imbl_sized_chunks/inline_array/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0. If a copy of the MPL was not distributed with this
// file, You can obtain one at http://mozilla.org/MPL/2.0/.

//! A fixed capacity array sized to match some other type `T`.
//!
//! See [`InlineArray`](struct.InlineArray.html)

use core::borrow::{Borrow, BorrowMut};
use core::cmp::Ordering;
use core::fmt::{Debug, Error, Formatter};
use core::hash::{Hash, Hasher};
use core::iter::FromIterator;
use core::marker::PhantomData;
use core::mem::{self, MaybeUninit};
use core::ops::{Deref, DerefMut};
use core::ptr;
use core::ptr::NonNull;
use core::slice::{from_raw_parts, from_raw_parts_mut, Iter as SliceIter, IterMut as SliceIterMut};

mod iter;
pub use self::iter::{Drain, Iter};

/// A fixed capacity array sized to match some other type `T`.
///
/// This works like a vector, but allocated on the stack (and thus marginally
/// faster than `Vec`), with the allocated space exactly matching the size of
/// the given type `T`. The vector consists of a `usize` tracking its current
/// length and zero or more elements of type `A`. The capacity is thus
/// `( size_of::<T>() - size_of::<usize>() ) / size_of::<A>()`. This could lead
/// to situations where the capacity is zero, if `size_of::<A>()` is greater
/// than `size_of::<T>() - size_of::<usize>()`, which is not an error and
/// handled properly by the data structure.
///
/// If `size_of::<T>()` is less than `size_of::<usize>()`, meaning the vector
/// has no space to store its length, `InlineArray::new()` will panic.
///
/// This is meant to facilitate optimisations where a list data structure
/// allocates a fairly large struct for itself, allowing you to replace it with
/// an `InlineArray` until it grows beyond its capacity. This not only gives you
/// a performance boost at very small sizes, it also saves you from having to
/// allocate anything on the heap until absolutely necessary.
///
/// For instance, `im::Vector<A>` in its final form currently looks like this
/// (approximately):
///
/// ```rust, ignore
/// struct RRB<A> {
///     length: usize,
///     tree_height: usize,
///     outer_head: Rc<Chunk<A>>,
///     inner_head: Rc<Chunk<A>>,
///     tree: Rc<TreeNode<A>>,
///     inner_tail: Rc<Chunk<A>>,
///     outer_tail: Rc<Chunk<A>>,
/// }
/// ```
///
/// That's two `usize`s and five `Rc`s, which comes in at 56 bytes on x86_64
/// architectures. With `InlineArray`, that leaves us with 56 -
/// `size_of::<usize>()` = 48 bytes we can use before having to expand into the
/// full data struture. If `A` is `u8`, that's 48 elements, and even if `A` is a
/// pointer we can still keep 6 of them inline before we run out of capacity.
///
/// We can declare an enum like this:
///
/// ```rust, ignore
/// enum VectorWrapper<A> {
///     Inline(InlineArray<A, RRB<A>>),
///     Full(RRB<A>),
/// }
/// ```
///
/// Both of these will have the same size, and we can swap the `Inline` case out
/// with the `Full` case once the `InlineArray` runs out of capacity.
#[repr(C)]
pub struct InlineArray<A, T> {
    // Alignment tricks
    //
    // We need both the `_header_align` and `data` to be properly aligned in memory. We do a few tricks
    // to handle that.
    //
    // * An alignment is always power of 2. Therefore, with a pair of alignments, one is always
    //   a multiple of the other (one way or the other).
    // * A struct is aligned to at least the max alignment of each of its fields.
    // * A `repr(C)` struct follows the order of fields and pushes each as close to the previous one
    //   as allowed by alignment.
    //
    // By placing two "fake" fields that have 0 size, but an alignment first, we make sure that all
    // 3 start at the beginning of the struct and that all of them are aligned to their maximum
    // alignment.
    //
    // Unfortunately, we can't use `[A; 0]` to align to actual alignment of the type `A`, because
    // it prevents use of `InlineArray` in recursive types.
    // We rely on alignment of `u64`/`usize` or `T` to be sufficient, and panic otherwise. We use
    // `u64` to handle all common types on 32-bit systems too.
    //
    // Furthermore, because we don't know if `u64` or `A` has bigger alignment, we decide on case by
    // case basis if the header or the elements go first. By placing the one with higher alignment
    // requirements first, we align that one and the other one will be aligned "automatically" when
    // placed just after it.
    //
    // To the best of our knowledge, this is all guaranteed by the compiler. But just to make sure,
    // we have bunch of asserts in the constructor to check; as these are invariants enforced by
    // the compiler, it should be trivial for it to remove the checks so they are for free (if we
    // are correct) or will save us (if we are not).
    _header_align: [(u64, usize); 0],
    _phantom: PhantomData<A>,
    data: MaybeUninit<T>,
}

