imbl_sized_chunks/sized_chunk/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0. If a copy of the MPL was not distributed with this
// file, You can obtain one at http://mozilla.org/MPL/2.0/.
//! A fixed capacity smart array.
//!
//! See [`Chunk`](struct.Chunk.html)
use crate::inline_array::InlineArray;
use core::borrow::{Borrow, BorrowMut};
use core::cmp::Ordering;
use core::fmt::{Debug, Error, Formatter};
use core::hash::{Hash, Hasher};
use core::iter::FromIterator;
use core::mem::{replace, MaybeUninit};
use core::ops::{Deref, DerefMut, Index, IndexMut};
use core::ptr;
use core::slice::{
from_raw_parts, from_raw_parts_mut, Iter as SliceIter, IterMut as SliceIterMut, SliceIndex,
};
#[cfg(feature = "std")]
use std::io;
mod iter;
pub use self::iter::{Drain, Iter};
#[cfg(feature = "refpool")]
mod refpool;
/// A fixed capacity smart array.
///
/// An inline array of items with a variable length but a fixed, preallocated
/// capacity given by the `N` type.
///
/// It's 'smart' because it's able to reorganise its contents based on expected
/// behaviour. If you construct one using `push_back`, it will be laid out like
/// a `Vec` with space at the end. If you `push_front` it will start filling in
/// values from the back instead of the front, so that you still get linear time
/// push as long as you don't reverse direction. If you do, and there's no room
/// at the end you're pushing to, it'll shift its contents over to the other
/// side, creating more space to push into. This technique is tuned for
/// `Chunk`'s expected use case in [im::Vector]: usually, chunks always see
/// either `push_front` or `push_back`, but not both unless they move around
/// inside the tree, in which case they're able to reorganise themselves with
/// reasonable efficiency to suit their new usage patterns.
///
/// It maintains a `left` index and a `right` index instead of a simple length
/// counter in order to accomplish this, much like a ring buffer would, except
/// that the `Chunk` keeps all its items sequentially in memory so that you can
/// always get a `&[A]` slice for them, at the price of the occasional
/// reordering operation. The allocated size of a `Chunk` is thus `usize` * 2 +
/// `A` * `N`.
///
/// This technique also lets us choose to shift the shortest side to account for
/// the inserted or removed element when performing insert and remove
/// operations, unlike `Vec` where you always need to shift the right hand side.
///
/// Unlike a `Vec`, the `Chunk` has a fixed capacity and cannot grow beyond it.
/// Being intended for low level use, it expects you to know or test whether
/// you're pushing to a full array, and has an API more geared towards panics
/// than returning `Option`s, on the assumption that you know what you're doing.
/// Of course, if you don't, you can expect it to panic immediately rather than
/// do something undefined and usually bad.
///
/// ## Isn't this just a less efficient ring buffer?
///
/// You might be wondering why you would want to use this data structure rather
/// than a [`RingBuffer`][RingBuffer], which is similar but doesn't need to
/// shift its content around when it hits the sides of the allocated buffer. The
/// answer is that `Chunk` can be dereferenced into a slice, while a ring buffer
/// can not. You'll also save a few cycles on index lookups, as a `Chunk`'s data
/// is guaranteed to be contiguous in memory, so there's no need to remap logical
/// indices to a ring buffer's physical layout.
///
/// # Examples
///
/// ```rust
/// # use imbl_sized_chunks::Chunk;
/// // Construct a chunk with a 64 item capacity
/// let mut chunk = Chunk::<i32, 64>::new();
/// // Fill it with descending numbers
/// chunk.extend((0..64).rev());
/// // It derefs to a slice so we can use standard slice methods
/// chunk.sort();
/// // It's got all the amenities like `FromIterator` and `Eq`
/// let expected: Chunk<i32, 64> = (0..64).collect();
/// assert_eq!(expected, chunk);
/// ```
///
/// [im::Vector]: https://docs.rs/im/latest/im/vector/enum.Vector.html
/// [RingBuffer]: ../ring_buffer/struct.RingBuffer.html
pub struct Chunk<A, const N: usize> {
left: usize,
right: usize,
data: MaybeUninit<[A; N]>,
}
impl<A, const N: usize> Drop for Chunk<A, N> {
fn drop(&mut self) {
unsafe { ptr::drop_in_place(self.as_mut_slice()) }
}
}
impl<A, const N: usize> Clone for Chunk<A, N>
where
A: Clone,
{
fn clone(&self) -> Self {
let mut out = Self::new();
out.left = self.left;
out.right = self.left;
for index in self.left..self.right {
unsafe { Chunk::force_write(index, (*self.ptr(index)).clone(), &mut out) }
// Panic safety, move the right index to cover only the really initialized things. This
// way we don't try to drop uninitialized, but also don't leak if we panic in the
// middle.
