1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
use std::collections::{BTreeMap, HashSet};
use std::ops::Deref;
use std::sync::Arc;
use std::{fmt, io};
use serde::Serialize;
use crate::compiler::codegen::CodeGenerator;
use crate::compiler::instructions::Instructions;
use crate::compiler::lexer::WhitespaceConfig;
use crate::compiler::meta::find_undeclared;
use crate::compiler::parser::parse;
use crate::environment::Environment;
use crate::error::{attach_basic_debug_info, Error};
use crate::output::{Output, WriteWrapper};
use crate::syntax::SyntaxConfig;
use crate::utils::AutoEscape;
use crate::value::{self, Value};
use crate::vm::{prepare_blocks, Context, State, Vm};
/// Callback for auto escape determination
pub type AutoEscapeFunc = dyn Fn(&str) -> AutoEscape + Sync + Send;
/// Internal struct that holds template loading level config values.
#[derive(Clone)]
pub struct TemplateConfig {
/// The syntax used for the template.
pub syntax_config: SyntaxConfig,
/// Controls whitespace behavior.
pub ws_config: WhitespaceConfig,
/// The callback that determines the initial auto escaping for templates.
pub default_auto_escape: Arc<AutoEscapeFunc>,
}
impl TemplateConfig {
pub(crate) fn new(default_auto_escape: Arc<AutoEscapeFunc>) -> TemplateConfig {
TemplateConfig {
syntax_config: SyntaxConfig::default(),
ws_config: WhitespaceConfig::default(),
default_auto_escape,
}
}
}
/// Represents a handle to a template.
///
/// Templates are stored in the [`Environment`] as bytecode instructions. With the
/// [`Environment::get_template`] method that is looked up and returned in form of
/// this handle. Such a template can be cheaply copied as it only holds references.
///
/// To render the [`render`](Template::render) method can be used.
#[derive(Clone)]
pub struct Template<'env: 'source, 'source> {
env: &'env Environment<'env>,
pub(crate) compiled: CompiledTemplateRef<'env, 'source>,
}
impl<'env, 'source> fmt::Debug for Template<'env, 'source> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let mut ds = f.debug_struct("Template");
ds.field("name", &self.name());
#[cfg(feature = "internal_debug")]
{
ds.field("instructions", &self.compiled.instructions);
ds.field("blocks", &self.compiled.blocks);
}
ds.field("initial_auto_escape", &self.compiled.initial_auto_escape);
ds.finish()
}
}
impl<'env, 'source> Template<'env, 'source> {
pub(crate) fn new(
env: &'env Environment<'env>,
compiled: CompiledTemplateRef<'env, 'source>,
) -> Template<'env, 'source> {
Template { env, compiled }
}
/// Returns the name of the template.
pub fn name(&self) -> &str {
self.compiled.instructions.name()
}
/// Returns the source code of the template.
pub fn source(&self) -> &str {
self.compiled.instructions.source()
}
/// Renders the template into a string.
///
/// The provided value is used as the initial context for the template. It
/// can be any object that implements [`Serialize`](serde::Serialize). You
/// can either create your own struct and derive `Serialize` for it or the
/// [`context!`](crate::context) macro can be used to create an ad-hoc context.
///
/// For very large contexts and to avoid the overhead of serialization of
/// potentially unused values, you might consider using a dynamic
/// [`Object`](crate::value::Object) as value. For more
/// information see [Map as Context](crate::value::Object#map-as-context).
///
/// ```
/// # use minijinja::{Environment, context};
/// # let mut env = Environment::new();
/// # env.add_template("hello", "Hello {{ name }}!").unwrap();
/// let tmpl = env.get_template("hello").unwrap();
/// println!("{}", tmpl.render(context!(name => "John")).unwrap());
/// ```
///
/// To render a single block use [`eval_to_state`](Self::eval_to_state) in
/// combination with [`State::render_block`].
///
/// **Note on values:** The [`Value`] type implements `Serialize` and can be
/// efficiently passed to render. It does not undergo actual serialization.
pub fn render<S: Serialize>(&self, ctx: S) -> Result<String, Error> {
// reduce total amount of code faling under mono morphization into
// this function, and share the rest in _render.
self._render(Value::from_serialize(&ctx)).map(|x| x.0)
}
/// Like [`render`](Self::render) but also return the evaluated [`State`].
///
/// This can be used to inspect the [`State`] of the template post evaluation
/// for instance to get fuel consumption numbers or to access globally set
/// variables.
