ed25519_dalek/
hazmat.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
//! Low-level interfaces to ed25519 functions
//!
//! # ⚠️ Warning: Hazmat
//!
//! These primitives are easy-to-misuse low-level interfaces.
//!
//! If you are an end user / non-expert in cryptography, **do not use any of these functions**.
//! Failure to use them correctly can lead to catastrophic failures including **full private key
//! recovery.**

// Permit dead code because 1) this module is only public when the `hazmat` feature is set, and 2)
// even without `hazmat` we still need this module because this is where `ExpandedSecretKey` is
// defined.
#![allow(dead_code)]

use crate::{InternalError, SignatureError};

use curve25519_dalek::scalar::{clamp_integer, Scalar};

#[cfg(feature = "zeroize")]
use zeroize::{Zeroize, ZeroizeOnDrop};

// These are used in the functions that are made public when the hazmat feature is set
use crate::{Signature, VerifyingKey};
use curve25519_dalek::digest::{generic_array::typenum::U64, Digest};

/// Contains the secret scalar and domain separator used for generating signatures.
///
/// This is used internally for signing.
///
/// In the usual Ed25519 signing algorithm, `scalar` and `hash_prefix` are defined such that
/// `scalar || hash_prefix = H(sk)` where `sk` is the signing key and `H` is SHA-512.
/// **WARNING:** Deriving the values for these fields in any other way can lead to full key
/// recovery, as documented in [`raw_sign`] and [`raw_sign_prehashed`].
///
/// Instances of this secret are automatically overwritten with zeroes when they fall out of scope.
pub struct ExpandedSecretKey {
    /// The secret scalar used for signing
    pub scalar: Scalar,
    /// The domain separator used when hashing the message to generate the pseudorandom `r` value
    pub hash_prefix: [u8; 32],
}

#[cfg(feature = "zeroize")]
impl Drop for ExpandedSecretKey {
    fn drop(&mut self) {
        self.scalar.zeroize();
        self.hash_prefix.zeroize()
    }
}

#[cfg(feature = "zeroize")]
impl ZeroizeOnDrop for ExpandedSecretKey {}

// Some conversion methods for `ExpandedSecretKey`. The signing methods are defined in
// `signing.rs`, since we need them even when `not(feature = "hazmat")`
impl ExpandedSecretKey {
    /// Construct an `ExpandedSecretKey` from an array of 64 bytes. In the spec, the bytes are the
    /// output of a SHA-512 hash. This clamps the first 32 bytes and uses it as a scalar, and uses
    /// the second 32 bytes as a domain separator for hashing.
    pub fn from_bytes(bytes: &[u8; 64]) -> Self {
        // TODO: Use bytes.split_array_ref once it’s in MSRV.
        let mut scalar_bytes: [u8; 32] = [0u8; 32];
        let mut hash_prefix: [u8; 32] = [0u8; 32];
        scalar_bytes.copy_from_slice(&bytes[00..32]);
        hash_prefix.copy_from_slice(&bytes[32..64]);

        // For signing, we'll need the integer, clamped, and converted to a Scalar. See
        // PureEdDSA.keygen in RFC 8032 Appendix A.
        let scalar = Scalar::from_bytes_mod_order(clamp_integer(scalar_bytes));

        ExpandedSecretKey {
            scalar,
            hash_prefix,
        }
    }

    /// Construct an `ExpandedSecretKey` from a slice of 64 bytes.
    ///
    /// # Returns
    ///
    /// A `Result` whose okay value is an EdDSA `ExpandedSecretKey` or whose error value is an
    /// `SignatureError` describing the error that occurred, namely that the given slice's length
    /// is not 64.
    pub fn from_slice(bytes: &[u8]) -> Result<Self, SignatureError> {
        // Try to coerce bytes to a [u8; 64]
        bytes.try_into().map(Self::from_bytes).map_err(|_| {
            InternalError::BytesLength {
                name: "ExpandedSecretKey",
                length: 64,
            }
            .into()
        })
    }
}

impl TryFrom<&[u8]> for ExpandedSecretKey {
    type Error = SignatureError;

    fn try_from(bytes: &[u8]) -> Result<Self, Self::Error> {
        Self::from_slice(bytes)
    }
}

/// Compute an ordinary Ed25519 signature over the given message. `CtxDigest` is the digest used to
/// calculate the pseudorandomness needed for signing. According to the Ed25519 spec, `CtxDigest =
/// Sha512`.
///
/// # ⚠️  Unsafe
///
/// Do NOT use this function unless you absolutely must. Using the wrong values in
/// `ExpandedSecretKey` can leak your signing key. See
/// [here](https://github.com/MystenLabs/ed25519-unsafe-libs) for more details on this attack.
pub fn raw_sign<CtxDigest>(
    esk: &ExpandedSecretKey,
    message: &[u8],
    verifying_key: &VerifyingKey,
) -> Signature
where
    CtxDigest: Digest<OutputSize = U64>,
{
    esk.raw_sign::<CtxDigest>(message, verifying_key)
}

