imbl_sized_chunks/sized_chunk/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0. If a copy of the MPL was not distributed with this
// file, You can obtain one at http://mozilla.org/MPL/2.0/.

//! A fixed capacity smart array.
//!
//! See [`Chunk`](struct.Chunk.html)

use crate::inline_array::InlineArray;
use core::borrow::{Borrow, BorrowMut};
use core::cmp::Ordering;
use core::fmt::{Debug, Error, Formatter};
use core::hash::{Hash, Hasher};
use core::iter::FromIterator;
use core::mem::{replace, MaybeUninit};
use core::ops::{Deref, DerefMut, Index, IndexMut};
use core::ptr;
use core::slice::{
    from_raw_parts, from_raw_parts_mut, Iter as SliceIter, IterMut as SliceIterMut, SliceIndex,
};

#[cfg(feature = "std")]
use std::io;

mod iter;
pub use self::iter::{Drain, Iter};

#[cfg(feature = "refpool")]
mod refpool;

/// A fixed capacity smart array.
///
/// An inline array of items with a variable length but a fixed, preallocated
/// capacity given by the `N` type.
///
/// It's 'smart' because it's able to reorganise its contents based on expected
/// behaviour. If you construct one using `push_back`, it will be laid out like
/// a `Vec` with space at the end. If you `push_front` it will start filling in
/// values from the back instead of the front, so that you still get linear time
/// push as long as you don't reverse direction. If you do, and there's no room
/// at the end you're pushing to, it'll shift its contents over to the other
/// side, creating more space to push into. This technique is tuned for
/// `Chunk`'s expected use case in [im::Vector]: usually, chunks always see
/// either `push_front` or `push_back`, but not both unless they move around
/// inside the tree, in which case they're able to reorganise themselves with
/// reasonable efficiency to suit their new usage patterns.
///
/// It maintains a `left` index and a `right` index instead of a simple length
/// counter in order to accomplish this, much like a ring buffer would, except
/// that the `Chunk` keeps all its items sequentially in memory so that you can
/// always get a `&[A]` slice for them, at the price of the occasional
/// reordering operation. The allocated size of a `Chunk` is thus `usize` * 2 +
/// `A` * `N`.
///
/// This technique also lets us choose to shift the shortest side to account for
/// the inserted or removed element when performing insert and remove
/// operations, unlike `Vec` where you always need to shift the right hand side.
///
/// Unlike a `Vec`, the `Chunk` has a fixed capacity and cannot grow beyond it.
/// Being intended for low level use, it expects you to know or test whether
/// you're pushing to a full array, and has an API more geared towards panics
/// than returning `Option`s, on the assumption that you know what you're doing.
/// Of course, if you don't, you can expect it to panic immediately rather than
/// do something undefined and usually bad.
///
/// ## Isn't this just a less efficient ring buffer?
///
/// You might be wondering why you would want to use this data structure rather
/// than a [`RingBuffer`][RingBuffer], which is similar but doesn't need to
/// shift its content around when it hits the sides of the allocated buffer. The
/// answer is that `Chunk` can be dereferenced into a slice, while a ring buffer
/// can not. You'll also save a few cycles on index lookups, as a `Chunk`'s data
/// is guaranteed to be contiguous in memory, so there's no need to remap logical
/// indices to a ring buffer's physical layout.
///
/// # Examples
///
/// ```rust
/// # use imbl_sized_chunks::Chunk;
/// // Construct a chunk with a 64 item capacity
/// let mut chunk = Chunk::<i32, 64>::new();
/// // Fill it with descending numbers
/// chunk.extend((0..64).rev());
/// // It derefs to a slice so we can use standard slice methods
/// chunk.sort();
/// // It's got all the amenities like `FromIterator` and `Eq`
/// let expected: Chunk<i32, 64> = (0..64).collect();
/// assert_eq!(expected, chunk);
/// ```
///
/// [im::Vector]: https://docs.rs/im/latest/im/vector/enum.Vector.html
/// [RingBuffer]: ../ring_buffer/struct.RingBuffer.html
pub struct Chunk<A, const N: usize> {
    left: usize,
    right: usize,
    data: MaybeUninit<[A; N]>,
}

impl<A, const N: usize> Drop for Chunk<A, N> {
    fn drop(&mut self) {
        unsafe { ptr::drop_in_place(self.as_mut_slice()) }
    }
}

impl<A, const N: usize> Clone for Chunk<A, N>
where
    A: Clone,
{
    fn clone(&self) -> Self {
        let mut out = Self::new();
        out.left = self.left;
        out.right = self.left;
        for index in self.left..self.right {
            unsafe { Chunk::force_write(index, (*self.ptr(index)).clone(), &mut out) }
            // Panic safety, move the right index to cover only the really initialized things. This
            // way we don't try to drop uninitialized, but also don't leak if we panic in the
            // middle.
            out.right = index + 1;
        }
        out
    }
}

impl<A, const N: usize> Chunk<A, N> {
    /// The maximum number of elements this `Chunk` can contain.
    pub const CAPACITY: usize = N;