out.right = index + 1;
}
out
}
}
impl<A, const N: usize> Chunk<A, N> {
/// The maximum number of elements this `Chunk` can contain.
pub const CAPACITY: usize = N;
/// Construct a new empty chunk.
pub fn new() -> Self {
Self {
left: 0,
right: 0,
data: MaybeUninit::uninit(),
}
}
/// Construct a new chunk with one item.
pub fn unit(value: A) -> Self {
assert!(Self::CAPACITY >= 1);
let mut chunk = Self {
left: 0,
right: 1,
data: MaybeUninit::uninit(),
};
unsafe {
Chunk::force_write(0, value, &mut chunk);
}
chunk
}
/// Construct a new chunk with two items.
pub fn pair(left: A, right: A) -> Self {
assert!(Self::CAPACITY >= 2);
let mut chunk = Self {
left: 0,
right: 2,
data: MaybeUninit::uninit(),
};
unsafe {
Chunk::force_write(0, left, &mut chunk);
Chunk::force_write(1, right, &mut chunk);
}
chunk
}
/// Construct a new chunk and move every item from `other` into the new
/// chunk.
///
/// Time: O(n)
pub fn drain_from(other: &mut Self) -> Self {
let other_len = other.len();
Self::from_front(other, other_len)
}
/// Construct a new chunk and populate it by taking `count` items from the
/// iterator `iter`.
///
/// Panics if the iterator contains less than `count` items.
///
/// Time: O(n)
pub fn collect_from<I>(iter: &mut I, mut count: usize) -> Self
where
I: Iterator<Item = A>,
{
let mut chunk = Self::new();
while count > 0 {
count -= 1;
chunk.push_back(
iter.next()
.expect("Chunk::collect_from: underfull iterator"),
);
}
chunk
}
/// Construct a new chunk and populate it by taking `count` items from the
/// front of `other`.
///
/// Time: O(n) for the number of items moved
pub fn from_front(other: &mut Self, count: usize) -> Self {
let other_len = other.len();
debug_assert!(count <= other_len);
let mut chunk = Self::new();
unsafe { Chunk::force_copy_to(other.left, 0, count, other, &mut chunk) };
chunk.right = count;
other.left += count;
chunk
}
/// Construct a new chunk and populate it by taking `count` items from the
/// back of `other`.
///
/// Time: O(n) for the number of items moved
pub fn from_back(other: &mut Self, count: usize) -> Self {
let other_len = other.len();
debug_assert!(count <= other_len);
let mut chunk = Self::new();
unsafe { Chunk::force_copy_to(other.right - count, 0, count, other, &mut chunk) };
chunk.right = count;
other.right -= count;
chunk
}
/// Get the length of the chunk.
#[inline]
pub fn len(&self) -> usize {
self.right - self.left
}
/// Test if the chunk is empty.
#[inline]
pub fn is_empty(&self) -> bool {
self.left == self.right
}
/// Test if the chunk is at capacity.
#[inline]
pub fn is_full(&self) -> bool {
self.left == 0 && self.right == Self::CAPACITY
}
#[inline]
unsafe fn ptr(&self, index: usize) -> *const A {
(&self.data as *const _ as *const A).add(index)
}
/// It has no bounds checks
#[inline]
unsafe fn mut_ptr(&mut self, index: usize) -> *mut A {
(&mut self.data as *mut _ as *mut A).add(index)
}
/// Copy the value at an index, discarding ownership of the copied value
#[inline]
unsafe fn force_read(index: usize, chunk: &mut Self) -> A {
chunk.ptr(index).read()
}
/// Write a value at an index without trying to drop what's already there.
/// It has no bounds checks.
#[inline]
unsafe fn force_write(index: usize, value: A, chunk: &mut Self) {
chunk.mut_ptr(index).write(value)
}
/// Copy a range within a chunk
#[inline]
unsafe fn force_copy(from: usize, to: usize, count: usize, chunk: &mut Self) {
if count > 0 {
let data = &mut chunk.data as *mut _ as *mut A;
let from = data.add(from);
let to = data.add(to);
ptr::copy(from, to, count)
}
}
/// Write values from iterator into range starting at write_index.
///
/// Will overwrite values at the relevant range without dropping even in case the values were
/// already initialized (it is expected they are empty). Does not update the left or right
/// index.
///
/// # Safety
///
/// Range checks must already have been performed.
///
/// # Panics
///
/// If the iterator panics, the chunk becomes conceptually empty and will leak any previous
/// elements (even the ones outside the range).
#[inline]
unsafe fn write_from_iter<I>(mut write_index: usize, iter: I, chunk: &mut Self)
where
I: ExactSizeIterator<Item = A>,
{
// Panic safety. We make the array conceptually empty, so we never ever drop anything that
// is unitialized. We do so because we expect to be called when there's a potential "hole"
// in the array that makes the space for the new elements to be written. We return it back
// to original when everything goes fine, but leak any elements on panic. This is bad, but
// better than dropping non-existing stuff.
