object, use
    /// `self.entry(path)?.clsid()`.)
    pub fn set_storage_clsid<P: AsRef<Path>>(
        &mut self,
        path: P,
        clsid: Uuid,
    ) -> io::Result<()> {
        self.set_storage_clsid_with_path(path.as_ref(), clsid)
    }

    fn set_storage_clsid_with_path(
        &mut self,
        path: &Path,
        clsid: Uuid,
    ) -> io::Result<()> {
        let names = internal::path::name_chain_from_path(path)?;
        let stream_id = match self.stream_id_for_name_chain(&names) {
            Some(stream_id) => stream_id,
            None => not_found!(
                "No such storage: {:?}",
                internal::path::path_from_name_chain(&names)
            ),
        };
        if self.minialloc.dir_entry(stream_id).obj_type == ObjType::Stream {
            invalid_input!(
                "Not a storage: {:?}",
                internal::path::path_from_name_chain(&names)
            );
        }
        self.minialloc.with_dir_entry_mut(stream_id, |dir_entry| {
            dir_entry.clsid = clsid;
        })
    }

    /// Creates and returns a new, empty stream object at the provided path.
    /// If a stream already exists at that path, it will be replaced by the new
    /// stream.  The parent storage object must already exist.
    pub fn create_stream<P: AsRef<Path>>(
        &mut self,
        path: P,
    ) -> io::Result<Stream<F>> {
        self.create_stream_with_path(path.as_ref(), true)
    }

    /// Creates and returns a new, empty stream object at the provided path.
    /// Returns an error if a stream already exists at that path.  The parent
    /// storage object must already exist.
    pub fn create_new_stream<P: AsRef<Path>>(
        &mut self,
        path: P,
    ) -> io::Result<Stream<F>> {
        self.create_stream_with_path(path.as_ref(), false)
    }

    fn create_stream_with_path(
        &mut self,
        path: &Path,
        overwrite: bool,
    ) -> io::Result<Stream<F>> {
        let mut names = internal::path::name_chain_from_path(path)?;
        if let Some(stream_id) = self.stream_id_for_name_chain(&names) {
            if self.minialloc.dir_entry(stream_id).obj_type != ObjType::Stream
            {
                already_exists!(
                    "Cannot create stream at {:?} because a \
                                 storage already exists there",
                    internal::path::path_from_name_chain(&names)
                );
            } else if !overwrite {
                already_exists!(
                    "Cannot create new stream at {:?} because a \
                                 stream already exists there",
                    internal::path::path_from_name_chain(&names)
                );
            } else {
                let mut stream = Stream::new(self, stream_id);
                stream.set_len(0)?;
                return Ok(stream);
            }
        }
        // If names is empty, that means we're trying to create the root.  But
        // the root always already exists and will have been rejected above.
        debug_assert!(!names.is_empty());
        let name = names.pop().unwrap();
        let parent_id = match self.stream_id_for_name_chain(&names) {
            Some(stream_id) => stream_id,
            None => {
                not_found!("Parent storage doesn't exist");
            }
        };
        let new_stream_id = self.minialloc.insert_dir_entry(
            parent_id,
            name,
            ObjType::Stream,
        )?;
        return Ok(Stream::new(self, new_stream_id));
    }

    /// Removes the stream object at the provided path.
    pub fn remove_stream<P: AsRef<Path>>(
        &mut self,
        path: P,
    ) -> io::Result<()> {
        self.remove_stream_with_path(path.as_ref())
    }

    fn remove_stream_with_path(&mut self, path: &Path) -> io::Result<()> {
        let mut names = internal::path::name_chain_from_path(path)?;
        let stream_id = match self.stream_id_for_name_chain(&names) {
            Some(parent_id) => parent_id,
            None => not_found!("No such stream: {:?}", path),
        };
        let (start_sector_id, is_in_mini_stream) = {
            let dir_entry = self.minialloc.dir_entry(stream_id);
            if dir_entry.obj_type != ObjType::Stream {
                invalid_input!("Not a stream: {:?}", path);
            }
            debug_assert_eq!(dir_entry.child, NO_STREAM);
            (
                dir_entry.start_sector,
                dir_entry.stream_len < consts::MINI_STREAM_CUTOFF as u64,
            )
        };
        if is_in_mini_stream {
            self.minialloc.free_mini_chain(start_sector_id)?;
        } else {
            self.minialloc.free_chain(start_sector_id)?;
        }
        debug_assert!(!names.is_empty());
        let name = names.pop().unwrap();
        let parent_id = self.stream_id_for_name_chain(&names).unwrap();
        self.minialloc.remove_dir_entry(parent_id, name)?;
        Ok(())
    }