    /// Construct a new empty chunk.
    pub fn new() -> Self {
        Self {
            left: 0,
            right: 0,
            data: MaybeUninit::uninit(),
        }
    }

    /// Construct a new chunk with one item.
    pub fn unit(value: A) -> Self {
        assert!(Self::CAPACITY >= 1);
        let mut chunk = Self {
            left: 0,
            right: 1,
            data: MaybeUninit::uninit(),
        };
        unsafe {
            Chunk::force_write(0, value, &mut chunk);
        }
        chunk
    }

    /// Construct a new chunk with two items.
    pub fn pair(left: A, right: A) -> Self {
        assert!(Self::CAPACITY >= 2);
        let mut chunk = Self {
            left: 0,
            right: 2,
            data: MaybeUninit::uninit(),
        };
        unsafe {
            Chunk::force_write(0, left, &mut chunk);
            Chunk::force_write(1, right, &mut chunk);
        }
        chunk
    }

    /// Construct a new chunk and move every item from `other` into the new
    /// chunk.
    ///
    /// Time: O(n)
    pub fn drain_from(other: &mut Self) -> Self {
        let other_len = other.len();
        Self::from_front(other, other_len)
    }

    /// Construct a new chunk and populate it by taking `count` items from the
    /// iterator `iter`.
    ///
    /// Panics if the iterator contains less than `count` items.
    ///
    /// Time: O(n)
    pub fn collect_from<I>(iter: &mut I, mut count: usize) -> Self
    where
        I: Iterator<Item = A>,
    {
        let mut chunk = Self::new();
        while count > 0 {
            count -= 1;
            chunk.push_back(
                iter.next()
                    .expect("Chunk::collect_from: underfull iterator"),
            );
        }
        chunk
    }

    /// Construct a new chunk and populate it by taking `count` items from the
    /// front of `other`.
    ///
    /// Time: O(n) for the number of items moved
    pub fn from_front(other: &mut Self, count: usize) -> Self {
        let other_len = other.len();
        debug_assert!(count <= other_len);
        let mut chunk = Self::new();
        unsafe { Chunk::force_copy_to(other.left, 0, count, other, &mut chunk) };
        chunk.right = count;
        other.left += count;
        chunk
    }

    /// Construct a new chunk and populate it by taking `count` items from the
    /// back of `other`.
    ///
    /// Time: O(n) for the number of items moved
    pub fn from_back(other: &mut Self, count: usize) -> Self {
        let other_len = other.len();
        debug_assert!(count <= other_len);
        let mut chunk = Self::new();
        unsafe { Chunk::force_copy_to(other.right - count, 0, count, other, &mut chunk) };
        chunk.right = count;
        other.right -= count;
        chunk
    }

    /// Get the length of the chunk.
    #[inline]
    pub fn len(&self) -> usize {
        self.right - self.left
    }

    /// Test if the chunk is empty.
    #[inline]
    pub fn is_empty(&self) -> bool {
        self.left == self.right
    }

    /// Test if the chunk is at capacity.
    #[inline]
    pub fn is_full(&self) -> bool {
        self.left == 0 && self.right == Self::CAPACITY
    }

    #[inline]
    unsafe fn ptr(&self, index: usize) -> *const A {
        (&self.data as *const _ as *const A).add(index)
    }

    /// It has no bounds checks
    #[inline]
    unsafe fn mut_ptr(&mut self, index: usize) -> *mut A {
        (&mut self.data as *mut _ as *mut A).add(index)
    }

    /// Copy the value at an index, discarding ownership of the copied value
    #[inline]
    unsafe fn force_read(index: usize, chunk: &mut Self) -> A {
        chunk.ptr(index).read()
    }

    /// Write a value at an index without trying to drop what's already there.
    /// It has no bounds checks.
    #[inline]
    unsafe fn force_write(index: usize, value: A, chunk: &mut Self) {
        chunk.mut_ptr(index).write(value)
    }

    /// Copy a range within a chunk
    #[inline]
    unsafe fn force_copy(from: usize, to: usize, count: usize, chunk: &mut Self) {
        if count > 0 {
            let data = &mut chunk.data as *mut _ as *mut A;
            let from = data.add(from);
            let to = data.add(to);
            ptr::copy(from, to, count)
        }
    }

    /// Write values from iterator into range starting at write_index.
    ///
    /// Will overwrite values at the relevant range without dropping even in case the values were
    /// already initialized (it is expected they are empty). Does not update the left or right
    /// index.
    ///
    /// # Safety
    ///
    /// Range checks must already have been performed.
    ///
    /// # Panics
    ///
    /// If the iterator panics, the chunk becomes conceptually empty and will leak any previous
    /// elements (even the ones outside the range).
    #[inline]
    unsafe fn write_from_iter<I>(mut write_index: usize, iter: I, chunk: &mut Self)
    where
        I: ExactSizeIterator<Item = A>,
    {
        // Panic safety. We make the array conceptually empty, so we never ever drop anything that
        // is unitialized. We do so because we expect to be called when there's a potential "hole"
        // in the array that makes the space for the new elements to be written. We return it back
        // to original when everything goes fine, but leak any elements on panic. This is bad, but
        // better than dropping non-existing stuff.
        //
        // Should we worry about some better panic recovery than this?
        let left = replace(&mut chunk.left, 0);
        let right = replace(&mut chunk.right, 0);
        let len = iter.len();
        let expected_end = write_index + len;
        for value in iter.take(len) {
            Chunk::force_write(write_index, value, chunk);
            write_index += 1;
        }
        // Oops, we have a hole in here now. That would be bad, give up.
        assert_eq!(
            expected_end, write_index,
            "ExactSizeIterator yielded fewer values than advertised",
        );
        chunk.left = left;
        chunk.right = right;
    }