//
// Should we worry about some better panic recovery than this?
let left = replace(&mut chunk.left, 0);
let right = replace(&mut chunk.right, 0);
let len = iter.len();
let expected_end = write_index + len;
for value in iter.take(len) {
Chunk::force_write(write_index, value, chunk);
write_index += 1;
}
// Oops, we have a hole in here now. That would be bad, give up.
assert_eq!(
expected_end, write_index,
"ExactSizeIterator yielded fewer values than advertised",
);
chunk.left = left;
chunk.right = right;
}
/// Copy a range between chunks
#[inline]
unsafe fn force_copy_to(
from: usize,
to: usize,
count: usize,
chunk: &mut Self,
other: &mut Self,
) {
if count > 0 {
ptr::copy_nonoverlapping(chunk.ptr(from), other.mut_ptr(to), count)
}
}
/// Push an item to the front of the chunk.
///
/// Panics if the capacity of the chunk is exceeded.
///
/// Time: O(1) if there's room at the front, O(n) otherwise
pub fn push_front(&mut self, value: A) {
if self.is_full() {
panic!("Chunk::push_front: can't push to full chunk");
}
if self.is_empty() {
self.left = N;
self.right = N;
} else if self.left == 0 {
self.left = N - self.right;
unsafe { Chunk::force_copy(0, self.left, self.right, self) };
self.right = N;
}
self.left -= 1;
unsafe { Chunk::force_write(self.left, value, self) }
}
/// Push an item to the back of the chunk.
///
/// Panics if the capacity of the chunk is exceeded.
///
/// Time: O(1) if there's room at the back, O(n) otherwise
pub fn push_back(&mut self, value: A) {
if self.is_full() {
panic!("Chunk::push_back: can't push to full chunk");
}
if self.is_empty() {
self.left = 0;
self.right = 0;
} else if self.right == N {
unsafe { Chunk::force_copy(self.left, 0, self.len(), self) };
self.right = N - self.left;
self.left = 0;
}
unsafe { Chunk::force_write(self.right, value, self) }
self.right += 1;
}
/// Pop an item off the front of the chunk.
///
/// Panics if the chunk is empty.
///
/// Time: O(1)
pub fn pop_front(&mut self) -> A {
if self.is_empty() {
panic!("Chunk::pop_front: can't pop from empty chunk");
} else {
let value = unsafe { Chunk::force_read(self.left, self) };
self.left += 1;
value
}
}
/// Pop an item off the back of the chunk.
///
/// Panics if the chunk is empty.
///
/// Time: O(1)
pub fn pop_back(&mut self) -> A {
if self.is_empty() {
panic!("Chunk::pop_back: can't pop from empty chunk");
} else {
self.right -= 1;
unsafe { Chunk::force_read(self.right, self) }
}
}
/// Discard all items up to but not including `index`.
///
/// Panics if `index` is out of bounds.
///
/// Time: O(n) for the number of items dropped
pub fn drop_left(&mut self, index: usize) {
if index > 0 {
unsafe { ptr::drop_in_place(&mut self[..index]) }
self.left += index;
}
}
/// Discard all items from `index` onward.
///
/// Panics if `index` is out of bounds.
///
/// Time: O(n) for the number of items dropped
pub fn drop_right(&mut self, index: usize) {
if index != self.len() {
unsafe { ptr::drop_in_place(&mut self[index..]) }
self.right = self.left + index;
}
}
/// Split a chunk into two, the original chunk containing
/// everything up to `index` and the returned chunk containing
/// everything from `index` onwards.
///
/// Panics if `index` is out of bounds.
///
/// Time: O(n) for the number of items in the new chunk
pub fn split_off(&mut self, index: usize) -> Self {
if index > self.len() {
panic!("Chunk::split_off: index out of bounds");
}
if index == self.len() {
return Self::new();
}
let mut right_chunk = Self::new();
let start = self.left + index;
let len = self.right - start;
unsafe { Chunk::force_copy_to(start, 0, len, self, &mut right_chunk) };
right_chunk.right = len;
self.right = start;
right_chunk
}
/// Remove all items from `other` and append them to the back of `self`.
///
/// Panics if the capacity of the chunk is exceeded.
///
/// Time: O(n) for the number of items moved
pub fn append(&mut self, other: &mut Self) {
let self_len = self.len();
let other_len = other.len();
if self_len + other_len > N {
panic!("Chunk::append: chunk size overflow");
}
if self.right + other_len > N {
unsafe { Chunk::force_copy(self.left, 0, self_len, self) };
self.right -= self.left;
self.left = 0;
}
unsafe { Chunk::force_copy_to(other.left, self.right, other_len, other, self) };
self.right += other_len;
other.left = 0;
other.right = 0;
}
/// Remove `count` items from the front of `other` and append them to the
/// back of `self`.