    /// Sets the user-defined bitflags for the object at the provided path.
    /// (To get the current state bits for an object, use
    /// `self.entry(path)?.state_bits()`.)
    pub fn set_state_bits<P: AsRef<Path>>(
        &mut self,
        path: P,
        bits: u32,
    ) -> io::Result<()> {
        self.set_state_bits_with_path(path.as_ref(), bits)
    }

    fn set_state_bits_with_path(
        &mut self,
        path: &Path,
        bits: u32,
    ) -> io::Result<()> {
        let names = internal::path::name_chain_from_path(path)?;
        let stream_id = match self.stream_id_for_name_chain(&names) {
            Some(stream_id) => stream_id,
            None => not_found!(
                "No such object: {:?}",
                internal::path::path_from_name_chain(&names)
            ),
        };
        self.minialloc.with_dir_entry_mut(stream_id, |dir_entry| {
            dir_entry.state_bits = bits;
        })
    }

    /// Sets the modified time for the object at the given path to now.  Has no
    /// effect when called on the root storage.
    pub fn touch<P: AsRef<Path>>(&mut self, path: P) -> io::Result<()> {
        self.touch_with_path(path.as_ref())
    }

    fn touch_with_path(&mut self, path: &Path) -> io::Result<()> {
        let names = internal::path::name_chain_from_path(path)?;
        let path = internal::path::path_from_name_chain(&names);
        let stream_id = match self.stream_id_for_name_chain(&names) {
            Some(stream_id) => stream_id,
            None => not_found!("No such object: {:?}", path),
        };
        if stream_id != consts::ROOT_STREAM_ID {
            debug_assert_ne!(
                self.minialloc.dir_entry(stream_id).obj_type,
                ObjType::Root
            );
            self.minialloc.with_dir_entry_mut(stream_id, |dir_entry| {
                dir_entry.modified_time = internal::time::current_timestamp();
            })?;
        }
        Ok(())
    }

    /// Flushes all changes to the underlying file.
    pub fn flush(&mut self) -> io::Result<()> {
        self.minialloc.flush()
    }