    /// Copy a range between chunks
    #[inline]
    unsafe fn force_copy_to(
        from: usize,
        to: usize,
        count: usize,
        chunk: &mut Self,
        other: &mut Self,
    ) {
        if count > 0 {
            ptr::copy_nonoverlapping(chunk.ptr(from), other.mut_ptr(to), count)
        }
    }

    /// Push an item to the front of the chunk.
    ///
    /// Panics if the capacity of the chunk is exceeded.
    ///
    /// Time: O(1) if there's room at the front, O(n) otherwise
    pub fn push_front(&mut self, value: A) {
        if self.is_full() {
            panic!("Chunk::push_front: can't push to full chunk");
        }
        if self.is_empty() {
            self.left = N;
            self.right = N;
        } else if self.left == 0 {
            self.left = N - self.right;
            unsafe { Chunk::force_copy(0, self.left, self.right, self) };
            self.right = N;
        }
        self.left -= 1;
        unsafe { Chunk::force_write(self.left, value, self) }
    }

    /// Push an item to the back of the chunk.
    ///
    /// Panics if the capacity of the chunk is exceeded.
    ///
    /// Time: O(1) if there's room at the back, O(n) otherwise
    pub fn push_back(&mut self, value: A) {
        if self.is_full() {
            panic!("Chunk::push_back: can't push to full chunk");
        }
        if self.is_empty() {
            self.left = 0;
            self.right = 0;
        } else if self.right == N {
            unsafe { Chunk::force_copy(self.left, 0, self.len(), self) };
            self.right = N - self.left;
            self.left = 0;
        }
        unsafe { Chunk::force_write(self.right, value, self) }
        self.right += 1;
    }

    /// Pop an item off the front of the chunk.
    ///
    /// Panics if the chunk is empty.
    ///
    /// Time: O(1)
    pub fn pop_front(&mut self) -> A {
        if self.is_empty() {
            panic!("Chunk::pop_front: can't pop from empty chunk");
        } else {
            let value = unsafe { Chunk::force_read(self.left, self) };
            self.left += 1;
            value
        }
    }

    /// Pop an item off the back of the chunk.
    ///
    /// Panics if the chunk is empty.
    ///
    /// Time: O(1)
    pub fn pop_back(&mut self) -> A {
        if self.is_empty() {
            panic!("Chunk::pop_back: can't pop from empty chunk");
        } else {
            self.right -= 1;
            unsafe { Chunk::force_read(self.right, self) }
        }
    }

    /// Discard all items up to but not including `index`.
    ///
    /// Panics if `index` is out of bounds.
    ///
    /// Time: O(n) for the number of items dropped
    pub fn drop_left(&mut self, index: usize) {
        if index > 0 {
            unsafe { ptr::drop_in_place(&mut self[..index]) }
            self.left += index;
        }
    }

    /// Discard all items from `index` onward.
    ///
    /// Panics if `index` is out of bounds.
    ///
    /// Time: O(n) for the number of items dropped
    pub fn drop_right(&mut self, index: usize) {
        if index != self.len() {
            unsafe { ptr::drop_in_place(&mut self[index..]) }
            self.right = self.left + index;
        }
    }

    /// Split a chunk into two, the original chunk containing
    /// everything up to `index` and the returned chunk containing
    /// everything from `index` onwards.
    ///
    /// Panics if `index` is out of bounds.
    ///
    /// Time: O(n) for the number of items in the new chunk
    pub fn split_off(&mut self, index: usize) -> Self {
        if index > self.len() {
            panic!("Chunk::split_off: index out of bounds");
        }
        if index == self.len() {
            return Self::new();
        }
        let mut right_chunk = Self::new();
        let start = self.left + index;
        let len = self.right - start;
        unsafe { Chunk::force_copy_to(start, 0, len, self, &mut right_chunk) };
        right_chunk.right = len;
        self.right = start;
        right_chunk
    }

    /// Remove all items from `other` and append them to the back of `self`.
    ///
    /// Panics if the capacity of the chunk is exceeded.
    ///
    /// Time: O(n) for the number of items moved
    pub fn append(&mut self, other: &mut Self) {
        let self_len = self.len();
        let other_len = other.len();
        if self_len + other_len > N {
            panic!("Chunk::append: chunk size overflow");
        }
        if self.right + other_len > N {
            unsafe { Chunk::force_copy(self.left, 0, self_len, self) };
            self.right -= self.left;
            self.left = 0;
        }
        unsafe { Chunk::force_copy_to(other.left, self.right, other_len, other, self) };
        self.right += other_len;
        other.left = 0;
        other.right = 0;
    }

