hashlink/lru_cache.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
use core::{
borrow::Borrow,
fmt,
hash::{BuildHasher, Hash},
usize,
};
use hashbrown::hash_map;
use crate::linked_hash_map::{self, LinkedHashMap};
pub use crate::linked_hash_map::{
Drain, Entry, IntoIter, Iter, IterMut, OccupiedEntry, RawEntryBuilder, RawEntryBuilderMut,
RawOccupiedEntryMut, RawVacantEntryMut, VacantEntry,
};
pub struct LruCache<K, V, S = hash_map::DefaultHashBuilder> {
map: LinkedHashMap<K, V, S>,
max_size: usize,
}
impl<K: Eq + Hash, V> LruCache<K, V> {
#[inline]
pub fn new(capacity: usize) -> Self {
LruCache {
map: LinkedHashMap::new(),
max_size: capacity,
}
}
/// Create a new unbounded `LruCache` that does not automatically evict entries.
///
/// A simple convenience method that is equivalent to `LruCache::new(usize::MAX)`
#[inline]
pub fn new_unbounded() -> Self {
LruCache::new(usize::MAX)
}
}
impl<K, V, S> LruCache<K, V, S> {
#[inline]
pub fn with_hasher(capacity: usize, hash_builder: S) -> Self {
LruCache {
map: LinkedHashMap::with_hasher(hash_builder),
max_size: capacity,
}
}
#[inline]
pub fn capacity(&self) -> usize {
self.max_size
}
#[inline]
pub fn len(&self) -> usize {
self.map.len()
}
#[inline]
pub fn is_empty(&self) -> bool {
self.map.is_empty()
}
#[inline]
pub fn clear(&mut self) {
self.map.clear();
}
#[inline]
pub fn iter(&self) -> Iter<K, V> {
self.map.iter()
}
#[inline]
pub fn iter_mut(&mut self) -> IterMut<K, V> {
self.map.iter_mut()
}
#[inline]
pub fn drain(&mut self) -> Drain<K, V> {
self.map.drain()
}
}
impl<K: Eq + Hash, V, S> LruCache<K, V, S>
where
S: BuildHasher,
{
#[inline]
pub fn contains_key<Q>(&self, key: &Q) -> bool
where
K: Borrow<Q>,
Q: Hash + Eq + ?Sized,
{
self.map.contains_key(key)
}
/// Insert a new value into the `LruCache`.
///
/// If necessary, will remove the value at the front of the LRU list to make room.
#[inline]
pub fn insert(&mut self, k: K, v: V) -> Option<V> {
let old_val = self.map.insert(k, v);
if self.len() > self.capacity() {
self.remove_lru();
}
old_val
}
/// Get the value for the given key, *without* marking the value as recently used and moving it
/// to the back of the LRU list.
#[inline]
pub fn peek<Q>(&self, k: &Q) -> Option<&V>
where
K: Borrow<Q>,
Q: Hash + Eq + ?Sized,
{
self.map.get(k)
}
/// Get the value for the given key mutably, *without* marking the value as recently used and
/// moving it to the back of the LRU list.
#[inline]
pub fn peek_mut<Q>(&mut self, k: &Q) -> Option<&mut V>
where
K: Borrow<Q>,
Q: Hash + Eq + ?Sized,
{
self.map.get_mut(k)
}
/// Retrieve the given key, marking it as recently used and moving it to the back of the LRU
/// list.
#[inline]
pub fn get<Q>(&mut self, k: &Q) -> Option<&V>
where
K: Borrow<Q>,
Q: Hash + Eq + ?Sized,
{
self.get_mut(k).map(|v| &*v)
}
/// Retrieve the given key, marking it as recently used and moving it to the back of the LRU
/// list.
#[inline]
pub fn get_mut<Q>(&mut self, k: &Q) -> Option<&mut V>
where
K: Borrow<Q>,
Q: Hash + Eq + ?Sized,
{
match self.map.raw_entry_mut().from_key(k) {
linked_hash_map::RawEntryMut::Occupied(mut occupied) => {
occupied.to_back();
Some(occupied.into_mut())
}
linked_hash_map::RawEntryMut::Vacant(_) => None,
}
}
/// If the returned entry is vacant, it will always have room to insert a single value. By
/// using the entry API, you can exceed the configured capacity by 1.
