matrix_sdk_common/linked_chunk/
builder.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
// Copyright 2024 The Matrix.org Foundation C.I.C.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use std::{
    collections::{BTreeMap, HashSet},
    marker::PhantomData,
};

use tracing::error;

use super::{
    Chunk, ChunkContent, ChunkIdentifier, ChunkIdentifierGenerator, Ends, LinkedChunk,
    ObservableUpdates,
};

/// A temporary chunk representation in the [`LinkedChunkBuilder`].
///
/// Instead of using linking the chunks with pointers, this uses
/// [`ChunkIdentifier`] as the temporary links to the previous and next chunks,
/// which will get resolved later when re-building the full data structure. This
/// allows using chunks that references other chunks that aren't known yet.
struct TemporaryChunk<Item, Gap> {
    id: ChunkIdentifier,
    previous: Option<ChunkIdentifier>,
    next: Option<ChunkIdentifier>,
    content: ChunkContent<Item, Gap>,
}

/// A data structure to rebuild a linked chunk from its raw representation.
///
/// A linked chunk can be rebuilt incrementally from its internal
/// representation, with the chunks being added *in any order*, as long as they
/// form a single connected component eventually (viz., there's no
/// subgraphs/sublists isolated from the one final linked list). If they don't,
/// then the final call to [`LinkedChunkBuilder::build()`] will result in an
/// error).
#[allow(missing_debug_implementations)]
pub struct LinkedChunkBuilder<const CAP: usize, Item, Gap> {
    /// Work-in-progress chunks.
    chunks: BTreeMap<ChunkIdentifier, TemporaryChunk<Item, Gap>>,

    /// Is the final `LinkedChunk` expected to include an update history, as if
    /// it were created with [`LinkedChunk::new_with_update_history`]?
    build_with_update_history: bool,
}

impl<const CAP: usize, Item, Gap> Default for LinkedChunkBuilder<CAP, Item, Gap> {
    fn default() -> Self {
        Self::new()
    }
}

impl<const CAP: usize, Item, Gap> LinkedChunkBuilder<CAP, Item, Gap> {
    /// Create an empty [`LinkedChunkBuilder`] with no update history.
    pub fn new() -> Self {
        Self { chunks: Default::default(), build_with_update_history: false }
    }

    /// Stash a gap chunk with its content.
    ///
    /// This can be called even if the previous and next chunks have not been
    /// added yet. Resolving these chunks will happen at the time of calling
    /// [`LinkedChunkBuilder::build()`].
    pub fn push_gap(
        &mut self,
        previous: Option<ChunkIdentifier>,
        id: ChunkIdentifier,
        next: Option<ChunkIdentifier>,
        content: Gap,
    ) {
        let chunk = TemporaryChunk { id, previous, next, content: ChunkContent::Gap(content) };
        self.chunks.insert(id, chunk);
    }

    /// Stash an item chunk with its contents.
    ///
    /// This can be called even if the previous and next chunks have not been
    /// added yet. Resolving these chunks will happen at the time of calling
    /// [`LinkedChunkBuilder::build()`].
    pub fn push_items(
        &mut self,
        previous: Option<ChunkIdentifier>,
        id: ChunkIdentifier,
        next: Option<ChunkIdentifier>,
        items: impl IntoIterator<Item = Item>,
    ) {
        let chunk = TemporaryChunk {
            id,
            previous,
            next,
            content: ChunkContent::Items(items.into_iter().collect()),
        };
        self.chunks.insert(id, chunk);
    }

    /// Request that the resulting linked chunk will have an update history, as
    /// if it were created with [`LinkedChunk::new_with_update_history`].
    pub fn with_update_history(&mut self) {
        self.build_with_update_history = true;
    }

    /// Run all error checks before reconstructing the full linked chunk.
    ///
    /// Must be called after checking `self.chunks` isn't empty in
    /// [`Self::build`].
    ///
    /// Returns the identifier of the first chunk.
    fn check_consistency(&mut self) -> Result<ChunkIdentifier, LinkedChunkBuilderError> {
        // Look for the first id.
        let first_id =
            self.chunks.iter().find_map(|(id, chunk)| chunk.previous.is_none().then_some(*id));