    fn write_data_to_stream(
        &mut self,
        stream_id: u32,
        buf_offset_from_start: u64,
        buf: &[u8],
    ) -> io::Result<()> {
        let (old_start_sector, old_stream_len) = {
            let dir_entry = self.minialloc.dir_entry(stream_id);
            debug_assert_eq!(dir_entry.obj_type, ObjType::Stream);
            (dir_entry.start_sector, dir_entry.stream_len)
        };
        debug_assert!(buf_offset_from_start <= old_stream_len);
        let new_stream_len =
            old_stream_len.max(buf_offset_from_start + buf.len() as u64);
        let new_start_sector = if old_start_sector == consts::END_OF_CHAIN {
            // Case 1: The stream has no existing chain.  The stream is empty,
            // and we are writing at the start.
            debug_assert_eq!(old_stream_len, 0);
            debug_assert_eq!(buf_offset_from_start, 0);
            if new_stream_len < consts::MINI_STREAM_CUTOFF as u64 {
                // Case 1a: The data we're writing is small enough that it
                // should be placed into a new mini chain.
                let mut chain =
                    self.minialloc.open_mini_chain(consts::END_OF_CHAIN)?;
                chain.write_all(buf)?;
                chain.start_sector_id()
            } else {
                // Case 1b: The data we're writing is large enough that it
                // should be placed into a new regular chain.
                let mut chain = self
                    .minialloc
                    .open_chain(consts::END_OF_CHAIN, SectorInit::Zero)?;
                chain.write_all(buf)?;
                chain.start_sector_id()
            }
        } else if old_stream_len < consts::MINI_STREAM_CUTOFF as u64 {
            // Case 2: The stream currently exists in a mini chain.
            if new_stream_len < consts::MINI_STREAM_CUTOFF as u64 {
                // Case 2a: After the write, the stream will still be small
                // enough to stay in the mini stream.  Therefore, we should
                // write into this stream's existing mini chain.
                let mut chain =
                    self.minialloc.open_mini_chain(old_start_sector)?;
                chain.seek(SeekFrom::Start(buf_offset_from_start))?;
                chain.write_all(buf)?;
                debug_assert_eq!(chain.start_sector_id(), old_start_sector);
                old_start_sector
            } else {
                // Case 2b: After the write, the stream will be large enough
                // that it cannot be in the mini stream.  Therefore, we should
                // migrate the stream into a new regular chain.
                debug_assert!(
                    buf_offset_from_start < consts::MINI_STREAM_CUTOFF as u64
                );
                let mut tmp = vec![0u8; buf_offset_from_start as usize];
                let mut chain =
                    self.minialloc.open_mini_chain(old_start_sector)?;
                chain.read_exact(&mut tmp)?;
                chain.free()?;
                let mut chain = self
                    .minialloc
                    .open_chain(consts::END_OF_CHAIN, SectorInit::Zero)?;
                chain.write_all(&tmp)?;
                chain.write_all(buf)?;
                chain.start_sector_id()
            }
        } else {
            // Case 3: The stream currently exists in a regular chain.  After
            // the write, it will of course still be too big to be in the mini
            // stream.  Therefore, we should write into this stream's existing
            // chain.
            debug_assert!(new_stream_len >= consts::MINI_STREAM_CUTOFF as u64);
            let mut chain = self
                .minialloc
                .open_chain(old_start_sector, SectorInit::Zero)?;
            chain.seek(SeekFrom::Start(buf_offset_from_start))?;
            chain.write_all(buf)?;
            debug_assert_eq!(chain.start_sector_id(), old_start_sector);
            old_start_sector
        };
        // Update the directory entry for this stream.
        self.minialloc.with_dir_entry_mut(stream_id, |dir_entry| {
            dir_entry.start_sector = new_start_sector;
            dir_entry.stream_len = new_stream_len;
            dir_entry.modified_time = internal::time::current_timestamp();
        })
    }