    /// Remove `count` items from the front of `other` and append them to the
    /// back of `self`.
    ///
    /// Panics if `self` doesn't have `count` items left, or if `other` has
    /// fewer than `count` items.
    ///
    /// Time: O(n) for the number of items moved
    pub fn drain_from_front(&mut self, other: &mut Self, count: usize) {
        let self_len = self.len();
        let other_len = other.len();
        assert!(self_len + count <= N);
        assert!(other_len >= count);
        if self.right + count > N {
            unsafe { Chunk::force_copy(self.left, 0, self_len, self) };
            self.right -= self.left;
            self.left = 0;
        }
        unsafe { Chunk::force_copy_to(other.left, self.right, count, other, self) };
        self.right += count;
        other.left += count;
    }

    /// Remove `count` items from the back of `other` and append them to the
    /// front of `self`.
    ///
    /// Panics if `self` doesn't have `count` items left, or if `other` has
    /// fewer than `count` items.
    ///
    /// Time: O(n) for the number of items moved
    pub fn drain_from_back(&mut self, other: &mut Self, count: usize) {
        let self_len = self.len();
        let other_len = other.len();
        assert!(self_len + count <= N);
        assert!(other_len >= count);
        if self.left < count {
            unsafe { Chunk::force_copy(self.left, N - self_len, self_len, self) };
            self.left = N - self_len;
            self.right = N;
        }
        unsafe { Chunk::force_copy_to(other.right - count, self.left - count, count, other, self) };
        self.left -= count;
        other.right -= count;
    }

    /// Update the value at index `index`, returning the old value.
    ///
    /// Panics if `index` is out of bounds.
    ///
    /// Time: O(1)
    pub fn set(&mut self, index: usize, value: A) -> A {
        replace(&mut self[index], value)
    }

    /// Insert a new value at index `index`, shifting all the following values
    /// to the right.
    ///
    /// Panics if the index is out of bounds or the chunk is full.
    ///
    /// Time: O(n) for the number of elements shifted
    pub fn insert(&mut self, index: usize, value: A) {
        if self.is_full() {
            panic!("Chunk::insert: chunk is full");
        }
        if index > self.len() {
            panic!("Chunk::insert: index out of bounds");
        }
        let real_index = index + self.left;
        let left_size = index;
        let right_size = self.right - real_index;
        if self.right == N || (self.left > 0 && left_size < right_size) {
            unsafe {
                Chunk::force_copy(self.left, self.left - 1, left_size, self);
                Chunk::force_write(real_index - 1, value, self);
            }
            self.left -= 1;
        } else {
            unsafe {
                Chunk::force_copy(real_index, real_index + 1, right_size, self);
                Chunk::force_write(real_index, value, self);
            }
            self.right += 1;
        }
    }

    /// Insert a new value into the chunk in sorted order.
    ///
    /// This assumes every element of the chunk is already in sorted order.
    /// If not, the value will still be inserted but the ordering is not
    /// guaranteed.
    ///
    /// Time: O(log n) to find the insert position, then O(n) for the number
    /// of elements shifted.
    ///
    /// # Examples
    ///
    /// ```rust
    /// # use std::iter::FromIterator;
    /// # use imbl_sized_chunks::Chunk;
    /// let mut chunk = Chunk::<i32, 64>::from_iter(0..5);
    /// chunk.insert_ordered(3);
    /// assert_eq!(&[0, 1, 2, 3, 3, 4], chunk.as_slice());
    /// ```
    pub fn insert_ordered(&mut self, value: A)
    where
        A: Ord,
    {
        if self.is_full() {
            panic!("Chunk::insert: chunk is full");
        }
        match self.binary_search(&value) {
            Ok(index) => self.insert(index, value),
            Err(index) => self.insert(index, value),
        }
    }

    /// Insert multiple values at index `index`, shifting all the following values
    /// to the right.
    ///
    /// Panics if the index is out of bounds or the chunk doesn't have room for
    /// all the values.
    ///
    /// Time: O(m+n) where m is the number of elements inserted and n is the number
    /// of elements following the insertion index. Calling `insert`
    /// repeatedly would be O(m*n).
    pub fn insert_from<Iterable, I>(&mut self, index: usize, iter: Iterable)
    where
        Iterable: IntoIterator<Item = A, IntoIter = I>,
        I: ExactSizeIterator<Item = A>,
    {
        let iter = iter.into_iter();
        let insert_size = iter.len();
        if self.len() + insert_size > Self::CAPACITY {
            panic!(
                "Chunk::insert_from: chunk cannot fit {} elements",
                insert_size
            );
        }
        if index > self.len() {
            panic!("Chunk::insert_from: index out of bounds");
        }
        let real_index = index + self.left;
        let left_size = index;
        let right_size = self.right - real_index;
        if self.right == N || (self.left >= insert_size && left_size < right_size) {
            unsafe {
                Chunk::force_copy(self.left, self.left - insert_size, left_size, self);
                let write_index = real_index - insert_size;
                Chunk::write_from_iter(write_index, iter, self);
            }
            self.left -= insert_size;
        } else if self.left == 0 || (self.right + insert_size <= Self::CAPACITY) {
            unsafe {
                Chunk::force_copy(real_index, real_index + insert_size, right_size, self);
                let write_index = real_index;
                Chunk::write_from_iter(write_index, iter, self);
            }
            self.right += insert_size;
        } else {
            unsafe {
                Chunk::force_copy(self.left, 0, left_size, self);
                Chunk::force_copy(real_index, left_size + insert_size, right_size, self);
                let write_index = left_size;
                Chunk::write_from_iter(write_index, iter, self);
            }
            self.right -= self.left;
            self.right += insert_size;
            self.left = 0;
        }
    }