const fn capacity(
    host_size: usize,
    header_size: usize,
    element_size: usize,
    element_align: usize,
    container_align: usize,
) -> usize {
    if element_size == 0 {
        usize::MAX
    } else if element_align <= container_align && host_size > header_size {
        (host_size - header_size) / element_size
    } else {
        0 // larger alignment can't be guaranteed, so it'd be unsafe to store any elements
    }
}

impl<A, T> InlineArray<A, T> {
    const HOST_SIZE: usize = mem::size_of::<T>();
    const ELEMENT_SIZE: usize = mem::size_of::<A>();
    const HEADER_SIZE: usize = mem::size_of::<usize>();
    // Do we place the header before the elements or the other way around?
    const HEADER_FIRST: bool = mem::align_of::<usize>() >= mem::align_of::<A>();
    // Note: one of the following is always 0
    // How many usizes to skip before the first element?
    const ELEMENT_SKIP: usize = Self::HEADER_FIRST as usize;
    // How many elements to skip before the header
    const HEADER_SKIP: usize = Self::CAPACITY * (1 - Self::ELEMENT_SKIP);

    /// The maximum number of elements the `InlineArray` can hold.
    pub const CAPACITY: usize = capacity(
        Self::HOST_SIZE,
        Self::HEADER_SIZE,
        Self::ELEMENT_SIZE,
        mem::align_of::<A>(),
        mem::align_of::<Self>(),
    );

    #[inline]
    #[must_use]
    unsafe fn len_const(&self) -> *const usize {
        let ptr = self
            .data
            .as_ptr()
            .cast::<A>()
            .add(Self::HEADER_SKIP)
            .cast::<usize>();
        debug_assert!(ptr as usize % mem::align_of::<usize>() == 0);
        ptr
    }

    #[inline]
    #[must_use]
    pub(crate) unsafe fn len_mut(&mut self) -> *mut usize {
        let ptr = self
            .data
            .as_mut_ptr()
            .cast::<A>()
            .add(Self::HEADER_SKIP)
            .cast::<usize>();
        debug_assert!(ptr as usize % mem::align_of::<usize>() == 0);
        ptr
    }

    #[inline]
    #[must_use]
    pub(crate) unsafe fn data(&self) -> *const A {
        if Self::CAPACITY == 0 {
            return NonNull::<A>::dangling().as_ptr();
        }
        let ptr = self
            .data
            .as_ptr()
            .cast::<usize>()
            .add(Self::ELEMENT_SKIP)
            .cast::<A>();
        debug_assert!(ptr as usize % mem::align_of::<A>() == 0);
        ptr
    }

    #[inline]
    #[must_use]
    unsafe fn data_mut(&mut self) -> *mut A {
        if Self::CAPACITY == 0 {
            return NonNull::<A>::dangling().as_ptr();
        }
        let ptr = self
            .data
            .as_mut_ptr()
            .cast::<usize>()
            .add(Self::ELEMENT_SKIP)
            .cast::<A>();
        debug_assert!(ptr as usize % mem::align_of::<A>() == 0);
        ptr
    }

    #[inline]
    #[must_use]
    unsafe fn ptr_at(&self, index: usize) -> *const A {
        debug_assert!(index < Self::CAPACITY);
        self.data().add(index)
    }

    #[inline]
    #[must_use]
    unsafe fn ptr_at_mut(&mut self, index: usize) -> *mut A {
        debug_assert!(index < Self::CAPACITY);
        self.data_mut().add(index)
    }

