matrix_sdk_sqlite/
utils.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
// Copyright 2022 The Matrix.org Foundation C.I.C.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use core::fmt;
use std::{borrow::Borrow, cmp::min, iter, ops::Deref};

use async_trait::async_trait;
use deadpool_sqlite::Object as SqliteAsyncConn;
use itertools::Itertools;
use matrix_sdk_store_encryption::StoreCipher;
use ruma::time::SystemTime;
use rusqlite::{limits::Limit, OptionalExtension, Params, Row, Statement, Transaction};
use serde::{de::DeserializeOwned, Serialize};

use crate::{
    error::{Error, Result},
    OpenStoreError,
};

#[derive(Clone, Debug, PartialEq, Eq, PartialOrd, Ord)]
pub(crate) enum Key {
    Plain(Vec<u8>),
    Hashed([u8; 32]),
}

impl Deref for Key {
    type Target = [u8];

    fn deref(&self) -> &Self::Target {
        match self {
            Key::Plain(slice) => slice,
            Key::Hashed(bytes) => bytes,
        }
    }
}

impl Borrow<[u8]> for Key {
    fn borrow(&self) -> &[u8] {
        self.deref()
    }
}

impl rusqlite::ToSql for Key {
    fn to_sql(&self) -> rusqlite::Result<rusqlite::types::ToSqlOutput<'_>> {
        self.deref().to_sql()
    }
}

#[async_trait]
pub(crate) trait SqliteAsyncConnExt {
    async fn execute<P>(
        &self,
        sql: impl AsRef<str> + Send + 'static,
        params: P,
    ) -> rusqlite::Result<usize>
    where
        P: Params + Send + 'static;

    async fn execute_batch(&self, sql: impl AsRef<str> + Send + 'static) -> rusqlite::Result<()>;

    async fn prepare<T, F>(
        &self,
        sql: impl AsRef<str> + Send + 'static,
        f: F,
    ) -> rusqlite::Result<T>
    where
        T: Send + 'static,
        F: FnOnce(Statement<'_>) -> rusqlite::Result<T> + Send + 'static;

    async fn query_row<T, P, F>(
        &self,
        sql: impl AsRef<str> + Send + 'static,
        params: P,
        f: F,
    ) -> rusqlite::Result<T>
    where
        T: Send + 'static,
        P: Params + Send + 'static,
        F: FnOnce(&Row<'_>) -> rusqlite::Result<T> + Send + 'static;

    async fn with_transaction<T, E, F>(&self, f: F) -> Result<T, E>
    where
        T: Send + 'static,
        E: From<rusqlite::Error> + Send + 'static,
        F: FnOnce(&Transaction<'_>) -> Result<T, E> + Send + 'static;

    async fn chunk_large_query_over<Query, Res>(
        &self,
        mut keys_to_chunk: Vec<Key>,
        result_capacity: Option<usize>,
        do_query: Query,
    ) -> Result<Vec<Res>>
    where
        Res: Send + 'static,
        Query: Fn(&Transaction<'_>, Vec<Key>) -> Result<Vec<Res>> + Send + 'static;

    /// Optimize the database.
    ///
    /// [The SQLite docs] recommend to run this regularly and after any schema
    /// change. The easiest is to do it consistently when the state store is
    /// constructed, after eventual migrations.
    ///
    /// [The SQLite docs]: https://www.sqlite.org/pragma.html#pragma_optimize
    async fn optimize(&self) -> Result<()> {
        self.execute_batch("PRAGMA optimize=0x10002;").await?;
        Ok(())
    }

    /// Limit the size of the WAL file.
    ///
    /// By default, while the DB connections of the databases are open, [the
    /// size of the WAL file can keep increasing] depending on the size
    /// needed for the transactions. A critical case is VACUUM which
    /// basically writes the content of the DB file to the WAL file before
    /// writing it back to the DB file, so we end up taking twice the size
    /// of the database.
    ///
    /// By setting this limit, the WAL file is truncated after its content is
    /// written to the database, if it is bigger than the limit.
    ///
    /// The limit is set to 10MB.
    ///
    /// [the size of the WAL file can keep increasing]: https://www.sqlite.org/wal.html#avoiding_excessively_large_wal_files
    async fn set_journal_size_limit(&self) -> Result<()> {
        self.execute_batch("PRAGMA journal_size_limit = 10000000;").await.map_err(Error::from)?;
        Ok(())
    }