    /// If `new_stream_len` is less than the stream's current length, then the
    /// stream will be truncated.  If it is greater than the stream's current
    /// size, then the stream will be padded with zero bytes.
    fn resize_stream(
        &mut self,
        stream_id: u32,
        new_stream_len: u64,
    ) -> io::Result<()> {
        let (old_start_sector, old_stream_len) = {
            let dir_entry = self.minialloc.dir_entry(stream_id);
            debug_assert_eq!(dir_entry.obj_type, ObjType::Stream);
            (dir_entry.start_sector, dir_entry.stream_len)
        };
        let new_start_sector = if old_start_sector == consts::END_OF_CHAIN {
            // Case 1: The stream has no existing chain.  We will allocate a
            // new chain that is all zeroes.
            debug_assert_eq!(old_stream_len, 0);
            if new_stream_len < consts::MINI_STREAM_CUTOFF as u64 {
                // Case 1a: The new length is small enough that it should be
                // placed into a new mini chain.
                let mut chain =
                    self.minialloc.open_mini_chain(consts::END_OF_CHAIN)?;
                chain.set_len(new_stream_len)?;
                chain.start_sector_id()
            } else {
                // Case 1b: The new length is large enough that it should be
                // placed into a new regular chain.
                let mut chain = self
                    .minialloc
                    .open_chain(consts::END_OF_CHAIN, SectorInit::Zero)?;
                chain.set_len(new_stream_len)?;
                chain.start_sector_id()
            }
        } else if old_stream_len < consts::MINI_STREAM_CUTOFF as u64 {
            // Case 2: The stream currently exists in a mini chain.
            if new_stream_len == 0 {
                // Case 2a: The new length is zero.  Free the existing mini
                // chain.
                self.minialloc.free_mini_chain(old_start_sector)?;
                consts::END_OF_CHAIN
            } else if new_stream_len < consts::MINI_STREAM_CUTOFF as u64 {
                // Case 2b: The new length is still small enough to fit in a
                // mini chain.  Therefore, we just need to adjust the length of
                // the existing chain.
                let mut chain =
                    self.minialloc.open_mini_chain(old_start_sector)?;
                chain.set_len(new_stream_len)?;
                debug_assert_eq!(chain.start_sector_id(), old_start_sector);
                old_start_sector
            } else {
                // Case 2c: The new length is too large to fit in a mini chain.
                // Therefore, we should migrate the stream into a new regular
                // chain.
                let mut tmp = vec![0u8; old_stream_len as usize];
                let mut chain =
                    self.minialloc.open_mini_chain(old_start_sector)?;
                chain.read_exact(&mut tmp)?;
                chain.free()?;
                let mut chain = self
                    .minialloc
                    .open_chain(consts::END_OF_CHAIN, SectorInit::Zero)?;
                chain.write_all(&tmp)?;
                chain.set_len(new_stream_len)?;
                chain.start_sector_id()
            }
        } else {
            // Case 3: The stream currently exists in a regular chain.
            if new_stream_len == 0 {
                // Case 3a: The new length is zero.  Free the existing chain.
                self.minialloc.free_chain(old_start_sector)?;
                consts::END_OF_CHAIN
            } else if new_stream_len < consts::MINI_STREAM_CUTOFF as u64 {
                // Case 3b: The new length is small enough to fit in a mini
                // chain.  Therefore, we should migrate the stream into a new
                // mini chain.
                debug_assert!(new_stream_len < old_stream_len);
                let mut tmp = vec![0u8; new_stream_len as usize];
                let mut chain = self
                    .minialloc
                    .open_chain(old_start_sector, SectorInit::Zero)?;
                chain.read_exact(&mut tmp)?;
                chain.free()?;
                let mut chain =
                    self.minialloc.open_mini_chain(consts::END_OF_CHAIN)?;
                chain.write_all(&tmp)?;
                chain.start_sector_id()
            } else {
                // Case 3c: The new length is still too large to fit in a mini
                // chain.  Therefore, we just need to adjust the length of the
                // existing chain.
                let mut chain = self
                    .minialloc
                    .open_chain(old_start_sector, SectorInit::Zero)?;
                chain.set_len(new_stream_len)?;
                debug_assert_eq!(chain.start_sector_id(), old_start_sector);
                old_start_sector
            }
        };
        // Update the directory entry for this stream.
        self.minialloc.with_dir_entry_mut(stream_id, |dir_entry| {
            dir_entry.start_sector = new_start_sector;
            dir_entry.stream_len = new_stream_len;
            dir_entry.modified_time = internal::time::current_timestamp();
        })
    }
}

//===========================================================================//

const BUFFER_SIZE: usize = 8192;

/// A stream entry in a compound file, much like a filesystem file.
pub struct Stream<'a, F: 'a> {
    comp: &'a mut CompoundFile<F>,
    stream_id: u32,
    total_len: u64,
    buffer: Box<[u8; BUFFER_SIZE]>,
    buf_pos: usize,
    buf_cap: usize,
    buf_offset_from_start: u64,
    flusher: Option<Box<dyn Flusher<F>>>,
}

impl<'a, F> Stream<'a, F> {
    pub(crate) fn new(
        comp: &'a mut CompoundFile<F>,
        stream_id: u32,
    ) -> Stream<'a, F> {
        let total_len = comp.minialloc.dir_entry(stream_id).stream_len;
        Stream {
            comp,
            stream_id,
            total_len,
            buffer: Box::new([0; BUFFER_SIZE]),
            buf_pos: 0,
            buf_cap: 0,
            buf_offset_from_start: 0,
            flusher: None,
        }
    }

    /// Returns the current length of the stream, in bytes.
    pub fn len(&self) -> u64 {
        self.total_len
    }