    #[inline]
    unsafe fn read_at(&self, index: usize) -> A {
        ptr::read(self.ptr_at(index))
    }

    #[inline]
    unsafe fn write_at(&mut self, index: usize, value: A) {
        ptr::write(self.ptr_at_mut(index), value);
    }

    /// Get the length of the array.
    #[inline]
    #[must_use]
    pub fn len(&self) -> usize {
        unsafe { *self.len_const() }
    }

    /// Test if the array is empty.
    #[inline]
    #[must_use]
    pub fn is_empty(&self) -> bool {
        self.len() == 0
    }

    /// Test if the array is at capacity.
    #[inline]
    #[must_use]
    pub fn is_full(&self) -> bool {
        self.len() >= Self::CAPACITY
    }

    /// Construct a new empty array.
    ///
    /// # Panics
    ///
    /// If the element type requires large alignment, which is larger than
    /// both alignment of `usize` and alignment of the type that provides the capacity.
    #[inline]
    #[must_use]
    pub fn new() -> Self {
        assert!(Self::HOST_SIZE > Self::HEADER_SIZE);
        assert!(
            (Self::CAPACITY == 0) || (mem::align_of::<Self>() % mem::align_of::<A>() == 0),
            "InlineArray can't satisfy alignment of {}",
            core::any::type_name::<A>()
        );

        let mut self_ = Self {
            _header_align: [],
            _phantom: PhantomData,
            data: MaybeUninit::uninit(),
        };
        // Sanity check our assumptions about what is guaranteed by the compiler. If we are right,
        // these should completely optimize out of the resulting binary.
        assert_eq!(
            &self_ as *const _ as usize,
            self_.data.as_ptr() as usize,
            "Padding at the start of struct",
        );
        assert_eq!(
            self_.data.as_ptr() as usize % mem::align_of::<usize>(),
            0,
            "Unaligned header"
        );
        assert!(
            mem::size_of::<Self>() == mem::size_of::<T>()
                || mem::align_of::<T>() < mem::align_of::<Self>()
        );
        assert_eq!(0, unsafe { self_.data() } as usize % mem::align_of::<A>());
        assert_eq!(
            0,
            unsafe { self_.data_mut() } as usize % mem::align_of::<A>()
        );
        assert!(Self::ELEMENT_SKIP == 0 || Self::HEADER_SKIP == 0);
        unsafe { ptr::write(self_.len_mut(), 0usize) };
        self_
    }

    /// Push an item to the back of the array.
    ///
    /// Panics if the capacity of the array is exceeded.
    ///
    /// Time: O(1)
    pub fn push(&mut self, value: A) {
        if self.is_full() {
            panic!("InlineArray::push: chunk size overflow");
        }
        unsafe {
            self.write_at(self.len(), value);
            *self.len_mut() += 1;
        }
    }

    /// Pop an item from the back of the array.
    ///
    /// Returns `None` if the array is empty.
    ///
    /// Time: O(1)
    pub fn pop(&mut self) -> Option<A> {
        if self.is_empty() {
            None
        } else {
            unsafe {
                *self.len_mut() -= 1;
            }
            Some(unsafe { self.read_at(self.len()) })
        }
    }

    /// Insert a new value at index `index`, shifting all the following values
    /// to the right.
    ///
    /// Panics if the index is out of bounds or the array is at capacity.
    ///
    /// Time: O(n) for the number of items shifted
    pub fn insert(&mut self, index: usize, value: A) {
        if self.is_full() {
            panic!("InlineArray::push: chunk size overflow");
        }
        if index > self.len() {
            panic!("InlineArray::insert: index out of bounds");
        }
        unsafe {
            let src = self.ptr_at_mut(index);
            ptr::copy(src, src.add(1), self.len() - index);
            ptr::write(src, value);
            *self.len_mut() += 1;
        }
    }