    /// Remove the value at index `index`, shifting all the following values to
    /// the left.
    ///
    /// Returns the removed value.
    ///
    /// Panics if the index is out of bounds.
    ///
    /// Time: O(n) for the number of items shifted
    pub fn remove(&mut self, index: usize) -> A {
        if index >= self.len() {
            panic!("Chunk::remove: index out of bounds");
        }
        let real_index = index + self.left;
        let value = unsafe { Chunk::force_read(real_index, self) };
        let left_size = index;
        let right_size = self.right - real_index - 1;
        if left_size < right_size {
            unsafe { Chunk::force_copy(self.left, self.left + 1, left_size, self) };
            self.left += 1;
        } else {
            unsafe { Chunk::force_copy(real_index + 1, real_index, right_size, self) };
            self.right -= 1;
        }
        value
    }

    /// Construct an iterator that drains values from the front of the chunk.
    pub fn drain(&mut self) -> Drain<'_, A, N> {
        Drain { chunk: self }
    }

    /// Discard the contents of the chunk.
    ///
    /// Time: O(n)
    pub fn clear(&mut self) {
        unsafe { ptr::drop_in_place(self.as_mut_slice()) }
        self.left = 0;
        self.right = 0;
    }

    /// Get a reference to the contents of the chunk as a slice.
    pub fn as_slice(&self) -> &[A] {
        unsafe {
            from_raw_parts(
                (&self.data as *const MaybeUninit<[A; N]> as *const A).add(self.left),
                self.len(),
            )
        }
    }

    /// Get a reference to the contents of the chunk as a mutable slice.
    pub fn as_mut_slice(&mut self) -> &mut [A] {
        unsafe {
            from_raw_parts_mut(
                (&mut self.data as *mut MaybeUninit<[A; N]> as *mut A).add(self.left),
                self.len(),
            )
        }
    }
}

impl<A, const N: usize> Default for Chunk<A, N> {
    fn default() -> Self {
        Self::new()
    }
}

impl<A, I, const N: usize> Index<I> for Chunk<A, N>
where
    I: SliceIndex<[A]>,
{
    type Output = I::Output;
    fn index(&self, index: I) -> &Self::Output {
        self.as_slice().index(index)
    }
}

impl<A, I, const N: usize> IndexMut<I> for Chunk<A, N>
where
    I: SliceIndex<[A]>,
{
    fn index_mut(&mut self, index: I) -> &mut Self::Output {
        self.as_mut_slice().index_mut(index)
    }
}

impl<A, const N: usize> Debug for Chunk<A, N>
where
    A: Debug,
{
    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
        f.write_str("Chunk")?;
        f.debug_list().entries(self.iter()).finish()
    }
}

impl<A, const N: usize> Hash for Chunk<A, N>
where
    A: Hash,
{
    fn hash<H>(&self, hasher: &mut H)
    where
        H: Hasher,
    {
        for item in self {
            item.hash(hasher)
        }
    }
}

impl<A, Slice, const N: usize> PartialEq<Slice> for Chunk<A, N>
where
    Slice: Borrow<[A]>,
    A: PartialEq,
{
    fn eq(&self, other: &Slice) -> bool {
        self.as_slice() == other.borrow()
    }
}

impl<A, const N: usize> Eq for Chunk<A, N> where A: Eq {}

impl<A, const N: usize> PartialOrd for Chunk<A, N>
where
    A: PartialOrd,
{
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        self.iter().partial_cmp(other.iter())
    }
}

impl<A, const N: usize> Ord for Chunk<A, N>
where
    A: Ord,
{
    fn cmp(&self, other: &Self) -> Ordering {
        self.iter().cmp(other.iter())
    }
}

#[cfg(feature = "std")]
impl<const N: usize> io::Write for Chunk<u8, N> {
    fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
        let old_len = self.len();
        self.extend(buf.iter().cloned().take(N - old_len));
        Ok(self.len() - old_len)
    }

    fn flush(&mut self) -> io::Result<()> {
        Ok(())
    }
}

#[cfg(feature = "std")]
impl<const N: usize> std::io::Read for Chunk<u8, N> {
    fn read(&mut self, buf: &mut [u8]) -> std::io::Result<usize> {
        let read_size = buf.len().min(self.len());
        if read_size == 0 {
            Ok(0)
        } else {
            for p in buf.iter_mut().take(read_size) {
                *p = self.pop_front();
            }
            Ok(read_size)
        }
    }
}