///
/// ```
/// # use minijinja::{Environment, context, value::Value};
/// # let mut env = Environment::new();
/// let tmpl = env.template_from_str("{% set x = 42 %}Hello {{ what }}!").unwrap();
/// let (rv, state) = tmpl.render_and_return_state(context!{ what => "World" }).unwrap();
/// assert_eq!(rv, "Hello World!");
/// assert_eq!(state.lookup("x"), Some(Value::from(42)));
/// ```
///
/// **Note on values:** The [`Value`] type implements `Serialize` and can be
/// efficiently passed to render. It does not undergo actual serialization.
pub fn render_and_return_state<S: Serialize>(
&self,
ctx: S,
) -> Result<(String, State<'_, 'env>), Error> {
// reduce total amount of code faling under mono morphization into
// this function, and share the rest in _render.
self._render(Value::from_serialize(&ctx))
}
fn _render(&self, root: Value) -> Result<(String, State<'_, 'env>), Error> {
let mut rv = String::with_capacity(self.compiled.buffer_size_hint);
self._eval(root, &mut Output::with_string(&mut rv))
.map(|(_, state)| (rv, state))
}
/// Renders the template into an [`io::Write`].
///
/// This works exactly like [`render`](Self::render) but instead writes the template
/// as it's evaluating into an [`io::Write`]. It also returns the [`State`] like
/// [`render_and_return_state`](Self::render_and_return_state) does.
///
/// ```
/// # use minijinja::{Environment, context};
/// # let mut env = Environment::new();
/// # env.add_template("hello", "Hello {{ name }}!").unwrap();
/// use std::io::stdout;
///
/// let tmpl = env.get_template("hello").unwrap();
/// tmpl.render_to_write(context!(name => "John"), &mut stdout()).unwrap();
/// ```
///
/// **Note on values:** The [`Value`] type implements `Serialize` and can be
/// efficiently passed to render. It does not undergo actual serialization.
pub fn render_to_write<S: Serialize, W: io::Write>(
&self,
ctx: S,
w: W,
) -> Result<State<'_, 'env>, Error> {
let mut wrapper = WriteWrapper { w, err: None };
self._eval(
Value::from_serialize(&ctx),
&mut Output::with_write(&mut wrapper),
)
.map(|(_, state)| state)
.map_err(|err| wrapper.take_err(err))
}
/// Evaluates the template into a [`State`].
///
/// This evaluates the template, discards the output and returns the final
/// `State` for introspection. From there global variables or blocks
/// can be accessed. What this does is quite similar to how the engine
/// internally works with templates that are extended or imported from.
///
/// ```
/// # use minijinja::{Environment, context};
/// # fn test() -> Result<(), minijinja::Error> {
/// # let mut env = Environment::new();
/// # env.add_template("hello", "")?;
/// let tmpl = env.get_template("hello")?;
/// let state = tmpl.eval_to_state(context!(name => "John"))?;
/// println!("{:?}", state.exports());
/// # Ok(()) }
/// ```
///
/// If you also want to render, use [`render_and_return_state`](Self::render_and_return_state).
///
/// For more information see [`State`].
pub fn eval_to_state<S: Serialize>(&self, ctx: S) -> Result<State<'_, 'env>, Error> {
let root = Value::from_serialize(&ctx);
let mut out = Output::null();
let vm = Vm::new(self.env);
let state = ok!(vm.eval(
&self.compiled.instructions,
root,
&self.compiled.blocks,
&mut out,
self.compiled.initial_auto_escape,
))
.1;
Ok(state)
}
fn _eval(
&self,
root: Value,
out: &mut Output,
) -> Result<(Option<Value>, State<'_, 'env>), Error> {
Vm::new(self.env).eval(
&self.compiled.instructions,
root,
&self.compiled.blocks,
out,
self.compiled.initial_auto_escape,
)
}
/// Returns a set of all undeclared variables in the template.
///
/// This returns a set of all variables that might be looked up
/// at runtime by the template. Since this is runs a static
/// analysis, the actual control flow is not considered. This
/// also cannot take into account what happens due to includes,
/// imports or extending. If `nested` is set to `true`, then also
/// nested trivial attribute lookups are considered and returned.