///
/// The returned entry is not automatically moved to the back of the LRU list. By calling
/// `Entry::to_back` / `Entry::to_front` you can manually control the position of this entry in
/// the LRU list.
#[inline]
pub fn entry(&mut self, key: K) -> Entry<'_, K, V, S> {
if self.len() > self.capacity() {
self.remove_lru();
}
self.map.entry(key)
}
/// The constructed raw entry is never automatically moved to the back of the LRU list. By
/// calling `Entry::to_back` / `Entry::to_front` you can manually control the position of this
/// entry in the LRU list.
#[inline]
pub fn raw_entry(&self) -> RawEntryBuilder<'_, K, V, S> {
self.map.raw_entry()
}
/// If the constructed raw entry is vacant, it will always have room to insert a single value.
/// By using the raw entry API, you can exceed the configured capacity by 1.
///
/// The constructed raw entry is never automatically moved to the back of the LRU list. By
/// calling `Entry::to_back` / `Entry::to_front` you can manually control the position of this
/// entry in the LRU list.
#[inline]
pub fn raw_entry_mut(&mut self) -> RawEntryBuilderMut<'_, K, V, S> {
if self.len() > self.capacity() {
self.remove_lru();
}
self.map.raw_entry_mut()
}
#[inline]
pub fn remove<Q>(&mut self, k: &Q) -> Option<V>
where
K: Borrow<Q>,
Q: Hash + Eq + ?Sized,
{
self.map.remove(k)
}
#[inline]
pub fn remove_entry<Q>(&mut self, k: &Q) -> Option<(K, V)>
where
K: Borrow<Q>,
Q: Hash + Eq + ?Sized,
{
self.map.remove_entry(k)
}
/// Set the new cache capacity for the `LruCache`.
///
/// If there are more entries in the `LruCache` than the new capacity will allow, they are
/// removed.
#[inline]
pub fn set_capacity(&mut self, capacity: usize) {
for _ in capacity..self.len() {
self.remove_lru();
}
self.max_size = capacity;
}
/// Remove the least recently used entry and return it.
///
/// If the `LruCache` is empty this will return None.
#[inline]
pub fn remove_lru(&mut self) -> Option<(K, V)> {
self.map.pop_front()
}
}
impl<K: Hash + Eq + Clone, V: Clone, S: BuildHasher + Clone> Clone for LruCache<K, V, S> {
#[inline]
fn clone(&self) -> Self {
LruCache {
map: self.map.clone(),
max_size: self.max_size,
}
}
}
impl<K: Eq + Hash, V, S: BuildHasher> Extend<(K, V)> for LruCache<K, V, S> {
#[inline]
fn extend<I: IntoIterator<Item = (K, V)>>(&mut self, iter: I) {
for (k, v) in iter {
self.insert(k, v);
}
}
}
impl<K, V, S> IntoIterator for LruCache<K, V, S> {
type Item = (K, V);
type IntoIter = IntoIter<K, V>;
#[inline]
fn into_iter(self) -> IntoIter<K, V> {
self.map.into_iter()
}
}
impl<'a, K, V, S> IntoIterator for &'a LruCache<K, V, S> {
type Item = (&'a K, &'a V);
type IntoIter = Iter<'a, K, V>;
#[inline]
fn into_iter(self) -> Iter<'a, K, V> {
self.iter()
}
}
impl<'a, K, V, S> IntoIterator for &'a mut LruCache<K, V, S> {
type Item = (&'a K, &'a mut V);
type IntoIter = IterMut<'a, K, V>;
#[inline]
fn into_iter(self) -> IterMut<'a, K, V> {
self.iter_mut()
}
}
impl<K, V, S> fmt::Debug for LruCache<K, V, S>
where
K: fmt::Debug,
V: fmt::Debug,
{
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_map().entries(self.iter().rev()).finish()
}
}