    /// Remove the value at index `index`, shifting all the following values to
    /// the left.
    ///
    /// Returns the removed value, or `None` if the array is empty or the index
    /// is out of bounds.
    ///
    /// Time: O(n) for the number of items shifted
    pub fn remove(&mut self, index: usize) -> Option<A> {
        if index >= self.len() {
            None
        } else {
            unsafe {
                let src = self.ptr_at_mut(index);
                let value = ptr::read(src);
                *self.len_mut() -= 1;
                ptr::copy(src.add(1), src, self.len() - index);
                Some(value)
            }
        }
    }

    /// Split an array into two, the original array containing
    /// everything up to `index` and the returned array containing
    /// everything from `index` onwards.
    ///
    /// Panics if `index` is out of bounds.
    ///
    /// Time: O(n) for the number of items in the new chunk
    pub fn split_off(&mut self, index: usize) -> Self {
        if index > self.len() {
            panic!("InlineArray::split_off: index out of bounds");
        }
        let mut out = Self::new();
        if index < self.len() {
            unsafe {
                ptr::copy(self.ptr_at(index), out.data_mut(), self.len() - index);
                *out.len_mut() = self.len() - index;
                *self.len_mut() = index;
            }
        }
        out
    }

    /// Shortens the array, keeping the first `len` elements and dropping the
    /// rest.
    ///
    /// If `len` is greater or equal to the array's current length, this has no
    /// effect.
    pub fn truncate(&mut self, len: usize) {
        if len >= self.len() {
            return;
        }

        unsafe {
            ptr::drop_in_place::<[A]>(&mut (**self)[len..]);
            *self.len_mut() = len;
        }
    }

    #[inline]
    unsafe fn drop_contents(&mut self) {
        ptr::drop_in_place::<[A]>(&mut **self) // uses DerefMut
    }

    /// Discard the contents of the array.
    ///
    /// Time: O(n)
    pub fn clear(&mut self) {
        unsafe {
            self.drop_contents();
            *self.len_mut() = 0;
        }
    }

    /// Construct an iterator that drains values from the front of the array.
    pub fn drain(&mut self) -> Drain<'_, A, T> {
        Drain { array: self }
    }
}

impl<A, T> Drop for InlineArray<A, T> {
    fn drop(&mut self) {
        unsafe { self.drop_contents() }
    }
}

impl<A, T> Default for InlineArray<A, T> {
    fn default() -> Self {
        Self::new()
    }
}

// WANT:
// impl<A, T> Copy for InlineArray<A, T> where A: Copy {}

impl<A, T> Clone for InlineArray<A, T>
where
    A: Clone,
{
    fn clone(&self) -> Self {
        let mut copy = Self::new();
        for i in 0..self.len() {
            unsafe {
                copy.write_at(i, self.get_unchecked(i).clone());
            }
        }
        unsafe {
            *copy.len_mut() = self.len();
        }
        copy
    }
}

impl<A, T> Deref for InlineArray<A, T> {
    type Target = [A];
    fn deref(&self) -> &Self::Target {
        unsafe { from_raw_parts(self.data(), self.len()) }
    }
}

impl<A, T> DerefMut for InlineArray<A, T> {
    fn deref_mut(&mut self) -> &mut Self::Target {
        unsafe { from_raw_parts_mut(self.data_mut(), self.len()) }
    }
}

impl<A, T> Borrow<[A]> for InlineArray<A, T> {
    fn borrow(&self) -> &[A] {
        self.deref()
    }
}

impl<A, T> BorrowMut<[A]> for InlineArray<A, T> {
    fn borrow_mut(&mut self) -> &mut [A] {
        self.deref_mut()
    }
}

impl<A, T> AsRef<[A]> for InlineArray<A, T> {
    fn as_ref(&self) -> &[A] {
        self.deref()
    }
}

impl<A, T> AsMut<[A]> for InlineArray<A, T> {
    fn as_mut(&mut self) -> &mut [A] {
        self.deref_mut()
    }
}
impl<A, T, Slice> PartialEq<Slice> for InlineArray<A, T>
where
    Slice: Borrow<[A]>,
    A: PartialEq,
{
    fn eq(&self, other: &Slice) -> bool {
        self.deref() == other.borrow()
    }
}