    /// Defragment the database and free space on the filesystem.
    ///
    /// Only returns an error in tests, otherwise the error is only logged.
    async fn vacuum(&self) -> Result<()> {
        if let Err(error) = self.execute_batch("VACUUM").await {
            // Since this is an optimisation step, do not propagate the error
            // but log it.
            #[cfg(not(any(test, debug_assertions)))]
            tracing::warn!("Failed to vacuum database: {error}");

            // We want to know if there is an error with this step during tests.
            #[cfg(any(test, debug_assertions))]
            return Err(error.into());
        }

        Ok(())
    }
}

#[async_trait]
impl SqliteAsyncConnExt for SqliteAsyncConn {
    async fn execute<P>(
        &self,
        sql: impl AsRef<str> + Send + 'static,
        params: P,
    ) -> rusqlite::Result<usize>
    where
        P: Params + Send + 'static,
    {
        self.interact(move |conn| conn.execute(sql.as_ref(), params)).await.unwrap()
    }

    async fn execute_batch(&self, sql: impl AsRef<str> + Send + 'static) -> rusqlite::Result<()> {
        self.interact(move |conn| conn.execute_batch(sql.as_ref())).await.unwrap()
    }

    async fn prepare<T, F>(
        &self,
        sql: impl AsRef<str> + Send + 'static,
        f: F,
    ) -> rusqlite::Result<T>
    where
        T: Send + 'static,
        F: FnOnce(Statement<'_>) -> rusqlite::Result<T> + Send + 'static,
    {
        self.interact(move |conn| f(conn.prepare(sql.as_ref())?)).await.unwrap()
    }

    async fn query_row<T, P, F>(
        &self,
        sql: impl AsRef<str> + Send + 'static,
        params: P,
        f: F,
    ) -> rusqlite::Result<T>
    where
        T: Send + 'static,
        P: Params + Send + 'static,
        F: FnOnce(&Row<'_>) -> rusqlite::Result<T> + Send + 'static,
    {
        self.interact(move |conn| conn.query_row(sql.as_ref(), params, f)).await.unwrap()
    }

    async fn with_transaction<T, E, F>(&self, f: F) -> Result<T, E>
    where
        T: Send + 'static,
        E: From<rusqlite::Error> + Send + 'static,
        F: FnOnce(&Transaction<'_>) -> Result<T, E> + Send + 'static,
    {
        self.interact(move |conn| {
            let txn = conn.transaction()?;
            let result = f(&txn)?;
            txn.commit()?;
            Ok(result)
        })
        .await
        .unwrap()
    }

    /// Chunk a large query over some keys.
    ///
    /// Imagine there is a _dynamic_ query that runs potentially large number of
    /// parameters, so much that the maximum number of parameters can be hit.
    /// Then, this helper is for you. It will execute the query on chunks of
    /// parameters.
    async fn chunk_large_query_over<Query, Res>(
        &self,
        keys_to_chunk: Vec<Key>,
        result_capacity: Option<usize>,
        do_query: Query,
    ) -> Result<Vec<Res>>
    where
        Res: Send + 'static,
        Query: Fn(&Transaction<'_>, Vec<Key>) -> Result<Vec<Res>> + Send + 'static,
    {
        self.with_transaction(move |txn| {
            txn.chunk_large_query_over(keys_to_chunk, result_capacity, do_query)
        })
        .await
    }
}

pub(crate) trait SqliteTransactionExt {
    fn chunk_large_query_over<Key, Query, Res>(
        &self,
        keys_to_chunk: Vec<Key>,
        result_capacity: Option<usize>,
        do_query: Query,
    ) -> Result<Vec<Res>>
    where
        Res: Send + 'static,
        Query: Fn(&Transaction<'_>, Vec<Key>) -> Result<Vec<Res>> + Send + 'static;
}

impl SqliteTransactionExt for Transaction<'_> {
    fn chunk_large_query_over<Key, Query, Res>(
        &self,
        mut keys_to_chunk: Vec<Key>,
        result_capacity: Option<usize>,
        do_query: Query,
    ) -> Result<Vec<Res>>
    where
        Res: Send + 'static,
        Query: Fn(&Transaction<'_>, Vec<Key>) -> Result<Vec<Res>> + Send + 'static,
    {
        // Divide by 2 to allow space for more static parameters (not part of
        // `keys_to_chunk`).
        let maximum_chunk_size = self.limit(Limit::SQLITE_LIMIT_VARIABLE_NUMBER) / 2;
        let maximum_chunk_size: usize = maximum_chunk_size
            .try_into()
            .map_err(|_| Error::SqliteMaximumVariableNumber(maximum_chunk_size))?;

        if keys_to_chunk.len() < maximum_chunk_size {
            // Chunking isn't necessary.
            let chunk = keys_to_chunk;

            Ok(do_query(self, chunk)?)
        } else {
            // Chunking _is_ necessary.