    /// Returns true if the stream is empty.
    pub fn is_empty(&self) -> bool {
        self.total_len == 0
    }

    fn current_position(&self) -> u64 {
        self.buf_offset_from_start + (self.buf_pos as u64)
    }

    fn flush_changes(&mut self) -> io::Result<()> {
        if let Some(flusher) = self.flusher.take() {
            flusher.flush_changes(self)?;
        }
        Ok(())
    }
}

impl<'a, F: Read + Write + Seek> Stream<'a, F> {
    /// Truncates or extends the stream, updating the size of this stream to
    /// become `size`.
    ///
    /// If `size` is less than the stream's current size, then the stream will
    /// be shrunk.  If it is greater than the stream's current size, then the
    /// stream will be padded with zero bytes.
    ///
    /// Does not change the current read/write position within the stream,
    /// unless the stream is truncated to before the current position, in which
    /// case the position becomes the new end of the stream.
    pub fn set_len(&mut self, size: u64) -> io::Result<()> {
        if size != self.total_len {
            let new_position = self.current_position().min(size);
            self.flush_changes()?;
            self.comp.resize_stream(self.stream_id, size)?;
            self.total_len = size;
            self.buf_offset_from_start = new_position;
            self.buf_pos = 0;
            self.buf_cap = 0;
        }
        Ok(())
    }

    fn mark_modified(&mut self) {
        if self.flusher.is_none() {
            let flusher: Box<dyn Flusher<F>> = Box::new(FlushBuffer);
            self.flusher = Some(flusher);
        }
    }
}

impl<'a, F: Read + Seek> BufRead for Stream<'a, F> {
    fn fill_buf(&mut self) -> io::Result<&[u8]> {
        if self.buf_pos >= self.buf_cap
            && self.current_position() < self.total_len
        {
            self.flush_changes()?;
            self.buf_offset_from_start += self.buf_pos as u64;
            self.buf_pos = 0;
            self.buf_cap = self.comp.read_data_from_stream(
                self.stream_id,
                self.buf_offset_from_start,
                &mut self.buffer[..],
            )?;
        }
        Ok(&self.buffer[self.buf_pos..self.buf_cap])
    }

    fn consume(&mut self, amt: usize) {
        self.buf_pos = self.buf_cap.min(self.buf_pos + amt);
    }
}

impl<'a, F: Read + Seek> Read for Stream<'a, F> {
    fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
        let num_bytes = {
            let mut buffered_data = self.fill_buf()?;
            buffered_data.read(buf)?
        };
        self.consume(num_bytes);
        Ok(num_bytes)
    }
}

impl<'a, F: Read + Seek> Seek for Stream<'a, F> {
    fn seek(&mut self, pos: SeekFrom) -> io::Result<u64> {
        let new_pos: u64 =
            match pos {
                SeekFrom::Start(delta) => {
                    if delta > self.total_len {
                        invalid_input!(
                        "Cannot seek to {} bytes from start, because stream \
                         length is only {} bytes",
                        delta, self.total_len,
                    );
                    }
                    delta
                }
                SeekFrom::End(delta) => {
                    if delta > 0 {
                        invalid_input!(
                        "Cannot seek to {} bytes past the end of the stream",
                        delta,
                    );
                    } else {
                        let delta = (-delta) as u64;
                        if delta > self.total_len {
                            invalid_input!(
                                "Cannot seek to {} bytes before end, because \
                             stream length is only {} bytes",
                                delta,
                                self.total_len,
                            );
                        }
                        self.total_len - delta
                    }
                }
                SeekFrom::Current(delta) => {
                    let old_pos = self.current_position();
                    debug_assert!(old_pos <= self.total_len);
                    if delta < 0 {
                        let delta = (-delta) as u64;
                        if delta > old_pos {
                            invalid_input!(
                            "Cannot seek to {} bytes before current position, \
                             which is only {}",
                            delta, old_pos,
                        );
                        }
                        old_pos - delta
                    } else {
                        let delta = delta as u64;
                        let remaining = self.total_len - old_pos;
                        if delta > remaining {
                            invalid_input!(
                            "Cannot seek to {} bytes after current position, \
                             because there are only {} bytes remaining in the \
                             stream",
                            delta, remaining,
                        );
                        }
                        old_pos + delta
                    }
                }
            };
        if new_pos < self.buf_offset_from_start
            || new_pos > self.buf_offset_from_start + self.buf_cap as u64
        {
            self.flush_changes()?;
            self.buf_offset_from_start = new_pos;
            self.buf_pos = 0;
            self.buf_cap = 0;
        } else {
            self.buf_pos = (new_pos - self.buf_offset_from_start) as usize;
        }
        Ok(new_pos)
    }
}