impl<A, T> Eq for InlineArray<A, T> where A: Eq {}

impl<A, T> PartialOrd for InlineArray<A, T>
where
    A: PartialOrd,
{
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        self.iter().partial_cmp(other.iter())
    }
}

impl<A, T> Ord for InlineArray<A, T>
where
    A: Ord,
{
    fn cmp(&self, other: &Self) -> Ordering {
        self.iter().cmp(other.iter())
    }
}

impl<A, T> Debug for InlineArray<A, T>
where
    A: Debug,
{
    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
        f.write_str("Chunk")?;
        f.debug_list().entries(self.iter()).finish()
    }
}

impl<A, T> Hash for InlineArray<A, T>
where
    A: Hash,
{
    fn hash<H>(&self, hasher: &mut H)
    where
        H: Hasher,
    {
        for item in self {
            item.hash(hasher)
        }
    }
}

impl<A, T> IntoIterator for InlineArray<A, T> {
    type Item = A;
    type IntoIter = Iter<A, T>;
    fn into_iter(self) -> Self::IntoIter {
        Iter { array: self }
    }
}

impl<A, T> FromIterator<A> for InlineArray<A, T> {
    fn from_iter<I>(it: I) -> Self
    where
        I: IntoIterator<Item = A>,
    {
        let mut chunk = Self::new();
        for item in it {
            chunk.push(item);
        }
        chunk
    }
}

impl<'a, A, T> IntoIterator for &'a InlineArray<A, T> {
    type Item = &'a A;
    type IntoIter = SliceIter<'a, A>;
    fn into_iter(self) -> Self::IntoIter {
        self.iter()
    }
}

impl<'a, A, T> IntoIterator for &'a mut InlineArray<A, T> {
    type Item = &'a mut A;
    type IntoIter = SliceIterMut<'a, A>;
    fn into_iter(self) -> Self::IntoIter {
        self.iter_mut()
    }
}

impl<A, T> Extend<A> for InlineArray<A, T> {
    /// Append the contents of the iterator to the back of the array.
    ///
    /// Panics if the array exceeds its capacity.
    ///
    /// Time: O(n) for the length of the iterator
    fn extend<I>(&mut self, it: I)
    where
        I: IntoIterator<Item = A>,
    {
        for item in it {
            self.push(item);
        }
    }
}

impl<'a, A, T> Extend<&'a A> for InlineArray<A, T>
where
    A: 'a + Copy,
{
    /// Append the contents of the iterator to the back of the array.
    ///
    /// Panics if the array exceeds its capacity.
    ///
    /// Time: O(n) for the length of the iterator
    fn extend<I>(&mut self, it: I)
    where
        I: IntoIterator<Item = &'a A>,
    {
        for item in it {
            self.push(*item);
        }
    }
}

#[allow(dead_code)]
#[cfg(test)]
mod test {
    use super::*;
    use crate::tests::DropTest;
    use std::sync::atomic::{AtomicUsize, Ordering};

    #[test]
    fn dropping() {
        let counter = AtomicUsize::new(0);
        {
            let mut chunk: InlineArray<DropTest<'_>, [usize; 32]> = InlineArray::new();
            for _i in 0..16 {
                chunk.push(DropTest::new(&counter));
            }
            assert_eq!(16, counter.load(Ordering::Relaxed));
            for _i in 0..8 {
                chunk.pop();
            }
            assert_eq!(8, counter.load(Ordering::Relaxed));
        }
        assert_eq!(0, counter.load(Ordering::Relaxed));
    }

    #[test]
    fn truncate() {
        let counter = AtomicUsize::new(0);
        {
            let mut chunk: InlineArray<DropTest<'_>, [usize; 32]> = InlineArray::new();
            for _i in 0..16 {
                chunk.push(DropTest::new(&counter));
            }
            assert_eq!(16, counter.load(Ordering::Relaxed));
            chunk.truncate(8);
            assert_eq!(8, counter.load(Ordering::Relaxed));
        }
        assert_eq!(0, counter.load(Ordering::Relaxed));
    }

    #[test]
    fn zero_sized_values() {
        let mut chunk: InlineArray<(), [usize; 32]> = InlineArray::new();
        for _i in 0..65536 {
            chunk.push(());
        }
        assert_eq!(65536, chunk.len());
        assert_eq!(Some(()), chunk.pop());
    }