            // Define the accumulator.
            let capacity = result_capacity.unwrap_or_default();
            let mut all_results = Vec::with_capacity(capacity);

            while !keys_to_chunk.is_empty() {
                // Chunk and run the query.
                let tail = keys_to_chunk.split_off(min(keys_to_chunk.len(), maximum_chunk_size));
                let chunk = keys_to_chunk;
                keys_to_chunk = tail;

                all_results.extend(do_query(self, chunk)?);
            }

            Ok(all_results)
        }
    }
}

/// Extension trait for a [`rusqlite::Connection`] that contains a key-value
/// table named `kv`.
///
/// The table should be created like this:
///
/// ```sql
/// CREATE TABLE "kv" (
///     "key" TEXT PRIMARY KEY NOT NULL,
///     "value" BLOB NOT NULL
/// );
/// ```
pub(crate) trait SqliteKeyValueStoreConnExt {
    /// Store the given value for the given key.
    fn set_kv(&self, key: &str, value: &[u8]) -> rusqlite::Result<()>;

    /// Store the given value for the given key by serializing it.
    fn set_serialized_kv<T: Serialize + Send>(&self, key: &str, value: T) -> Result<()> {
        let serialized_value = rmp_serde::to_vec_named(&value)?;
        self.set_kv(key, &serialized_value)?;

        Ok(())
    }

    /// Removes the current key and value if exists.
    fn clear_kv(&self, key: &str) -> rusqlite::Result<()>;

    /// Set the version of the database.
    fn set_db_version(&self, version: u8) -> rusqlite::Result<()> {
        self.set_kv("version", &[version])
    }
}

impl SqliteKeyValueStoreConnExt for rusqlite::Connection {
    fn set_kv(&self, key: &str, value: &[u8]) -> rusqlite::Result<()> {
        self.execute(
            "INSERT INTO kv VALUES (?1, ?2) ON CONFLICT (key) DO UPDATE SET value = ?2",
            (key, value),
        )?;
        Ok(())
    }

    fn clear_kv(&self, key: &str) -> rusqlite::Result<()> {
        self.execute("DELETE FROM kv WHERE key = ?1", (key,))?;
        Ok(())
    }
}

/// Extension trait for an [`SqliteAsyncConn`] that contains a key-value
/// table named `kv`.
///
/// The table should be created like this:
///
/// ```sql
/// CREATE TABLE "kv" (
///     "key" TEXT PRIMARY KEY NOT NULL,
///     "value" BLOB NOT NULL
/// );
/// ```
#[async_trait]
pub(crate) trait SqliteKeyValueStoreAsyncConnExt: SqliteAsyncConnExt {
    /// Whether the `kv` table exists in this database.
    async fn kv_table_exists(&self) -> rusqlite::Result<bool> {
        self.query_row(
            "SELECT EXISTS (SELECT 1 FROM sqlite_master WHERE type = 'table' AND name = 'kv')",
            (),
            |row| row.get(0),
        )
        .await
    }

    /// Get the stored value for the given key.
    async fn get_kv(&self, key: &str) -> rusqlite::Result<Option<Vec<u8>>> {
        let key = key.to_owned();
        self.query_row("SELECT value FROM kv WHERE key = ?", (key,), |row| row.get(0))
            .await
            .optional()
    }

    /// Get the stored serialized value for the given key.
    async fn get_serialized_kv<T: DeserializeOwned>(&self, key: &str) -> Result<Option<T>> {
        let Some(bytes) = self.get_kv(key).await? else {
            return Ok(None);
        };

        Ok(Some(rmp_serde::from_slice(&bytes)?))
    }

    /// Store the given value for the given key.
    async fn set_kv(&self, key: &str, value: Vec<u8>) -> rusqlite::Result<()>;