        // There's no first chunk, but we've checked that `self.chunks` isn't empty:
        // it's a malformed list.
        let Some(first_id) = first_id else {
            return Err(LinkedChunkBuilderError::MissingFirstChunk);
        };

        // We're going to iterate from the first to the last chunk.
        // Keep track of chunks we've already visited.
        let mut visited = HashSet::new();

        // Start from the first chunk.
        let mut maybe_cur = Some(first_id);

        while let Some(cur) = maybe_cur {
            // The chunk must be referenced in `self.chunks`.
            let Some(chunk) = self.chunks.get(&cur) else {
                return Err(LinkedChunkBuilderError::MissingChunk { id: cur });
            };

            if let ChunkContent::Items(items) = &chunk.content {
                if items.len() > CAP {
                    return Err(LinkedChunkBuilderError::ChunkTooLarge { id: cur });
                }
            }

            // If it's not the first chunk,
            if cur != first_id {
                // It must have a previous link.
                let Some(prev) = chunk.previous else {
                    return Err(LinkedChunkBuilderError::MultipleFirstChunks {
                        first_candidate: first_id,
                        second_candidate: cur,
                    });
                };

                // And we must have visited its predecessor at this point, since we've
                // iterated from the first chunk.
                if !visited.contains(&prev) {
                    return Err(LinkedChunkBuilderError::MissingChunk { id: prev });
                }
            }

            // Add the current chunk to the list of seen chunks.
            if !visited.insert(cur) {
                // If we didn't insert, then it was already visited: there's a cycle!
                return Err(LinkedChunkBuilderError::Cycle { repeated: cur });
            }

            // Move on to the next chunk. If it's none, we'll quit the loop.
            maybe_cur = chunk.next;
        }

        // If there are more chunks than those we've visited: some of them were not
        // linked to the "main" branch of the linked list, so we had multiple connected
        // components.
        if visited.len() != self.chunks.len() {
            return Err(LinkedChunkBuilderError::MultipleConnectedComponents);
        }

        Ok(first_id)
    }

    pub fn build(mut self) -> Result<Option<LinkedChunk<CAP, Item, Gap>>, LinkedChunkBuilderError> {
        if self.chunks.is_empty() {
            return Ok(None);
        }

        // Run checks.
        let first_id = self.check_consistency()?;

        // We're now going to iterate from the first to the last chunk. As we're doing
        // this, we're also doing a few other things:
        //
        // - rebuilding the final `Chunk`s one by one, that will be linked using
        //   pointers,
        // - counting items from the item chunks we'll encounter,
        // - finding the max `ChunkIdentifier` (`max_chunk_id`).

        let mut max_chunk_id = first_id.index();

        // Small helper to graduate a temporary chunk into a final one. As we're doing
        // this, we're also updating the maximum chunk id (that will be used to
        // set up the id generator), and the number of items in this chunk.

        let mut graduate_chunk = |id: ChunkIdentifier| {
            let temp = self.chunks.remove(&id)?;

            // Update the maximum chunk identifier, while we're around.
            max_chunk_id = max_chunk_id.max(id.index());

            // Graduate the current temporary chunk into a final chunk.
            let chunk_ptr = Chunk::new_leaked(id, temp.content);

            Some((temp.next, chunk_ptr))
        };

        let Some((mut next_chunk_id, first_chunk_ptr)) = graduate_chunk(first_id) else {
            // Can't really happen, but oh well.
            return Err(LinkedChunkBuilderError::MissingFirstChunk);
        };

        let mut prev_chunk_ptr = first_chunk_ptr;

        while let Some(id) = next_chunk_id {
            let Some((new_next, mut chunk_ptr)) = graduate_chunk(id) else {
                // Can't really happen, but oh well.
                return Err(LinkedChunkBuilderError::MissingChunk { id });
            };

            let chunk = unsafe { chunk_ptr.as_mut() };

            // Link the current chunk to its previous one.
            let prev_chunk = unsafe { prev_chunk_ptr.as_mut() };
            prev_chunk.next = Some(chunk_ptr);
            chunk.previous = Some(prev_chunk_ptr);

            // Prepare for the next iteration.
            prev_chunk_ptr = chunk_ptr;
            next_chunk_id = new_next;
        }

        debug_assert!(self.chunks.is_empty());