impl<A, T, const N: usize> From<InlineArray<A, T>> for Chunk<A, N> {
    #[inline]
    fn from(mut array: InlineArray<A, T>) -> Self {
        Self::from(&mut array)
    }
}

impl<'a, A, T, const N: usize> From<&'a mut InlineArray<A, T>> for Chunk<A, N> {
    fn from(array: &mut InlineArray<A, T>) -> Self {
        // The first capacity comparison is to help optimize it out
        assert!(
            InlineArray::<A, T>::CAPACITY <= Self::CAPACITY || array.len() <= Self::CAPACITY,
            "CAPACITY too small"
        );
        let mut out = Self::new();
        out.left = 0;
        out.right = array.len();
        unsafe {
            ptr::copy_nonoverlapping(array.data(), out.mut_ptr(0), out.right);
            *array.len_mut() = 0;
        }
        out
    }
}

impl<A, const N: usize> Borrow<[A]> for Chunk<A, N> {
    fn borrow(&self) -> &[A] {
        self.as_slice()
    }
}

impl<A, const N: usize> BorrowMut<[A]> for Chunk<A, N> {
    fn borrow_mut(&mut self) -> &mut [A] {
        self.as_mut_slice()
    }
}

impl<A, const N: usize> AsRef<[A]> for Chunk<A, N> {
    fn as_ref(&self) -> &[A] {
        self.as_slice()
    }
}

impl<A, const N: usize> AsMut<[A]> for Chunk<A, N> {
    fn as_mut(&mut self) -> &mut [A] {
        self.as_mut_slice()
    }
}

impl<A, const N: usize> Deref for Chunk<A, N> {
    type Target = [A];

    fn deref(&self) -> &Self::Target {
        self.as_slice()
    }
}

impl<A, const N: usize> DerefMut for Chunk<A, N> {
    fn deref_mut(&mut self) -> &mut Self::Target {
        self.as_mut_slice()
    }
}

impl<A, const N: usize> FromIterator<A> for Chunk<A, N> {
    fn from_iter<I>(it: I) -> Self
    where
        I: IntoIterator<Item = A>,
    {
        let mut chunk = Self::new();
        for item in it {
            chunk.push_back(item);
        }
        chunk
    }
}

impl<'a, A, const N: usize> IntoIterator for &'a Chunk<A, N> {
    type Item = &'a A;
    type IntoIter = SliceIter<'a, A>;
    fn into_iter(self) -> Self::IntoIter {
        self.iter()
    }
}

impl<'a, A, const N: usize> IntoIterator for &'a mut Chunk<A, N> {
    type Item = &'a mut A;
    type IntoIter = SliceIterMut<'a, A>;
    fn into_iter(self) -> Self::IntoIter {
        self.iter_mut()
    }
}

impl<A, const N: usize> Extend<A> for Chunk<A, N> {
    /// Append the contents of the iterator to the back of the chunk.
    ///
    /// Panics if the chunk exceeds its capacity.
    ///
    /// Time: O(n) for the length of the iterator
    fn extend<I>(&mut self, it: I)
    where
        I: IntoIterator<Item = A>,
    {
        for item in it {
            self.push_back(item);
        }
    }
}

impl<'a, A, const N: usize> Extend<&'a A> for Chunk<A, N>
where
    A: 'a + Copy,
{
    /// Append the contents of the iterator to the back of the chunk.
    ///
    /// Panics if the chunk exceeds its capacity.
    ///
    /// Time: O(n) for the length of the iterator
    fn extend<I>(&mut self, it: I)
    where
        I: IntoIterator<Item = &'a A>,
    {
        for item in it {
            self.push_back(*item);
        }
    }
}

impl<A, const N: usize> IntoIterator for Chunk<A, N> {
    type Item = A;
    type IntoIter = Iter<A, N>;

    fn into_iter(self) -> Self::IntoIter {
        Iter { chunk: self }
    }
}

#[cfg(test)]
#[rustfmt::skip]
mod test {
    use super::*;

    #[test]
    #[should_panic(expected = "Chunk::push_back: can't push to full chunk")]
    fn issue_11_testcase1d() {
        let mut chunk = Chunk::<usize, 2>::pair(123, 456);
        chunk.push_back(789);
    }

    #[test]
    #[should_panic(expected = "CAPACITY too small")]
    fn issue_11_testcase2a() {
        let mut from = InlineArray::<u8, [u8; 256]>::new();
        from.push(1);

        let _ = Chunk::<u8, 0>::from(from);
    }

    #[test]
    fn issue_11_testcase2b() {
        let mut from = InlineArray::<u8, [u8; 256]>::new();
        from.push(1);

        let _ = Chunk::<u8, 1>::from(from);
    }

    struct DropDetector(u32);

    impl DropDetector {
        fn new(num: u32) -> Self {
            DropDetector(num)
        }
    }

    impl Drop for DropDetector {
        fn drop(&mut self) {
            assert!(self.0 == 42 || self.0 == 43);
        }
    }

    impl Clone for DropDetector {
        fn clone(&self) -> Self {
            if self.0 == 42 {
                panic!("panic on clone")
            }
            DropDetector::new(self.0)
        }
    }

