matrix_sdk_common/linked_chunk/builder.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
// Copyright 2024 The Matrix.org Foundation C.I.C.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use std::{
collections::{BTreeMap, HashSet},
marker::PhantomData,
};
use tracing::error;
use super::{
Chunk, ChunkContent, ChunkIdentifier, ChunkIdentifierGenerator, Ends, LinkedChunk,
ObservableUpdates,
};
/// A temporary chunk representation in the [`LinkedChunkBuilder`].
///
/// Instead of using linking the chunks with pointers, this uses
/// [`ChunkIdentifier`] as the temporary links to the previous and next chunks,
/// which will get resolved later when re-building the full data structure. This
/// allows using chunks that references other chunks that aren't known yet.
struct TemporaryChunk<Item, Gap> {
id: ChunkIdentifier,
previous: Option<ChunkIdentifier>,
next: Option<ChunkIdentifier>,
content: ChunkContent<Item, Gap>,
}
/// A data structure to rebuild a linked chunk from its raw representation.
///
/// A linked chunk can be rebuilt incrementally from its internal
/// representation, with the chunks being added *in any order*, as long as they
/// form a single connected component eventually (viz., there's no
/// subgraphs/sublists isolated from the one final linked list). If they don't,
/// then the final call to [`LinkedChunkBuilder::build()`] will result in an
/// error).
#[allow(missing_debug_implementations)]
pub struct LinkedChunkBuilder<const CAP: usize, Item, Gap> {
/// Work-in-progress chunks.
chunks: BTreeMap<ChunkIdentifier, TemporaryChunk<Item, Gap>>,
/// Is the final `LinkedChunk` expected to include an update history, as if
/// it were created with [`LinkedChunk::new_with_update_history`]?
build_with_update_history: bool,
}
impl<const CAP: usize, Item, Gap> Default for LinkedChunkBuilder<CAP, Item, Gap> {
fn default() -> Self {
Self::new()
}
}
impl<const CAP: usize, Item, Gap> LinkedChunkBuilder<CAP, Item, Gap> {
/// Create an empty [`LinkedChunkBuilder`] with no update history.
pub fn new() -> Self {
Self { chunks: Default::default(), build_with_update_history: false }
}
/// Stash a gap chunk with its content.
///
/// This can be called even if the previous and next chunks have not been
/// added yet. Resolving these chunks will happen at the time of calling
/// [`LinkedChunkBuilder::build()`].
pub fn push_gap(
&mut self,
previous: Option<ChunkIdentifier>,
id: ChunkIdentifier,
next: Option<ChunkIdentifier>,
content: Gap,
) {
let chunk = TemporaryChunk { id, previous, next, content: ChunkContent::Gap(content) };
self.chunks.insert(id, chunk);
}
/// Stash an item chunk with its contents.
///
/// This can be called even if the previous and next chunks have not been
/// added yet. Resolving these chunks will happen at the time of calling
/// [`LinkedChunkBuilder::build()`].
pub fn push_items(
&mut self,
previous: Option<ChunkIdentifier>,
id: ChunkIdentifier,
next: Option<ChunkIdentifier>,
items: impl IntoIterator<Item = Item>,
) {
let chunk = TemporaryChunk {
id,
previous,
next,
content: ChunkContent::Items(items.into_iter().collect()),
};
self.chunks.insert(id, chunk);
}
/// Request that the resulting linked chunk will have an update history, as
/// if it were created with [`LinkedChunk::new_with_update_history`].
pub fn with_update_history(&mut self) {
self.build_with_update_history = true;
}
/// Run all error checks before reconstructing the full linked chunk.
///
/// Must be called after checking `self.chunks` isn't empty in
/// [`Self::build`].
///
/// Returns the identifier of the first chunk.
fn check_consistency(&mut self) -> Result<ChunkIdentifier, LinkedChunkBuilderError> {
// Look for the first id.
let first_id =
self.chunks.iter().find_map(|(id, chunk)| chunk.previous.is_none().then_some(*id));
// There's no first chunk, but we've checked that `self.chunks` isn't empty:
// it's a malformed list.
let Some(first_id) = first_id else {
return Err(LinkedChunkBuilderError::MissingFirstChunk);
};
// We're going to iterate from the first to the last chunk.