/// Compute a signature over the given prehashed message, the Ed25519ph algorithm defined in
/// [RFC8032 §5.1][rfc8032]. `MsgDigest` is the digest function used to hash the signed message.
/// `CtxDigest` is the digest function used to calculate the pseudorandomness needed for signing.
/// According to the Ed25519 spec, `MsgDigest = CtxDigest = Sha512`.
///
/// # ⚠️  Unsafe
//
/// Do NOT use this function unless you absolutely must. Using the wrong values in
/// `ExpandedSecretKey` can leak your signing key. See
/// [here](https://github.com/MystenLabs/ed25519-unsafe-libs) for more details on this attack.
///
/// # Inputs
///
/// * `esk` is the [`ExpandedSecretKey`] being used for signing
/// * `prehashed_message` is an instantiated hash digest with 512-bits of
///   output which has had the message to be signed previously fed into its
///   state.
/// * `verifying_key` is a [`VerifyingKey`] which corresponds to this secret key.
/// * `context` is an optional context string, up to 255 bytes inclusive,
///   which may be used to provide additional domain separation.  If not
///   set, this will default to an empty string.
///
/// `scalar` and `hash_prefix` are usually selected such that `scalar || hash_prefix = H(sk)` where
/// `sk` is the signing key
///
/// # Returns
///
/// A `Result` whose `Ok` value is an Ed25519ph [`Signature`] on the
/// `prehashed_message` if the context was 255 bytes or less, otherwise
/// a `SignatureError`.
///
/// [rfc8032]: https://tools.ietf.org/html/rfc8032#section-5.1
#[cfg(feature = "digest")]
#[allow(non_snake_case)]
pub fn raw_sign_prehashed<CtxDigest, MsgDigest>(
    esk: &ExpandedSecretKey,
    prehashed_message: MsgDigest,
    verifying_key: &VerifyingKey,
    context: Option<&[u8]>,
) -> Result<Signature, SignatureError>
where
    MsgDigest: Digest<OutputSize = U64>,
    CtxDigest: Digest<OutputSize = U64>,
{
    esk.raw_sign_prehashed::<CtxDigest, MsgDigest>(prehashed_message, verifying_key, context)
}

/// The ordinary non-batched Ed25519 verification check, rejecting non-canonical R
/// values.`CtxDigest` is the digest used to calculate the pseudorandomness needed for signing.
/// According to the Ed25519 spec, `CtxDigest = Sha512`.
pub fn raw_verify<CtxDigest>(
    vk: &VerifyingKey,
    message: &[u8],
    signature: &ed25519::Signature,
) -> Result<(), SignatureError>
where
    CtxDigest: Digest<OutputSize = U64>,
{
    vk.raw_verify::<CtxDigest>(message, signature)
}

/// The batched Ed25519 verification check, rejecting non-canonical R values. `MsgDigest` is the
/// digest used to hash the signed message. `CtxDigest` is the digest used to calculate the
/// pseudorandomness needed for signing. According to the Ed25519 spec, `MsgDigest = CtxDigest =
/// Sha512`.
#[cfg(feature = "digest")]
#[allow(non_snake_case)]
pub fn raw_verify_prehashed<CtxDigest, MsgDigest>(
    vk: &VerifyingKey,
    prehashed_message: MsgDigest,
    context: Option<&[u8]>,
    signature: &ed25519::Signature,
) -> Result<(), SignatureError>
where
    MsgDigest: Digest<OutputSize = U64>,
    CtxDigest: Digest<OutputSize = U64>,
{
    vk.raw_verify_prehashed::<CtxDigest, MsgDigest>(prehashed_message, context, signature)
}

#[cfg(test)]
mod test {
    #![allow(clippy::unwrap_used)]

    use super::*;

    use rand::{rngs::OsRng, CryptoRng, RngCore};

    // Pick distinct, non-spec 512-bit hash functions for message and sig-context hashing
    type CtxDigest = blake2::Blake2b512;
    type MsgDigest = sha3::Sha3_512;

    impl ExpandedSecretKey {
        // Make a random expanded secret key for testing purposes. This is NOT how you generate
        // expanded secret keys IRL. They're the hash of a seed.
        fn random<R: RngCore + CryptoRng>(mut rng: R) -> Self {
            let mut bytes = [0u8; 64];
            rng.fill_bytes(&mut bytes);
            ExpandedSecretKey::from_bytes(&bytes)
        }
    }

    // Check that raw_sign and raw_verify work when a non-spec CtxDigest is used
    #[test]
    fn sign_verify_nonspec() {
        // Generate the keypair
        let rng = OsRng;
        let esk = ExpandedSecretKey::random(rng);
        let vk = VerifyingKey::from(&esk);

        let msg = b"Then one day, a piano fell on my head";

        // Sign and verify
        let sig = raw_sign::<CtxDigest>(&esk, msg, &vk);
        raw_verify::<CtxDigest>(&vk, msg, &sig).unwrap();
    }

    // Check that raw_sign_prehashed and raw_verify_prehashed work when distinct, non-spec
    // MsgDigest and CtxDigest are used
    #[cfg(feature = "digest")]
    #[test]
    fn sign_verify_prehashed_nonspec() {
        use curve25519_dalek::digest::Digest;

        // Generate the keypair
        let rng = OsRng;
        let esk = ExpandedSecretKey::random(rng);
        let vk = VerifyingKey::from(&esk);

        // Hash the message
        let msg = b"And then I got trampled by a herd of buffalo";
        let mut h = MsgDigest::new();
        h.update(msg);

        let ctx_str = &b"consequences"[..];

        // Sign and verify prehashed
        let sig = raw_sign_prehashed::<CtxDigest, MsgDigest>(&esk, h.clone(), &vk, Some(ctx_str))
            .unwrap();
        raw_verify_prehashed::<CtxDigest, MsgDigest>(&vk, h, Some(ctx_str), &sig).unwrap();
    }
}