impl<'a, F: Read + Write + Seek> Write for Stream<'a, F> {
    fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
        debug_assert!(self.buf_pos <= self.buffer.len());
        if self.buf_pos >= self.buffer.len() {
            self.flush_changes()?;
            self.buf_offset_from_start += self.buf_pos as u64;
            self.buf_pos = 0;
            self.buf_cap = 0;
        }
        let num_bytes_written =
            (&mut self.buffer[self.buf_pos..]).write(buf)?;
        self.mark_modified();
        self.buf_pos += num_bytes_written;
        debug_assert!(self.buf_pos <= self.buffer.len());
        self.buf_cap = self.buf_cap.max(self.buf_pos);
        self.total_len = self
            .total_len
            .max(self.buf_offset_from_start + self.buf_cap as u64);
        Ok(num_bytes_written)
    }

    fn flush(&mut self) -> io::Result<()> {
        self.flush_changes()?;
        self.comp.minialloc.flush()
    }
}

impl<'a, F> Drop for Stream<'a, F> {
    fn drop(&mut self) {
        let _ = self.flush_changes();
    }
}

//===========================================================================//

trait Flusher<F> {
    fn flush_changes(&self, stream: &mut Stream<F>) -> io::Result<()>;
}

struct FlushBuffer;

impl<F: Read + Write + Seek> Flusher<F> for FlushBuffer {
    fn flush_changes(&self, stream: &mut Stream<F>) -> io::Result<()> {
        stream.comp.write_data_to_stream(
            stream.stream_id,
            stream.buf_offset_from_start,
            &stream.buffer[..stream.buf_cap],
        )?;
        debug_assert_eq!(
            stream.comp.minialloc.dir_entry(stream.stream_id).stream_len,
            stream.total_len
        );
        Ok(())
    }
}

//===========================================================================//

#[cfg(test)]
mod tests {
    use super::CompoundFile;
    use crate::internal::{consts, DirEntry, Header, Version};
    use byteorder::{LittleEndian, WriteBytesExt};
    use std::io::{self, Cursor};
    use std::mem::size_of;

    /// Regression test for https://github.com/mdsteele/rust-cfb/issues/8.
    #[test]
    fn zero_padded_fat() -> io::Result<()> {
        let version = Version::V3;
        let mut data = Vec::<u8>::new();
        let mut header = Header {
            version,
            num_dir_sectors: 1,
            num_fat_sectors: 1,
            first_dir_sector: 1,
            first_minifat_sector: consts::END_OF_CHAIN,
            num_minifat_sectors: 0,
            first_difat_sector: consts::END_OF_CHAIN,
            num_difat_sectors: 0,
            initial_difat_entries: [consts::FREE_SECTOR;
                consts::NUM_DIFAT_ENTRIES_IN_HEADER],
        };
        header.initial_difat_entries[0] = 0;
        header.write_to(&mut data)?;

        // Write FAT sector:
        let fat: Vec<u32> = vec![consts::FAT_SECTOR, consts::END_OF_CHAIN];
        for &entry in fat.iter() {
            data.write_u32::<LittleEndian>(entry)?;
        }
        // Pad the FAT sector with zeros instead of FREE_SECTOR.  Technically
        // this violates the MS-CFB spec (section 2.3), but apparently some CFB
        // implementations do this.
        for _ in fat.len()..(version.sector_len() / size_of::<u32>()) {
            data.write_u32::<LittleEndian>(0)?;
        }

        // Write directory sector:
        DirEntry::empty_root_entry().write_to(&mut data)?;
        for _ in 1..version.dir_entries_per_sector() {
            DirEntry::unallocated().write_to(&mut data)?;
        }

        // Despite the zero-padded FAT, we should be able to read this file.
        CompoundFile::open(Cursor::new(data)).expect("open");
        Ok(())
    }
}

//===========================================================================//