// Keep track of chunks we've already visited.
let mut visited = HashSet::new();
// Start from the first chunk.
let mut maybe_cur = Some(first_id);
while let Some(cur) = maybe_cur {
// The chunk must be referenced in `self.chunks`.
let Some(chunk) = self.chunks.get(&cur) else {
return Err(LinkedChunkBuilderError::MissingChunk { id: cur });
};
if let ChunkContent::Items(items) = &chunk.content {
if items.len() > CAP {
return Err(LinkedChunkBuilderError::ChunkTooLarge { id: cur });
}
}
// If it's not the first chunk,
if cur != first_id {
// It must have a previous link.
let Some(prev) = chunk.previous else {
return Err(LinkedChunkBuilderError::MultipleFirstChunks {
first_candidate: first_id,
second_candidate: cur,
});
};
// And we must have visited its predecessor at this point, since we've
// iterated from the first chunk.
if !visited.contains(&prev) {
return Err(LinkedChunkBuilderError::MissingChunk { id: prev });
}
}
// Add the current chunk to the list of seen chunks.
if !visited.insert(cur) {
// If we didn't insert, then it was already visited: there's a cycle!
return Err(LinkedChunkBuilderError::Cycle { repeated: cur });
}
// Move on to the next chunk. If it's none, we'll quit the loop.
maybe_cur = chunk.next;
}
// If there are more chunks than those we've visited: some of them were not
// linked to the "main" branch of the linked list, so we had multiple connected
// components.
if visited.len() != self.chunks.len() {
return Err(LinkedChunkBuilderError::MultipleConnectedComponents);
}
Ok(first_id)
}
pub fn build(mut self) -> Result<Option<LinkedChunk<CAP, Item, Gap>>, LinkedChunkBuilderError> {
if self.chunks.is_empty() {
return Ok(None);
}
// Run checks.
let first_id = self.check_consistency()?;
// We're now going to iterate from the first to the last chunk. As we're doing
// this, we're also doing a few other things:
//
// - rebuilding the final `Chunk`s one by one, that will be linked using
// pointers,
// - counting items from the item chunks we'll encounter,
// - finding the max `ChunkIdentifier` (`max_chunk_id`).
let mut max_chunk_id = first_id.index();
// Small helper to graduate a temporary chunk into a final one. As we're doing
// this, we're also updating the maximum chunk id (that will be used to
// set up the id generator), and the number of items in this chunk.
let mut graduate_chunk = |id: ChunkIdentifier| {
let temp = self.chunks.remove(&id)?;
// Update the maximum chunk identifier, while we're around.
max_chunk_id = max_chunk_id.max(id.index());
// Graduate the current temporary chunk into a final chunk.
let chunk_ptr = Chunk::new_leaked(id, temp.content);
Some((temp.next, chunk_ptr))
};
let Some((mut next_chunk_id, first_chunk_ptr)) = graduate_chunk(first_id) else {
// Can't really happen, but oh well.
return Err(LinkedChunkBuilderError::MissingFirstChunk);
};
let mut prev_chunk_ptr = first_chunk_ptr;
while let Some(id) = next_chunk_id {
let Some((new_next, mut chunk_ptr)) = graduate_chunk(id) else {
// Can't really happen, but oh well.
return Err(LinkedChunkBuilderError::MissingChunk { id });
};
let chunk = unsafe { chunk_ptr.as_mut() };
// Link the current chunk to its previous one.
let prev_chunk = unsafe { prev_chunk_ptr.as_mut() };
prev_chunk.next = Some(chunk_ptr);
chunk.previous = Some(prev_chunk_ptr);
// Prepare for the next iteration.
prev_chunk_ptr = chunk_ptr;
next_chunk_id = new_next;
}
debug_assert!(self.chunks.is_empty());
// Maintain the convention that `Ends::last` may be unset.