    /// This is for miri to catch
    #[test]
    fn issue_11_testcase3a() {
        let mut chunk = Chunk::<DropDetector, 3>::new();
        chunk.push_back(DropDetector::new(42));
        chunk.push_back(DropDetector::new(42));
        chunk.push_back(DropDetector::new(43));
        let _ = chunk.pop_front();

        let _ = std::panic::catch_unwind(|| {
            let _ = chunk.clone();
        });
    }

    struct PanickingIterator {
        current: u32,
        panic_at: u32,
        len: usize,
    }

    impl Iterator for PanickingIterator {
        type Item = DropDetector;

        fn next(&mut self) -> Option<Self::Item> {
            let num = self.current;

            if num == self.panic_at {
                panic!("panicking index")
            }

            self.current += 1;
            Some(DropDetector::new(num))
        }

        fn size_hint(&self) -> (usize, Option<usize>) {
            (self.len, Some(self.len))
        }
    }

    impl ExactSizeIterator for PanickingIterator {}

    #[test]
    fn issue_11_testcase3b() {
        let _ = std::panic::catch_unwind(|| {
            let mut chunk = Chunk::<DropDetector, 5>::new();
            chunk.push_back(DropDetector::new(1));
            chunk.push_back(DropDetector::new(2));
            chunk.push_back(DropDetector::new(3));

            chunk.insert_from(
                1,
                PanickingIterator {
                    current: 1,
                    panic_at: 1,
                    len: 1,
                },
            );
        });
    }

    struct FakeSizeIterator { reported: usize, actual: usize }
    impl Iterator for FakeSizeIterator {
        type Item = u8;
        fn next(&mut self) -> Option<Self::Item> {
            if self.actual == 0 {
                None
            } else {
                self.actual -= 1;
                Some(1)
            }
        }

        fn size_hint(&self) -> (usize, Option<usize>) {
            (self.reported, Some(self.reported))
        }
    }

    impl ExactSizeIterator for FakeSizeIterator {
        fn len(&self) -> usize {
            self.reported
        }
    }

    #[test]
    fn iterator_too_long() {
        let mut chunk = Chunk::<u8, 5>::new();
        chunk.push_back(0);
        chunk.push_back(1);
        chunk.push_back(2);
        chunk.insert_from(1, FakeSizeIterator { reported: 1, actual: 10 });

        let mut chunk = Chunk::<u8, 5>::new();
        chunk.push_back(1);
        chunk.insert_from(0, FakeSizeIterator { reported: 1, actual: 10 });

        let mut chunk = Chunk::<u8, 5>::new();
        chunk.insert_from(0, FakeSizeIterator { reported: 1, actual: 10 });
    }

    #[test]
    #[should_panic(expected = "ExactSizeIterator yielded fewer values than advertised")]
    fn iterator_too_short1() {
        let mut chunk = Chunk::<u8, 5>::new();
        chunk.push_back(0);
        chunk.push_back(1);
        chunk.push_back(2);
        chunk.insert_from(1, FakeSizeIterator { reported: 2, actual: 0 });
    }

    #[test]
    #[should_panic(expected = "ExactSizeIterator yielded fewer values than advertised")]
    fn iterator_too_short2() {
        let mut chunk = Chunk::<u8, 5>::new();
        chunk.push_back(1);
        chunk.insert_from(1, FakeSizeIterator { reported: 4, actual: 2 });
    }

    #[test]
    fn is_full() {
        let mut chunk = Chunk::<_, 64>::new();
        for i in 0..64 {
            assert!(!chunk.is_full());
            chunk.push_back(i);
        }
        assert!(chunk.is_full());
    }

    #[test]
    fn push_back_front() {
        let mut chunk = Chunk::<_, 64>::new();
        for i in 12..20 {
            chunk.push_back(i);
        }
        assert_eq!(8, chunk.len());
        for i in (0..12).rev() {
            chunk.push_front(i);
        }
        assert_eq!(20, chunk.len());
        for i in 20..32 {
            chunk.push_back(i);
        }
        assert_eq!(32, chunk.len());
        let right: Vec<i32> = chunk.into_iter().collect();
        let left: Vec<i32> = (0..32).collect();
        assert_eq!(left, right);
    }

    #[test]
    fn push_and_pop() {
        let mut chunk = Chunk::<_, 64>::new();
        for i in 0..64 {
            chunk.push_back(i);
        }
        for i in 0..64 {
            assert_eq!(i, chunk.pop_front());
        }
        for i in 0..64 {
            chunk.push_front(i);
        }
        for i in 0..64 {
            assert_eq!(i, chunk.pop_back());
        }
    }

    #[test]
    fn drop_left() {
        let mut chunk = Chunk::<_, 64>::new();
        for i in 0..6 {
            chunk.push_back(i);
        }
        chunk.drop_left(3);
        let vec: Vec<i32> = chunk.into_iter().collect();
        assert_eq!(vec![3, 4, 5], vec);
    }

