hashlink/
lru_cache.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
use core::{
    borrow::Borrow,
    fmt,
    hash::{BuildHasher, Hash},
    usize,
};

use hashbrown::hash_map;

use crate::linked_hash_map::{self, LinkedHashMap};

pub use crate::linked_hash_map::{
    Drain, Entry, IntoIter, Iter, IterMut, OccupiedEntry, RawEntryBuilder, RawEntryBuilderMut,
    RawOccupiedEntryMut, RawVacantEntryMut, VacantEntry,
};

pub struct LruCache<K, V, S = hash_map::DefaultHashBuilder> {
    map: LinkedHashMap<K, V, S>,
    max_size: usize,
}

impl<K: Eq + Hash, V> LruCache<K, V> {
    #[inline]
    pub fn new(capacity: usize) -> Self {
        LruCache {
            map: LinkedHashMap::new(),
            max_size: capacity,
        }
    }

    /// Create a new unbounded `LruCache` that does not automatically evict entries.
    ///
    /// A simple convenience method that is equivalent to `LruCache::new(usize::MAX)`
    #[inline]
    pub fn new_unbounded() -> Self {
        LruCache::new(usize::MAX)
    }
}

impl<K, V, S> LruCache<K, V, S> {
    #[inline]
    pub fn with_hasher(capacity: usize, hash_builder: S) -> Self {
        LruCache {
            map: LinkedHashMap::with_hasher(hash_builder),
            max_size: capacity,
        }
    }

    #[inline]
    pub fn capacity(&self) -> usize {
        self.max_size
    }

    #[inline]
    pub fn len(&self) -> usize {
        self.map.len()
    }

    #[inline]
    pub fn is_empty(&self) -> bool {
        self.map.is_empty()
    }

    #[inline]
    pub fn clear(&mut self) {
        self.map.clear();
    }

    #[inline]
    pub fn iter(&self) -> Iter<K, V> {
        self.map.iter()
    }

    #[inline]
    pub fn iter_mut(&mut self) -> IterMut<K, V> {
        self.map.iter_mut()
    }

    #[inline]
    pub fn drain(&mut self) -> Drain<K, V> {
        self.map.drain()
    }
}

impl<K: Eq + Hash, V, S> LruCache<K, V, S>
where
    S: BuildHasher,
{
    #[inline]
    pub fn contains_key<Q>(&self, key: &Q) -> bool
    where
        K: Borrow<Q>,
        Q: Hash + Eq + ?Sized,
    {
        self.map.contains_key(key)
    }

    /// Insert a new value into the `LruCache`.
    ///
    /// If necessary, will remove the value at the front of the LRU list to make room.
    #[inline]
    pub fn insert(&mut self, k: K, v: V) -> Option<V> {
        let old_val = self.map.insert(k, v);
        if self.len() > self.capacity() {
            self.remove_lru();
        }
        old_val
    }

    /// Get the value for the given key, *without* marking the value as recently used and moving it
    /// to the back of the LRU list.
    #[inline]
    pub fn peek<Q>(&self, k: &Q) -> Option<&V>
    where
        K: Borrow<Q>,
        Q: Hash + Eq + ?Sized,
    {
        self.map.get(k)
    }

    /// Get the value for the given key mutably, *without* marking the value as recently used and
    /// moving it to the back of the LRU list.
    #[inline]
    pub fn peek_mut<Q>(&mut self, k: &Q) -> Option<&mut V>
    where
        K: Borrow<Q>,
        Q: Hash + Eq + ?Sized,
    {
        self.map.get_mut(k)
    }

    /// Retrieve the given key, marking it as recently used and moving it to the back of the LRU
    /// list.
    #[inline]
    pub fn get<Q>(&mut self, k: &Q) -> Option<&V>
    where
        K: Borrow<Q>,
        Q: Hash + Eq + ?Sized,
    {
        self.get_mut(k).map(|v| &*v)
    }

    /// Retrieve the given key, marking it as recently used and moving it to the back of the LRU
    /// list.
    #[inline]
    pub fn get_mut<Q>(&mut self, k: &Q) -> Option<&mut V>
    where
        K: Borrow<Q>,
        Q: Hash + Eq + ?Sized,
    {
        match self.map.raw_entry_mut().from_key(k) {
            linked_hash_map::RawEntryMut::Occupied(mut occupied) => {
                occupied.to_back();
                Some(occupied.into_mut())
            }
            linked_hash_map::RawEntryMut::Vacant(_) => None,
        }
    }