///
/// Panics if `self` doesn't have `count` items left, or if `other` has
/// fewer than `count` items.
///
/// Time: O(n) for the number of items moved
pub fn drain_from_front(&mut self, other: &mut Self, count: usize) {
let self_len = self.len();
let other_len = other.len();
assert!(self_len + count <= N);
assert!(other_len >= count);
if self.right + count > N {
unsafe { Chunk::force_copy(self.left, 0, self_len, self) };
self.right -= self.left;
self.left = 0;
}
unsafe { Chunk::force_copy_to(other.left, self.right, count, other, self) };
self.right += count;
other.left += count;
}
/// Remove `count` items from the back of `other` and append them to the
/// front of `self`.
///
/// Panics if `self` doesn't have `count` items left, or if `other` has
/// fewer than `count` items.
///
/// Time: O(n) for the number of items moved
pub fn drain_from_back(&mut self, other: &mut Self, count: usize) {
let self_len = self.len();
let other_len = other.len();
assert!(self_len + count <= N);
assert!(other_len >= count);
if self.left < count {
unsafe { Chunk::force_copy(self.left, N - self_len, self_len, self) };
self.left = N - self_len;
self.right = N;
}
unsafe { Chunk::force_copy_to(other.right - count, self.left - count, count, other, self) };
self.left -= count;
other.right -= count;
}
/// Update the value at index `index`, returning the old value.
///
/// Panics if `index` is out of bounds.
///
/// Time: O(1)
pub fn set(&mut self, index: usize, value: A) -> A {
replace(&mut self[index], value)
}
/// Insert a new value at index `index`, shifting all the following values
/// to the right.
///
/// Panics if the index is out of bounds or the chunk is full.
///
/// Time: O(n) for the number of elements shifted
pub fn insert(&mut self, index: usize, value: A) {
if self.is_full() {
panic!("Chunk::insert: chunk is full");
}
if index > self.len() {
panic!("Chunk::insert: index out of bounds");
}
let real_index = index + self.left;
let left_size = index;
let right_size = self.right - real_index;
if self.right == N || (self.left > 0 && left_size < right_size) {
unsafe {
Chunk::force_copy(self.left, self.left - 1, left_size, self);
Chunk::force_write(real_index - 1, value, self);
}
self.left -= 1;
} else {
unsafe {
Chunk::force_copy(real_index, real_index + 1, right_size, self);
Chunk::force_write(real_index, value, self);
}
self.right += 1;
}
}
/// Insert a new value into the chunk in sorted order.
///
/// This assumes every element of the chunk is already in sorted order.
/// If not, the value will still be inserted but the ordering is not
/// guaranteed.
///
/// Time: O(log n) to find the insert position, then O(n) for the number
/// of elements shifted.
///
/// # Examples
///
/// ```rust
/// # use std::iter::FromIterator;
/// # use imbl_sized_chunks::Chunk;
/// let mut chunk = Chunk::<i32, 64>::from_iter(0..5);
/// chunk.insert_ordered(3);
/// assert_eq!(&[0, 1, 2, 3, 3, 4], chunk.as_slice());
/// ```
pub fn insert_ordered(&mut self, value: A)
where
A: Ord,
{
if self.is_full() {
panic!("Chunk::insert: chunk is full");
}
match self.binary_search(&value) {
Ok(index) => self.insert(index, value),
Err(index) => self.insert(index, value),
}
}
/// Insert multiple values at index `index`, shifting all the following values
/// to the right.
///
/// Panics if the index is out of bounds or the chunk doesn't have room for
/// all the values.
///
/// Time: O(m+n) where m is the number of elements inserted and n is the number
/// of elements following the insertion index. Calling `insert`
/// repeatedly would be O(m*n).
pub fn insert_from<Iterable, I>(&mut self, index: usize, iter: Iterable)
where
Iterable: IntoIterator<Item = A, IntoIter = I>,
I: ExactSizeIterator<Item = A>,
{
let iter = iter.into_iter();
let insert_size = iter.len();
if self.len() + insert_size > Self::CAPACITY {
panic!(
"Chunk::insert_from: chunk cannot fit {} elements",
insert_size
);
}
if index > self.len() {
panic!("Chunk::insert_from: index out of bounds");
}
let real_index = index + self.left;
let left_size = index;
let right_size = self.right - real_index;
if self.right == N || (self.left >= insert_size && left_size < right_size) {
unsafe {
Chunk::force_copy(self.left, self.left - insert_size, left_size, self);
let write_index = real_index - insert_size;
Chunk::write_from_iter(write_index, iter, self);
}
self.left -= insert_size;
} else if self.left == 0 || (self.right + insert_size <= Self::CAPACITY) {
unsafe {
Chunk::force_copy(real_index, real_index + insert_size, right_size, self);
let write_index = real_index;
Chunk::write_from_iter(write_index, iter, self);
}
self.right += insert_size;
} else {
unsafe {
Chunk::force_copy(self.left, 0, left_size, self);
Chunk::force_copy(real_index, left_size + insert_size, right_size, self);
let write_index = left_size;
Chunk::write_from_iter(write_index, iter, self);
}
self.right -= self.left;
self.right += insert_size;
self.left = 0;
}
}
/// Remove the value at index `index`, shifting all the following values to
/// the left.