let last_chunk_ptr = prev_chunk_ptr;
let last_chunk_ptr =
if first_chunk_ptr == last_chunk_ptr { None } else { Some(last_chunk_ptr) };
let links = Ends { first: first_chunk_ptr, last: last_chunk_ptr };
let chunk_identifier_generator =
ChunkIdentifierGenerator::new_from_previous_chunk_identifier(ChunkIdentifier::new(
max_chunk_id,
));
let updates =
if self.build_with_update_history { Some(ObservableUpdates::new()) } else { None };
Ok(Some(LinkedChunk { links, chunk_identifier_generator, updates, marker: PhantomData }))
}
}
#[derive(thiserror::Error, Debug)]
pub enum LinkedChunkBuilderError {
#[error("chunk with id {} is too large", id.index())]
ChunkTooLarge { id: ChunkIdentifier },
#[error("there's no first chunk")]
MissingFirstChunk,
#[error("there are multiple first chunks")]
MultipleFirstChunks { first_candidate: ChunkIdentifier, second_candidate: ChunkIdentifier },
#[error("unable to resolve chunk with id {}", id.index())]
MissingChunk { id: ChunkIdentifier },
#[error("rebuilt chunks form a cycle: repeated identifier: {}", repeated.index())]
Cycle { repeated: ChunkIdentifier },
#[error("multiple connected components")]
MultipleConnectedComponents,
}
#[cfg(test)]
mod tests {
use assert_matches::assert_matches;
use super::LinkedChunkBuilder;
use crate::linked_chunk::{ChunkIdentifier, LinkedChunkBuilderError};
#[test]
fn test_empty() {
let lcb = LinkedChunkBuilder::<3, char, char>::new();
// Building an empty linked chunk works, and returns `None`.
let lc = lcb.build().unwrap();
assert!(lc.is_none());
}
#[test]
fn test_success() {
let mut lcb = LinkedChunkBuilder::<3, char, char>::new();
let cid0 = ChunkIdentifier::new(0);
let cid1 = ChunkIdentifier::new(1);
// Note: cid2 is missing on purpose, to confirm that it's fine to have holes in
// the chunk id space.
let cid3 = ChunkIdentifier::new(3);
// Check that we can successfully create a linked chunk, independently of the
// order in which chunks are added.
//
// The final chunk will contain [cid0 <-> cid1 <-> cid3], in this order.
// Adding chunk cid0.
lcb.push_items(None, cid0, Some(cid1), vec!['a', 'b', 'c']);
// Adding chunk cid3.
lcb.push_items(Some(cid1), cid3, None, vec!['d', 'e']);
// Adding chunk cid1.
lcb.push_gap(Some(cid0), cid1, Some(cid3), 'g');
let mut lc =
lcb.build().expect("building works").expect("returns a non-empty linked chunk");
// Check the entire content first.
assert_items_eq!(lc, ['a', 'b', 'c'] [-] ['d', 'e']);
// Run checks on the first chunk.
let mut chunks = lc.chunks();
let first_chunk = chunks.next().unwrap();
{
assert!(first_chunk.previous().is_none());
assert_eq!(first_chunk.identifier(), cid0);
}
// Run checks on the second chunk.
let second_chunk = chunks.next().unwrap();
{
assert_eq!(second_chunk.identifier(), first_chunk.next().unwrap().identifier());
assert_eq!(second_chunk.previous().unwrap().identifier(), first_chunk.identifier());
assert_eq!(second_chunk.identifier(), cid1);
}
// Run checks on the third chunk.
let third_chunk = chunks.next().unwrap();
{
assert_eq!(third_chunk.identifier(), second_chunk.next().unwrap().identifier());
assert_eq!(third_chunk.previous().unwrap().identifier(), second_chunk.identifier());
assert!(third_chunk.next().is_none());
assert_eq!(third_chunk.identifier(), cid3);
}
// There's no more chunk.
assert!(chunks.next().is_none());
// The linked chunk had 5 items.