        // Maintain the convention that `Ends::last` may be unset.
        let last_chunk_ptr = prev_chunk_ptr;
        let last_chunk_ptr =
            if first_chunk_ptr == last_chunk_ptr { None } else { Some(last_chunk_ptr) };
        let links = Ends { first: first_chunk_ptr, last: last_chunk_ptr };

        let chunk_identifier_generator =
            ChunkIdentifierGenerator::new_from_previous_chunk_identifier(ChunkIdentifier::new(
                max_chunk_id,
            ));

        let updates =
            if self.build_with_update_history { Some(ObservableUpdates::new()) } else { None };

        Ok(Some(LinkedChunk { links, chunk_identifier_generator, updates, marker: PhantomData }))
    }
}

#[derive(thiserror::Error, Debug)]
pub enum LinkedChunkBuilderError {
    #[error("chunk with id {} is too large", id.index())]
    ChunkTooLarge { id: ChunkIdentifier },

    #[error("there's no first chunk")]
    MissingFirstChunk,

    #[error("there are multiple first chunks")]
    MultipleFirstChunks { first_candidate: ChunkIdentifier, second_candidate: ChunkIdentifier },

    #[error("unable to resolve chunk with id {}", id.index())]
    MissingChunk { id: ChunkIdentifier },

    #[error("rebuilt chunks form a cycle: repeated identifier: {}", repeated.index())]
    Cycle { repeated: ChunkIdentifier },

    #[error("multiple connected components")]
    MultipleConnectedComponents,
}

#[cfg(test)]
mod tests {
    use assert_matches::assert_matches;

    use super::LinkedChunkBuilder;
    use crate::linked_chunk::{ChunkIdentifier, LinkedChunkBuilderError};

    #[test]
    fn test_empty() {
        let lcb = LinkedChunkBuilder::<3, char, char>::new();

        // Building an empty linked chunk works, and returns `None`.
        let lc = lcb.build().unwrap();
        assert!(lc.is_none());
    }

    #[test]
    fn test_success() {
        let mut lcb = LinkedChunkBuilder::<3, char, char>::new();

        let cid0 = ChunkIdentifier::new(0);
        let cid1 = ChunkIdentifier::new(1);
        // Note: cid2 is missing on purpose, to confirm that it's fine to have holes in
        // the chunk id space.
        let cid3 = ChunkIdentifier::new(3);

        // Check that we can successfully create a linked chunk, independently of the
        // order in which chunks are added.
        //
        // The final chunk will contain [cid0 <-> cid1 <-> cid3], in this order.

        // Adding chunk cid0.
        lcb.push_items(None, cid0, Some(cid1), vec!['a', 'b', 'c']);
        // Adding chunk cid3.
        lcb.push_items(Some(cid1), cid3, None, vec!['d', 'e']);
        // Adding chunk cid1.
        lcb.push_gap(Some(cid0), cid1, Some(cid3), 'g');

        let mut lc =
            lcb.build().expect("building works").expect("returns a non-empty linked chunk");

        // Check the entire content first.
        assert_items_eq!(lc, ['a', 'b', 'c'] [-] ['d', 'e']);

        // Run checks on the first chunk.
        let mut chunks = lc.chunks();
        let first_chunk = chunks.next().unwrap();
        {
            assert!(first_chunk.previous().is_none());
            assert_eq!(first_chunk.identifier(), cid0);
        }

        // Run checks on the second chunk.
        let second_chunk = chunks.next().unwrap();
        {
            assert_eq!(second_chunk.identifier(), first_chunk.next().unwrap().identifier());
            assert_eq!(second_chunk.previous().unwrap().identifier(), first_chunk.identifier());
            assert_eq!(second_chunk.identifier(), cid1);
        }

        // Run checks on the third chunk.
        let third_chunk = chunks.next().unwrap();
        {
            assert_eq!(third_chunk.identifier(), second_chunk.next().unwrap().identifier());
            assert_eq!(third_chunk.previous().unwrap().identifier(), second_chunk.identifier());
            assert!(third_chunk.next().is_none());
            assert_eq!(third_chunk.identifier(), cid3);
        }

        // There's no more chunk.
        assert!(chunks.next().is_none());