    #[test]
    fn low_align_base() {
        let mut chunk: InlineArray<String, [u8; 512]> = InlineArray::new();
        chunk.push("Hello".to_owned());
        assert_eq!(chunk[0], "Hello");

        let mut chunk: InlineArray<String, [u16; 512]> = InlineArray::new();
        chunk.push("Hello".to_owned());
        assert_eq!(chunk[0], "Hello");
    }

    #[test]
    fn float_align() {
        let mut chunk: InlineArray<f64, [u8; 16]> = InlineArray::new();
        chunk.push(1234.);
        assert_eq!(chunk[0], 1234.);

        let mut chunk: InlineArray<f64, [u8; 17]> = InlineArray::new();
        chunk.push(1234.);
        assert_eq!(chunk[0], 1234.);
    }

    #[test]
    fn recursive_types_compile() {
        #[allow(dead_code)]
        enum Recursive {
            A(InlineArray<Recursive, u64>),
            B,
        }
    }

    #[test]
    fn insufficient_alignment1() {
        #[repr(align(256))]
        struct BigAlign(u8);
        #[repr(align(32))]
        struct MediumAlign(u8);

        assert_eq!(0, InlineArray::<BigAlign, [usize; 256]>::CAPACITY);
        assert_eq!(0, InlineArray::<BigAlign, [u64; 256]>::CAPACITY);
        assert_eq!(0, InlineArray::<BigAlign, [f64; 256]>::CAPACITY);
        assert_eq!(0, InlineArray::<BigAlign, [MediumAlign; 256]>::CAPACITY);
    }

    #[test]
    fn insufficient_alignment2() {
        #[repr(align(256))]
        struct BigAlign(usize);

        let mut bad: InlineArray<BigAlign, [usize; 256]> = InlineArray::new();
        assert_eq!(0, InlineArray::<BigAlign, [usize; 256]>::CAPACITY);
        assert_eq!(0, bad.len());
        assert_eq!(0, bad[..].len());
        assert!(bad.is_full());
        assert_eq!(0, bad.drain().count());
        assert!(bad.pop().is_none());
        assert!(bad.remove(0).is_none());
        assert!(bad.split_off(0).is_full());
        bad.clear();
    }

    #[test]
    fn sufficient_alignment1() {
        #[repr(align(256))]
        struct BigAlign(u8);

        assert_eq!(13, InlineArray::<BigAlign, [BigAlign; 14]>::CAPACITY);
        assert_eq!(1, InlineArray::<BigAlign, [BigAlign; 2]>::CAPACITY);
        assert_eq!(0, InlineArray::<BigAlign, [BigAlign; 1]>::CAPACITY);

        let mut chunk: InlineArray<BigAlign, [BigAlign; 2]> = InlineArray::new();
        chunk.push(BigAlign(42));
        assert_eq!(
            chunk.first().unwrap() as *const _ as usize % mem::align_of::<BigAlign>(),
            0
        );
    }

    #[test]
    fn sufficient_alignment2() {
        #[repr(align(128))]
        struct BigAlign([u8; 64]);
        #[repr(align(256))]
        struct BiggerAlign(u8);
        assert_eq!(128, mem::align_of::<BigAlign>());
        assert_eq!(256, mem::align_of::<BiggerAlign>());

        assert_eq!(199, InlineArray::<BigAlign, [BiggerAlign; 100]>::CAPACITY);
        assert_eq!(3, InlineArray::<BigAlign, [BiggerAlign; 2]>::CAPACITY);
        assert_eq!(1, InlineArray::<BigAlign, [BiggerAlign; 1]>::CAPACITY);
        assert_eq!(0, InlineArray::<BigAlign, [BiggerAlign; 0]>::CAPACITY);

        let mut chunk: InlineArray<BigAlign, [BiggerAlign; 1]> = InlineArray::new();
        chunk.push(BigAlign([0; 64]));
        assert_eq!(
            chunk.first().unwrap() as *const _ as usize % mem::align_of::<BigAlign>(),
            0
        );
    }
}