    /// If the returned entry is vacant, it will always have room to insert a single value.  By
    /// using the entry API, you can exceed the configured capacity by 1.
    ///
    /// The returned entry is not automatically moved to the back of the LRU list.  By calling
    /// `Entry::to_back` / `Entry::to_front` you can manually control the position of this entry in
    /// the LRU list.
    #[inline]
    pub fn entry(&mut self, key: K) -> Entry<'_, K, V, S> {
        if self.len() > self.capacity() {
            self.remove_lru();
        }
        self.map.entry(key)
    }

    /// The constructed raw entry is never automatically moved to the back of the LRU list.  By
    /// calling `Entry::to_back` / `Entry::to_front` you can manually control the position of this
    /// entry in the LRU list.
    #[inline]
    pub fn raw_entry(&self) -> RawEntryBuilder<'_, K, V, S> {
        self.map.raw_entry()
    }

    /// If the constructed raw entry is vacant, it will always have room to insert a single value.
    /// By using the raw entry API, you can exceed the configured capacity by 1.
    ///
    /// The constructed raw entry is never automatically moved to the back of the LRU list.  By
    /// calling `Entry::to_back` / `Entry::to_front` you can manually control the position of this
    /// entry in the LRU list.
    #[inline]
    pub fn raw_entry_mut(&mut self) -> RawEntryBuilderMut<'_, K, V, S> {
        if self.len() > self.capacity() {
            self.remove_lru();
        }
        self.map.raw_entry_mut()
    }

    #[inline]
    pub fn remove<Q>(&mut self, k: &Q) -> Option<V>
    where
        K: Borrow<Q>,
        Q: Hash + Eq + ?Sized,
    {
        self.map.remove(k)
    }

    #[inline]
    pub fn remove_entry<Q>(&mut self, k: &Q) -> Option<(K, V)>
    where
        K: Borrow<Q>,
        Q: Hash + Eq + ?Sized,
    {
        self.map.remove_entry(k)
    }

    /// Set the new cache capacity for the `LruCache`.
    ///
    /// If there are more entries in the `LruCache` than the new capacity will allow, they are
    /// removed.
    #[inline]
    pub fn set_capacity(&mut self, capacity: usize) {
        for _ in capacity..self.len() {
            self.remove_lru();
        }
        self.max_size = capacity;
    }

    /// Remove the least recently used entry and return it.
    ///
    /// If the `LruCache` is empty this will return None.
    #[inline]
    pub fn remove_lru(&mut self) -> Option<(K, V)> {
        self.map.pop_front()
    }
}

impl<K: Hash + Eq + Clone, V: Clone, S: BuildHasher + Clone> Clone for LruCache<K, V, S> {
    #[inline]
    fn clone(&self) -> Self {
        LruCache {
            map: self.map.clone(),
            max_size: self.max_size,
        }
    }
}

impl<K: Eq + Hash, V, S: BuildHasher> Extend<(K, V)> for LruCache<K, V, S> {
    #[inline]
    fn extend<I: IntoIterator<Item = (K, V)>>(&mut self, iter: I) {
        for (k, v) in iter {
            self.insert(k, v);
        }
    }
}

impl<K, V, S> IntoIterator for LruCache<K, V, S> {
    type Item = (K, V);
    type IntoIter = IntoIter<K, V>;

    #[inline]
    fn into_iter(self) -> IntoIter<K, V> {
        self.map.into_iter()
    }
}

impl<'a, K, V, S> IntoIterator for &'a LruCache<K, V, S> {
    type Item = (&'a K, &'a V);
    type IntoIter = Iter<'a, K, V>;

    #[inline]
    fn into_iter(self) -> Iter<'a, K, V> {
        self.iter()
    }
}

impl<'a, K, V, S> IntoIterator for &'a mut LruCache<K, V, S> {
    type Item = (&'a K, &'a mut V);
    type IntoIter = IterMut<'a, K, V>;

    #[inline]
    fn into_iter(self) -> IterMut<'a, K, V> {
        self.iter_mut()
    }
}

impl<K, V, S> fmt::Debug for LruCache<K, V, S>
where
    K: fmt::Debug,
    V: fmt::Debug,
{
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.debug_map().entries(self.iter().rev()).finish()
    }
}