assert_eq!(lc.num_items(), 5);
// Now, if we add a new chunk, its identifier should be the previous one we used
// + 1.
lc.push_gap_back('h');
let last_chunk = lc.chunks().last().unwrap();
assert_eq!(last_chunk.identifier(), ChunkIdentifier::new(cid3.index() + 1));
}
#[test]
fn test_chunk_too_large() {
let mut lcb = LinkedChunkBuilder::<3, char, char>::new();
let cid0 = ChunkIdentifier::new(0);
// Adding a chunk with 4 items will fail, because the max capacity specified in
// the builder generics is 3.
lcb.push_items(None, cid0, None, vec!['a', 'b', 'c', 'd']);
let res = lcb.build();
assert_matches!(res, Err(LinkedChunkBuilderError::ChunkTooLarge { id }) => {
assert_eq!(id, cid0);
});
}
#[test]
fn test_missing_first_chunk() {
let mut lcb = LinkedChunkBuilder::<3, char, char>::new();
let cid0 = ChunkIdentifier::new(0);
let cid1 = ChunkIdentifier::new(1);
let cid2 = ChunkIdentifier::new(2);
lcb.push_gap(Some(cid2), cid0, Some(cid1), 'g');
lcb.push_items(Some(cid0), cid1, Some(cid2), ['a', 'b', 'c']);
lcb.push_items(Some(cid1), cid2, Some(cid0), ['d', 'e', 'f']);
let res = lcb.build();
assert_matches!(res, Err(LinkedChunkBuilderError::MissingFirstChunk));
}
#[test]
fn test_multiple_first_chunks() {
let mut lcb = LinkedChunkBuilder::<3, char, char>::new();
let cid0 = ChunkIdentifier::new(0);
let cid1 = ChunkIdentifier::new(1);
lcb.push_gap(None, cid0, Some(cid1), 'g');
// Second chunk lies and pretends to be the first too.
lcb.push_items(None, cid1, Some(cid0), ['a', 'b', 'c']);
let res = lcb.build();
assert_matches!(res, Err(LinkedChunkBuilderError::MultipleFirstChunks { first_candidate, second_candidate }) => {
assert_eq!(first_candidate, cid0);
assert_eq!(second_candidate, cid1);
});
}
#[test]
fn test_missing_chunk() {
let mut lcb = LinkedChunkBuilder::<3, char, char>::new();
let cid0 = ChunkIdentifier::new(0);
let cid1 = ChunkIdentifier::new(1);
lcb.push_gap(None, cid0, Some(cid1), 'g');
let res = lcb.build();
assert_matches!(res, Err(LinkedChunkBuilderError::MissingChunk { id }) => {
assert_eq!(id, cid1);
});
}
#[test]
fn test_cycle() {
let mut lcb = LinkedChunkBuilder::<3, char, char>::new();
let cid0 = ChunkIdentifier::new(0);
let cid1 = ChunkIdentifier::new(1);
lcb.push_gap(None, cid0, Some(cid1), 'g');
lcb.push_gap(Some(cid0), cid1, Some(cid0), 'g');
let res = lcb.build();
assert_matches!(res, Err(LinkedChunkBuilderError::Cycle { repeated }) => {
assert_eq!(repeated, cid0);
});
}
#[test]
fn test_multiple_connected_components() {
let mut lcb = LinkedChunkBuilder::<3, char, char>::new();
let cid0 = ChunkIdentifier::new(0);
let cid1 = ChunkIdentifier::new(1);
let cid2 = ChunkIdentifier::new(2);
// cid0 and cid1 are linked to each other.
lcb.push_gap(None, cid0, Some(cid1), 'g');
lcb.push_items(Some(cid0), cid1, None, ['a', 'b', 'c']);
// cid2 stands on its own.
lcb.push_items(None, cid2, None, ['d', 'e', 'f']);
let res = lcb.build();
assert_matches!(res, Err(LinkedChunkBuilderError::MultipleConnectedComponents));
}
}