    #[test]
    fn drop_right() {
        let mut chunk = Chunk::<_, 64>::new();
        for i in 0..6 {
            chunk.push_back(i);
        }
        chunk.drop_right(3);
        let vec: Vec<i32> = chunk.into_iter().collect();
        assert_eq!(vec![0, 1, 2], vec);
    }

    #[test]
    fn split_off() {
        let mut left = Chunk::<_, 64>::new();
        for i in 0..6 {
            left.push_back(i);
        }
        let right = left.split_off(3);
        let left_vec: Vec<i32> = left.into_iter().collect();
        let right_vec: Vec<i32> = right.into_iter().collect();
        assert_eq!(vec![0, 1, 2], left_vec);
        assert_eq!(vec![3, 4, 5], right_vec);
    }

    #[test]
    fn append() {
        let mut left = Chunk::<_, 64>::new();
        for i in 0..32 {
            left.push_back(i);
        }
        let mut right = Chunk::<_, 64>::new();
        for i in (32..64).rev() {
            right.push_front(i);
        }
        left.append(&mut right);
        let out_vec: Vec<i32> = left.into_iter().collect();
        let should_vec: Vec<i32> = (0..64).collect();
        assert_eq!(should_vec, out_vec);
    }

    #[test]
    fn ref_iter() {
        let mut chunk = Chunk::<_, 64>::new();
        for i in 0..64 {
            chunk.push_back(i);
        }
        let out_vec: Vec<&i32> = chunk.iter().collect();
        let should_vec_p: Vec<i32> = (0..64).collect();
        let should_vec: Vec<&i32> = should_vec_p.iter().collect();
        assert_eq!(should_vec, out_vec);
    }

    #[test]
    fn mut_ref_iter() {
        let mut chunk = Chunk::<_, 64>::new();
        for i in 0..64 {
            chunk.push_back(i);
        }
        let out_vec: Vec<&mut i32> = chunk.iter_mut().collect();
        let mut should_vec_p: Vec<i32> = (0..64).collect();
        let should_vec: Vec<&mut i32> = should_vec_p.iter_mut().collect();
        assert_eq!(should_vec, out_vec);
    }

    #[test]
    fn consuming_iter() {
        let mut chunk = Chunk::<_, 64>::new();
        for i in 0..64 {
            chunk.push_back(i);
        }
        let out_vec: Vec<i32> = chunk.into_iter().collect();
        let should_vec: Vec<i32> = (0..64).collect();
        assert_eq!(should_vec, out_vec);
    }

    #[test]
    fn insert_middle() {
        let mut chunk = Chunk::<_, 64>::new();
        for i in 0..32 {
            chunk.push_back(i);
        }
        for i in 33..64 {
            chunk.push_back(i);
        }
        chunk.insert(32, 32);
        let out_vec: Vec<i32> = chunk.into_iter().collect();
        let should_vec: Vec<i32> = (0..64).collect();
        assert_eq!(should_vec, out_vec);
    }

    #[test]
    fn insert_back() {
        let mut chunk = Chunk::<_, 64>::new();
        for i in 0..63 {
            chunk.push_back(i);
        }
        chunk.insert(63, 63);
        let out_vec: Vec<i32> = chunk.into_iter().collect();
        let should_vec: Vec<i32> = (0..64).collect();
        assert_eq!(should_vec, out_vec);
    }

    #[test]
    fn insert_front() {
        let mut chunk = Chunk::<_, 64>::new();
        for i in 1..64 {
            chunk.push_front(64 - i);
        }
        chunk.insert(0, 0);
        let out_vec: Vec<i32> = chunk.into_iter().collect();
        let should_vec: Vec<i32> = (0..64).collect();
        assert_eq!(should_vec, out_vec);
    }

    #[test]
    fn remove_value() {
        let mut chunk = Chunk::<_, 64>::new();
        for i in 0..64 {
            chunk.push_back(i);
        }
        chunk.remove(32);
        let out_vec: Vec<i32> = chunk.into_iter().collect();
        let should_vec: Vec<i32> = (0..32).chain(33..64).collect();
        assert_eq!(should_vec, out_vec);
    }

    use crate::tests::DropTest;
    use std::sync::atomic::{AtomicUsize, Ordering};

    #[test]
    fn dropping() {
        let counter = AtomicUsize::new(0);
        {
            let mut chunk: Chunk<DropTest<'_>, 64> = Chunk::new();
            for _i in 0..20 {
                chunk.push_back(DropTest::new(&counter))
            }
            for _i in 0..20 {
                chunk.push_front(DropTest::new(&counter))
            }
            assert_eq!(40, counter.load(Ordering::Relaxed));
            for _i in 0..10 {
                chunk.pop_back();
            }
            assert_eq!(30, counter.load(Ordering::Relaxed));
        }
        assert_eq!(0, counter.load(Ordering::Relaxed));
    }

    #[test]
    #[should_panic(expected = "assertion failed: Self::CAPACITY >= 1")]
    fn unit_on_empty() {
        Chunk::<usize, 0>::unit(1);
    }

    #[test]
    #[should_panic(expected = "assertion failed: Self::CAPACITY >= 2")]
    fn pair_on_empty() {
        Chunk::<usize, 0>::pair(1, 2);
    }
}