minijinja/expression.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
use std::collections::{BTreeMap, HashSet};
use std::fmt;
use serde::Serialize;
use crate::compiler::ast;
use crate::compiler::instructions::Instructions;
use crate::compiler::meta::find_undeclared;
use crate::compiler::parser::parse_expr;
use crate::environment::Environment;
use crate::error::Error;
use crate::output::Output;
use crate::value::Value;
use crate::vm::Vm;
/// A handle to a compiled expression.
///
/// An expression is created via the
/// [`compile_expression`](Environment::compile_expression) method. It provides
/// a method to evaluate the expression and return the result as value object.
/// This for instance can be used to evaluate simple expressions from user
/// provided input to implement features such as dynamic filtering.
///
/// This is usually best paired with [`context`](crate::context!) to pass
/// a single value to it.
///
/// # Example
///
/// ```rust
/// # use minijinja::{Environment, context};
/// let env = Environment::new();
/// let expr = env.compile_expression("number > 10 and number < 20").unwrap();
/// let rv = expr.eval(context!(number => 15)).unwrap();
/// assert!(rv.is_true());
/// ```
pub struct Expression<'env, 'source> {
env: &'env Environment<'source>,
instr: ExpressionBacking<'source>,
}
enum ExpressionBacking<'source> {
Borrowed(Instructions<'source>),
#[cfg(feature = "loader")]
Owned(crate::loader::OwnedInstructions),
}
impl<'env, 'source> fmt::Debug for Expression<'env, 'source> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("Expression")
.field("env", &self.env)
.finish()
}
}
impl<'env, 'source> Expression<'env, 'source> {
pub(crate) fn new(
env: &'env Environment<'source>,
instructions: Instructions<'source>,
) -> Expression<'env, 'source> {
Expression {
env,
instr: ExpressionBacking::Borrowed(instructions),
}
}
#[cfg(feature = "loader")]
pub(crate) fn new_owned(
env: &'env Environment<'source>,
instructions: crate::loader::OwnedInstructions,
) -> Expression<'env, 'source> {
Expression {
env,
instr: ExpressionBacking::Owned(instructions),
}
}
fn instructions(&self) -> &Instructions<'_> {
match self.instr {
ExpressionBacking::Borrowed(ref x) => x,
#[cfg(feature = "loader")]
ExpressionBacking::Owned(ref x) => x.borrow_dependent(),
}
}
/// Evaluates the expression with some context.
///
/// The result of the expression is returned as [`Value`].
pub fn eval<S: Serialize>(&self, ctx: S) -> Result<Value, Error> {
// reduce total amount of code faling under mono morphization into
// this function, and share the rest in _eval.
self._eval(Value::from_serialize(&ctx))
}
/// Returns a set of all undeclared variables in the expression.
///
/// This works the same as
/// [`Template::undeclared_variables`](crate::Template::undeclared_variables).
pub fn undeclared_variables(&self, nested: bool) -> HashSet<String> {
match parse_expr(self.instructions().source()) {
Ok(expr) => find_undeclared(
&ast::Stmt::EmitExpr(ast::Spanned::new(
ast::EmitExpr { expr },
Default::default(),
)),
nested,
),
Err(_) => HashSet::new(),
}
}
fn _eval(&self, root: Value) -> Result<Value, Error> {
Ok(ok!(Vm::new(self.env).eval(
self.instructions(),
root,
&BTreeMap::new(),
&mut Output::null(),
crate::AutoEscape::None,
))
.0
.expect("expression evaluation did not leave value on stack"))
}
}