///
/// Returns the removed value.
///
/// Panics if the index is out of bounds.
///
/// Time: O(n) for the number of items shifted
pub fn remove(&mut self, index: usize) -> A {
if index >= self.len() {
panic!("Chunk::remove: index out of bounds");
}
let real_index = index + self.left;
let value = unsafe { Chunk::force_read(real_index, self) };
let left_size = index;
let right_size = self.right - real_index - 1;
if left_size < right_size {
unsafe { Chunk::force_copy(self.left, self.left + 1, left_size, self) };
self.left += 1;
} else {
unsafe { Chunk::force_copy(real_index + 1, real_index, right_size, self) };
self.right -= 1;
}
value
}
/// Construct an iterator that drains values from the front of the chunk.
pub fn drain(&mut self) -> Drain<'_, A, N> {
Drain { chunk: self }
}
/// Discard the contents of the chunk.
///
/// Time: O(n)
pub fn clear(&mut self) {
unsafe { ptr::drop_in_place(self.as_mut_slice()) }
self.left = 0;
self.right = 0;
}
/// Get a reference to the contents of the chunk as a slice.
pub fn as_slice(&self) -> &[A] {
unsafe {
from_raw_parts(
(&self.data as *const MaybeUninit<[A; N]> as *const A).add(self.left),
self.len(),
)
}
}
/// Get a reference to the contents of the chunk as a mutable slice.
pub fn as_mut_slice(&mut self) -> &mut [A] {
unsafe {
from_raw_parts_mut(
(&mut self.data as *mut MaybeUninit<[A; N]> as *mut A).add(self.left),
self.len(),
)
}
}
}
impl<A, const N: usize> Default for Chunk<A, N> {
fn default() -> Self {
Self::new()
}
}
impl<A, I, const N: usize> Index<I> for Chunk<A, N>
where
I: SliceIndex<[A]>,
{
type Output = I::Output;
fn index(&self, index: I) -> &Self::Output {
self.as_slice().index(index)
}
}
impl<A, I, const N: usize> IndexMut<I> for Chunk<A, N>
where
I: SliceIndex<[A]>,
{
fn index_mut(&mut self, index: I) -> &mut Self::Output {
self.as_mut_slice().index_mut(index)
}
}
impl<A, const N: usize> Debug for Chunk<A, N>
where
A: Debug,
{
fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
f.write_str("Chunk")?;
f.debug_list().entries(self.iter()).finish()
}
}
impl<A, const N: usize> Hash for Chunk<A, N>
where
A: Hash,
{
fn hash<H>(&self, hasher: &mut H)
where
H: Hasher,
{
for item in self {
item.hash(hasher)
}
}
}
impl<A, Slice, const N: usize> PartialEq<Slice> for Chunk<A, N>
where
Slice: Borrow<[A]>,
A: PartialEq,
{
fn eq(&self, other: &Slice) -> bool {
self.as_slice() == other.borrow()
}
}
impl<A, const N: usize> Eq for Chunk<A, N> where A: Eq {}
impl<A, const N: usize> PartialOrd for Chunk<A, N>
where
A: PartialOrd,
{
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
self.iter().partial_cmp(other.iter())
}
}
impl<A, const N: usize> Ord for Chunk<A, N>
where
A: Ord,
{
fn cmp(&self, other: &Self) -> Ordering {
self.iter().cmp(other.iter())
}
}
#[cfg(feature = "std")]
impl<const N: usize> io::Write for Chunk<u8, N> {
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
let old_len = self.len();
self.extend(buf.iter().cloned().take(N - old_len));
Ok(self.len() - old_len)
}
fn flush(&mut self) -> io::Result<()> {
Ok(())
}
}
#[cfg(feature = "std")]
impl<const N: usize> std::io::Read for Chunk<u8, N> {
fn read(&mut self, buf: &mut [u8]) -> std::io::Result<usize> {
let read_size = buf.len().min(self.len());
if read_size == 0 {
Ok(0)
} else {
for p in buf.iter_mut().take(read_size) {
*p = self.pop_front();
}
Ok(read_size)
}
}
}
impl<A, T, const N: usize> From<InlineArray<A, T>> for Chunk<A, N> {
#[inline]
fn from(mut array: InlineArray<A, T>) -> Self {
Self::from(&mut array)
}
}