    /// Store the given value for the given key by serializing it.
    async fn set_serialized_kv<T: Serialize + Send + 'static>(
        &self,
        key: &str,
        value: T,
    ) -> Result<()>;

    /// Clears the given value for the given key.
    async fn clear_kv(&self, key: &str) -> rusqlite::Result<()>;

    /// Get the version of the database.
    async fn db_version(&self) -> Result<u8, OpenStoreError> {
        let kv_exists = self.kv_table_exists().await.map_err(OpenStoreError::LoadVersion)?;

        if kv_exists {
            match self.get_kv("version").await.map_err(OpenStoreError::LoadVersion)?.as_deref() {
                Some([v]) => Ok(*v),
                Some(_) => Err(OpenStoreError::InvalidVersion),
                None => Err(OpenStoreError::MissingVersion),
            }
        } else {
            Ok(0)
        }
    }

    /// Get the [`StoreCipher`] of the database or create it.
    async fn get_or_create_store_cipher(
        &self,
        passphrase: &str,
    ) -> Result<StoreCipher, OpenStoreError> {
        let encrypted_cipher = self.get_kv("cipher").await.map_err(OpenStoreError::LoadCipher)?;

        let cipher = if let Some(encrypted) = encrypted_cipher {
            StoreCipher::import(passphrase, &encrypted)?
        } else {
            let cipher = StoreCipher::new()?;
            #[cfg(not(test))]
            let export = cipher.export(passphrase);
            #[cfg(test)]
            let export = cipher._insecure_export_fast_for_testing(passphrase);
            self.set_kv("cipher", export?).await.map_err(OpenStoreError::SaveCipher)?;
            cipher
        };

        Ok(cipher)
    }
}

#[async_trait]
impl SqliteKeyValueStoreAsyncConnExt for SqliteAsyncConn {
    async fn set_kv(&self, key: &str, value: Vec<u8>) -> rusqlite::Result<()> {
        let key = key.to_owned();
        self.interact(move |conn| conn.set_kv(&key, &value)).await.unwrap()?;

        Ok(())
    }

    async fn set_serialized_kv<T: Serialize + Send + 'static>(
        &self,
        key: &str,
        value: T,
    ) -> Result<()> {
        let key = key.to_owned();
        self.interact(move |conn| conn.set_serialized_kv(&key, value)).await.unwrap()?;

        Ok(())
    }

    async fn clear_kv(&self, key: &str) -> rusqlite::Result<()> {
        let key = key.to_owned();
        self.interact(move |conn| conn.clear_kv(&key)).await.unwrap()?;

        Ok(())
    }
}

/// Repeat `?` n times, where n is defined by `count`. `?` are comma-separated.
pub(crate) fn repeat_vars(count: usize) -> impl fmt::Display {
    assert_ne!(count, 0, "Can't generate zero repeated vars");

    iter::repeat_n("?", count).format(",")
}

/// Convert the given `SystemTime` to a timestamp, as the number of seconds
/// since Unix Epoch.
///
/// Returns an `i64` as it is the numeric type used by SQLite.
pub(crate) fn time_to_timestamp(time: SystemTime) -> i64 {
    time.duration_since(SystemTime::UNIX_EPOCH)
        .ok()
        .and_then(|d| d.as_secs().try_into().ok())
        // It is unlikely to happen unless the time on the system is seriously wrong, but we always
        // need a value.
        .unwrap_or(0)
}

#[cfg(test)]
mod unit_tests {
    use std::time::Duration;

    use super::*;

    #[test]
    fn can_generate_repeated_vars() {
        assert_eq!(repeat_vars(1).to_string(), "?");
        assert_eq!(repeat_vars(2).to_string(), "?,?");
        assert_eq!(repeat_vars(5).to_string(), "?,?,?,?,?");
    }

    #[test]
    #[should_panic(expected = "Can't generate zero repeated vars")]
    fn generating_zero_vars_panics() {
        repeat_vars(0);
    }

    #[test]
    fn test_time_to_timestamp() {
        assert_eq!(time_to_timestamp(SystemTime::UNIX_EPOCH), 0);
        assert_eq!(time_to_timestamp(SystemTime::UNIX_EPOCH + Duration::from_secs(60)), 60);

        // Fallback value on overflow.
        assert_eq!(time_to_timestamp(SystemTime::UNIX_EPOCH - Duration::from_secs(60)), 0);
    }
}