        // The linked chunk had 5 items.
        assert_eq!(lc.num_items(), 5);

        // Now, if we add a new chunk, its identifier should be the previous one we used
        // + 1.
        lc.push_gap_back('h');

        let last_chunk = lc.chunks().last().unwrap();
        assert_eq!(last_chunk.identifier(), ChunkIdentifier::new(cid3.index() + 1));
    }

    #[test]
    fn test_chunk_too_large() {
        let mut lcb = LinkedChunkBuilder::<3, char, char>::new();

        let cid0 = ChunkIdentifier::new(0);

        // Adding a chunk with 4 items will fail, because the max capacity specified in
        // the builder generics is 3.
        lcb.push_items(None, cid0, None, vec!['a', 'b', 'c', 'd']);

        let res = lcb.build();
        assert_matches!(res, Err(LinkedChunkBuilderError::ChunkTooLarge { id }) => {
            assert_eq!(id, cid0);
        });
    }

    #[test]
    fn test_missing_first_chunk() {
        let mut lcb = LinkedChunkBuilder::<3, char, char>::new();

        let cid0 = ChunkIdentifier::new(0);
        let cid1 = ChunkIdentifier::new(1);
        let cid2 = ChunkIdentifier::new(2);

        lcb.push_gap(Some(cid2), cid0, Some(cid1), 'g');
        lcb.push_items(Some(cid0), cid1, Some(cid2), ['a', 'b', 'c']);
        lcb.push_items(Some(cid1), cid2, Some(cid0), ['d', 'e', 'f']);

        let res = lcb.build();
        assert_matches!(res, Err(LinkedChunkBuilderError::MissingFirstChunk));
    }

    #[test]
    fn test_multiple_first_chunks() {
        let mut lcb = LinkedChunkBuilder::<3, char, char>::new();

        let cid0 = ChunkIdentifier::new(0);
        let cid1 = ChunkIdentifier::new(1);

        lcb.push_gap(None, cid0, Some(cid1), 'g');
        // Second chunk lies and pretends to be the first too.
        lcb.push_items(None, cid1, Some(cid0), ['a', 'b', 'c']);

        let res = lcb.build();
        assert_matches!(res, Err(LinkedChunkBuilderError::MultipleFirstChunks { first_candidate, second_candidate }) => {
            assert_eq!(first_candidate, cid0);
            assert_eq!(second_candidate, cid1);
        });
    }

    #[test]
    fn test_missing_chunk() {
        let mut lcb = LinkedChunkBuilder::<3, char, char>::new();

        let cid0 = ChunkIdentifier::new(0);
        let cid1 = ChunkIdentifier::new(1);
        lcb.push_gap(None, cid0, Some(cid1), 'g');

        let res = lcb.build();
        assert_matches!(res, Err(LinkedChunkBuilderError::MissingChunk { id }) => {
            assert_eq!(id, cid1);
        });
    }

    #[test]
    fn test_cycle() {
        let mut lcb = LinkedChunkBuilder::<3, char, char>::new();

        let cid0 = ChunkIdentifier::new(0);
        let cid1 = ChunkIdentifier::new(1);
        lcb.push_gap(None, cid0, Some(cid1), 'g');
        lcb.push_gap(Some(cid0), cid1, Some(cid0), 'g');

        let res = lcb.build();
        assert_matches!(res, Err(LinkedChunkBuilderError::Cycle { repeated }) => {
            assert_eq!(repeated, cid0);
        });
    }

    #[test]
    fn test_multiple_connected_components() {
        let mut lcb = LinkedChunkBuilder::<3, char, char>::new();

        let cid0 = ChunkIdentifier::new(0);
        let cid1 = ChunkIdentifier::new(1);
        let cid2 = ChunkIdentifier::new(2);

        // cid0 and cid1 are linked to each other.
        lcb.push_gap(None, cid0, Some(cid1), 'g');
        lcb.push_items(Some(cid0), cid1, None, ['a', 'b', 'c']);
        // cid2 stands on its own.
        lcb.push_items(None, cid2, None, ['d', 'e', 'f']);

        let res = lcb.build();
        assert_matches!(res, Err(LinkedChunkBuilderError::MultipleConnectedComponents));
    }
}