impl<'a, A, T, const N: usize> From<&'a mut InlineArray<A, T>> for Chunk<A, N> {
fn from(array: &mut InlineArray<A, T>) -> Self {
// The first capacity comparison is to help optimize it out
assert!(
InlineArray::<A, T>::CAPACITY <= Self::CAPACITY || array.len() <= Self::CAPACITY,
"CAPACITY too small"
);
let mut out = Self::new();
out.left = 0;
out.right = array.len();
unsafe {
ptr::copy_nonoverlapping(array.data(), out.mut_ptr(0), out.right);
*array.len_mut() = 0;
}
out
}
}
impl<A, const N: usize> Borrow<[A]> for Chunk<A, N> {
fn borrow(&self) -> &[A] {
self.as_slice()
}
}
impl<A, const N: usize> BorrowMut<[A]> for Chunk<A, N> {
fn borrow_mut(&mut self) -> &mut [A] {
self.as_mut_slice()
}
}
impl<A, const N: usize> AsRef<[A]> for Chunk<A, N> {
fn as_ref(&self) -> &[A] {
self.as_slice()
}
}
impl<A, const N: usize> AsMut<[A]> for Chunk<A, N> {
fn as_mut(&mut self) -> &mut [A] {
self.as_mut_slice()
}
}
impl<A, const N: usize> Deref for Chunk<A, N> {
type Target = [A];
fn deref(&self) -> &Self::Target {
self.as_slice()
}
}
impl<A, const N: usize> DerefMut for Chunk<A, N> {
fn deref_mut(&mut self) -> &mut Self::Target {
self.as_mut_slice()
}
}
impl<A, const N: usize> FromIterator<A> for Chunk<A, N> {
fn from_iter<I>(it: I) -> Self
where
I: IntoIterator<Item = A>,
{
let mut chunk = Self::new();
for item in it {
chunk.push_back(item);
}
chunk
}
}
impl<'a, A, const N: usize> IntoIterator for &'a Chunk<A, N> {
type Item = &'a A;
type IntoIter = SliceIter<'a, A>;
fn into_iter(self) -> Self::IntoIter {
self.iter()
}
}
impl<'a, A, const N: usize> IntoIterator for &'a mut Chunk<A, N> {
type Item = &'a mut A;
type IntoIter = SliceIterMut<'a, A>;
fn into_iter(self) -> Self::IntoIter {
self.iter_mut()
}
}
impl<A, const N: usize> Extend<A> for Chunk<A, N> {
/// Append the contents of the iterator to the back of the chunk.
///
/// Panics if the chunk exceeds its capacity.
///
/// Time: O(n) for the length of the iterator
fn extend<I>(&mut self, it: I)
where
I: IntoIterator<Item = A>,
{
for item in it {
self.push_back(item);
}
}
}
impl<'a, A, const N: usize> Extend<&'a A> for Chunk<A, N>
where
A: 'a + Copy,
{
/// Append the contents of the iterator to the back of the chunk.
///
/// Panics if the chunk exceeds its capacity.
///
/// Time: O(n) for the length of the iterator
fn extend<I>(&mut self, it: I)
where
I: IntoIterator<Item = &'a A>,
{
for item in it {
self.push_back(*item);
}
}
}
impl<A, const N: usize> IntoIterator for Chunk<A, N> {
type Item = A;
type IntoIter = Iter<A, N>;
fn into_iter(self) -> Self::IntoIter {
Iter { chunk: self }
}
}
#[cfg(test)]
#[rustfmt::skip]
mod test {
use super::*;
#[test]
#[should_panic(expected = "Chunk::push_back: can't push to full chunk")]
fn issue_11_testcase1d() {
let mut chunk = Chunk::<usize, 2>::pair(123, 456);
chunk.push_back(789);
}
#[test]
#[should_panic(expected = "CAPACITY too small")]
fn issue_11_testcase2a() {
let mut from = InlineArray::<u8, [u8; 256]>::new();
from.push(1);
let _ = Chunk::<u8, 0>::from(from);
}
#[test]
fn issue_11_testcase2b() {
let mut from = InlineArray::<u8, [u8; 256]>::new();
from.push(1);
let _ = Chunk::<u8, 1>::from(from);
}
struct DropDetector(u32);
impl DropDetector {
fn new(num: u32) -> Self {
DropDetector(num)
}
}
impl Drop for DropDetector {
fn drop(&mut self) {
assert!(self.0 == 42 || self.0 == 43);
}
}
impl Clone for DropDetector {
fn clone(&self) -> Self {
if self.0 == 42 {
panic!("panic on clone")
}
DropDetector::new(self.0)
}
}
/// This is for miri to catch
#[test]
fn issue_11_testcase3a() {
let mut chunk = Chunk::<DropDetector, 3>::new();
chunk.push_back(DropDetector::new(42));
chunk.push_back(DropDetector::new(42));
chunk.push_back(DropDetector::new(43));
let _ = chunk.pop_front();
let _ = std::panic::catch_unwind(|| {
let _ = chunk.clone();
});
}
struct PanickingIterator {
current: u32,
panic_at: u32,
len: usize,
}
impl Iterator for PanickingIterator {
type Item = DropDetector;
fn next(&mut self) -> Option<Self::Item> {
let num = self.current;
if num == self.panic_at {
panic!("panicking index")
}
self.current += 1;
Some(DropDetector::new(num))
}
fn size_hint(&self) -> (usize, Option<usize>) {
(self.len, Some(self.len))
}
}
impl ExactSizeIterator for PanickingIterator {}
#[test]
fn issue_11_testcase3b() {
let _ = std::panic::catch_unwind(|| {
let mut chunk = Chunk::<DropDetector, 5>::new();
chunk.push_back(DropDetector::new(1));
chunk.push_back(DropDetector::new(2));
chunk.push_back(DropDetector::new(3));
chunk.insert_from(
1,
PanickingIterator {
current: 1,
panic_at: 1,
len: 1,
},
);
});
}
struct FakeSizeIterator { reported: usize, actual: usize }
impl Iterator for FakeSizeIterator {
type Item = u8;
fn next(&mut self) -> Option<Self::Item> {
if self.actual == 0 {
None
} else {
self.actual -= 1;
Some(1)
}
}
fn size_hint(&self) -> (usize, Option<usize>) {
(self.reported, Some(self.reported))
}
}
impl ExactSizeIterator for FakeSizeIterator {
fn len(&self) -> usize {
self.reported
}
}
#[test]
fn iterator_too_long() {
let mut chunk = Chunk::<u8, 5>::new();
chunk.push_back(0);
chunk.push_back(1);
chunk.push_back(2);
chunk.insert_from(1, FakeSizeIterator { reported: 1, actual: 10 });
let mut chunk = Chunk::<u8, 5>::new();
chunk.push_back(1);
chunk.insert_from(0, FakeSizeIterator { reported: 1, actual: 10 });
let mut chunk = Chunk::<u8, 5>::new();
chunk.insert_from(0, FakeSizeIterator { reported: 1, actual: 10 });
}
#[test]
#[should_panic(expected = "ExactSizeIterator yielded fewer values than advertised")]
fn iterator_too_short1() {
let mut chunk = Chunk::<u8, 5>::new();
chunk.push_back(0);
chunk.push_back(1);
chunk.push_back(2);
chunk.insert_from(1, FakeSizeIterator { reported: 2, actual: 0 });
}
#[test]
#[should_panic(expected = "ExactSizeIterator yielded fewer values than advertised")]
fn iterator_too_short2() {
let mut chunk = Chunk::<u8, 5>::new();
chunk.push_back(1);
chunk.insert_from(1, FakeSizeIterator { reported: 4, actual: 2 });
}
#[test]
fn is_full() {
let mut chunk = Chunk::<_, 64>::new();
for i in 0..64 {
assert!(!chunk.is_full());
chunk.push_back(i);
}
assert!(chunk.is_full());
}
#[test]
fn push_back_front() {
let mut chunk = Chunk::<_, 64>::new();
for i in 12..20 {
chunk.push_back(i);
}
assert_eq!(8, chunk.len());
for i in (0..12).rev() {
chunk.push_front(i);
}
assert_eq!(20, chunk.len());
for i in 20..32 {
chunk.push_back(i);
}
assert_eq!(32, chunk.len());
let right: Vec<i32> = chunk.into_iter().collect();
let left: Vec<i32> = (0..32).collect();
assert_eq!(left, right);
}
#[test]
fn push_and_pop() {
let mut chunk = Chunk::<_, 64>::new();
for i in 0..64 {
chunk.push_back(i);
}
for i in 0..64 {
assert_eq!(i, chunk.pop_front());
}
for i in 0..64 {
chunk.push_front(i);
}
for i in 0..64 {
assert_eq!(i, chunk.pop_back());
}
}
#[test]
fn drop_left() {
let mut chunk = Chunk::<_, 64>::new();
for i in 0..6 {
chunk.push_back(i);
}
chunk.drop_left(3);
let vec: Vec<i32> = chunk.into_iter().collect();
assert_eq!(vec![3, 4, 5], vec);
}
#[test]
fn drop_right() {
let mut chunk = Chunk::<_, 64>::new();
for i in 0..6 {
chunk.push_back(i);
}
chunk.drop_right(3);
let vec: Vec<i32> = chunk.into_iter().collect();
assert_eq!(vec![0, 1, 2], vec);
}
#[test]
fn split_off() {
let mut left = Chunk::<_, 64>::new();
for i in 0..6 {
left.push_back(i);
}
let right = left.split_off(3);
let left_vec: Vec<i32> = left.into_iter().collect();
let right_vec: Vec<i32> = right.into_iter().collect();
assert_eq!(vec![0, 1, 2], left_vec);
assert_eq!(vec![3, 4, 5], right_vec);
}
#[test]
fn append() {
let mut left = Chunk::<_, 64>::new();
for i in 0..32 {
left.push_back(i);
}
let mut right = Chunk::<_, 64>::new();
for i in (32..64).rev() {
right.push_front(i);
}
left.append(&mut right);
let out_vec: Vec<i32> = left.into_iter().collect();
let should_vec: Vec<i32> = (0..64).collect();
assert_eq!(should_vec, out_vec);
}
#[test]
fn ref_iter() {
let mut chunk = Chunk::<_, 64>::new();
for i in 0..64 {
chunk.push_back(i);
}
let out_vec: Vec<&i32> = chunk.iter().collect();
let should_vec_p: Vec<i32> = (0..64).collect();
let should_vec: Vec<&i32> = should_vec_p.iter().collect();
assert_eq!(should_vec, out_vec);
}
#[test]
fn mut_ref_iter() {
let mut chunk = Chunk::<_, 64>::new();
for i in 0..64 {
chunk.push_back(i);
}
let out_vec: Vec<&mut i32> = chunk.iter_mut().collect();
let mut should_vec_p: Vec<i32> = (0..64).collect();
let should_vec: Vec<&mut i32> = should_vec_p.iter_mut().collect();
assert_eq!(should_vec, out_vec);
}
#[test]
fn consuming_iter() {
let mut chunk = Chunk::<_, 64>::new();
for i in 0..64 {
chunk.push_back(i);
}
let out_vec: Vec<i32> = chunk.into_iter().collect();
let should_vec: Vec<i32> = (0..64).collect();
assert_eq!(should_vec, out_vec);
}
#[test]
fn insert_middle() {
let mut chunk = Chunk::<_, 64>::new();
for i in 0..32 {
chunk.push_back(i);
}
for i in 33..64 {
chunk.push_back(i);
}
chunk.insert(32, 32);
let out_vec: Vec<i32> = chunk.into_iter().collect();
let should_vec: Vec<i32> = (0..64).collect();
assert_eq!(should_vec, out_vec);
}
#[test]
fn insert_back() {
let mut chunk = Chunk::<_, 64>::new();
for i in 0..63 {
chunk.push_back(i);
}
chunk.insert(63, 63);
let out_vec: Vec<i32> = chunk.into_iter().collect();
let should_vec: Vec<i32> = (0..64).collect();
assert_eq!(should_vec, out_vec);
}
#[test]
fn insert_front() {
let mut chunk = Chunk::<_, 64>::new();
for i in 1..64 {
chunk.push_front(64 - i);
}
chunk.insert(0, 0);
let out_vec: Vec<i32> = chunk.into_iter().collect();
let should_vec: Vec<i32> = (0..64).collect();
assert_eq!(should_vec, out_vec);
}
#[test]
fn remove_value() {
let mut chunk = Chunk::<_, 64>::new();
for i in 0..64 {
chunk.push_back(i);
}
chunk.remove(32);
let out_vec: Vec<i32> = chunk.into_iter().collect();
let should_vec: Vec<i32> = (0..32).chain(33..64).collect();
assert_eq!(should_vec, out_vec);
}
use crate::tests::DropTest;
use std::sync::atomic::{AtomicUsize, Ordering};
#[test]
fn dropping() {
let counter = AtomicUsize::new(0);
{
let mut chunk: Chunk<DropTest<'_>, 64> = Chunk::new();
for _i in 0..20 {
chunk.push_back(DropTest::new(&counter))
}
for _i in 0..20 {
chunk.push_front(DropTest::new(&counter))
}
assert_eq!(40, counter.load(Ordering::Relaxed));
for _i in 0..10 {
chunk.pop_back();
}
assert_eq!(30, counter.load(Ordering::Relaxed));
}
assert_eq!(0, counter.load(Ordering::Relaxed));
}
#[test]
#[should_panic(expected = "assertion failed: Self::CAPACITY >= 1")]
fn unit_on_empty() {
Chunk::<usize, 0>::unit(1);
}
#[test]
#[should_panic(expected = "assertion failed: Self::CAPACITY >= 2")]
fn pair_on_empty() {
Chunk::<usize, 0>::pair(1, 2);
}
}