///
/// ```rust
/// # use minijinja::Environment;
/// let mut env = Environment::new();
/// env.add_template("x", "{% set x = foo %}{{ x }}{{ bar.baz }}").unwrap();
/// let tmpl = env.get_template("x").unwrap();
/// let undeclared = tmpl.undeclared_variables(false);
/// // returns ["foo", "bar"]
/// let undeclared = tmpl.undeclared_variables(true);
/// // returns ["foo", "bar.baz"]
/// ```
pub fn undeclared_variables(&self, nested: bool) -> HashSet<String> {
match parse(
self.compiled.instructions.source(),
self.name(),
self.compiled.syntax_config.clone(),
// TODO: this is not entirely great, but good enough for this use case.
Default::default(),
) {
Ok(ast) => find_undeclared(&ast, nested),
Err(_) => HashSet::new(),
}
}
/// Creates an empty [`State`] for this template.
///
/// It's very rare that you need to actually do this but it can be useful when
/// testing values or working with macros or other callable objects from outside
/// the template environment.
pub fn new_state(&self) -> State<'_, 'env> {
State::new(
self.env,
Context::new(self.env.recursion_limit()),
self.compiled.initial_auto_escape,
&self.compiled.instructions,
prepare_blocks(&self.compiled.blocks),
)
}
/// Returns the instructions and blocks if the template is loaded from the
/// environment.
///
/// For templates loaded as string on the environment this API contract
/// cannot be upheld because the template might not live long enough. Under
/// normal circumstances however such a template object would never make it
/// to the callers of this API as this API is used for including or extending,
/// both of which should only ever get access to a template from the environment
/// which holds a borrowed ref.
#[cfg(feature = "multi_template")]
pub(crate) fn instructions_and_blocks(
&self,
) -> Result<
(
&'env Instructions<'env>,
&'env BTreeMap<&'env str, Instructions<'env>>,
),
Error,
> {
match self.compiled {
CompiledTemplateRef::Borrowed(x) => Ok((&x.instructions, &x.blocks)),
CompiledTemplateRef::Owned(_) => Err(Error::new(
crate::ErrorKind::InvalidOperation,
"cannot extend or include template not borrowed from environment",
)),
}
}
/// Returns the initial auto escape setting.
#[cfg(feature = "multi_template")]
pub(crate) fn initial_auto_escape(&self) -> AutoEscape {
self.compiled.initial_auto_escape
}
}
#[derive(Clone)]
pub(crate) enum CompiledTemplateRef<'env: 'source, 'source> {
Owned(Arc<CompiledTemplate<'source>>),
Borrowed(&'env CompiledTemplate<'source>),
}
impl<'env, 'source> Deref for CompiledTemplateRef<'env, 'source> {
type Target = CompiledTemplate<'source>;
fn deref(&self) -> &Self::Target {
match self {
CompiledTemplateRef::Owned(ref x) => x,
CompiledTemplateRef::Borrowed(x) => x,
}
}
}
/// Represents a compiled template in memory.
pub struct CompiledTemplate<'source> {
/// The root instructions.
pub instructions: Instructions<'source>,
/// Block local instructions.
pub blocks: BTreeMap<&'source str, Instructions<'source>>,
/// Optional size hint for string rendering.
pub buffer_size_hint: usize,
/// The syntax config that created it.
pub syntax_config: SyntaxConfig,
/// The initial setting of auto escaping.
pub initial_auto_escape: AutoEscape,
}
impl<'env> fmt::Debug for CompiledTemplate<'env> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let mut ds = f.debug_struct("CompiledTemplate");
#[cfg(feature = "internal_debug")]
{
ds.field("instructions", &self.instructions);
ds.field("blocks", &self.blocks);
}
ds.finish()
}
}
impl<'source> CompiledTemplate<'source> {
/// Creates a compiled template from name and source using the given settings.
pub fn new(
name: &'source str,
source: &'source str,
config: &TemplateConfig,
) -> Result<CompiledTemplate<'source>, Error> {
attach_basic_debug_info(Self::_new_impl(name, source, config), source)
}
fn _new_impl(
name: &'source str,
source: &'source str,
config: &TemplateConfig,
) -> Result<CompiledTemplate<'source>, Error> {
// the parser/compiler combination can create constants in which case
// we can probably benefit from the value optimization a bit.
let _guard = value::value_optimization();
let ast = ok!(parse(
source,
name,
config.syntax_config.clone(),
config.ws_config
));
let mut gen = CodeGenerator::new(name, source);
gen.compile_stmt(&ast);
let buffer_size_hint = gen.buffer_size_hint();
let (instructions, blocks) = gen.finish();
Ok(CompiledTemplate {
instructions,
blocks,
buffer_size_hint,
syntax_config: config.syntax_config.clone(),
initial_auto_escape: (config.default_auto_escape)(name),
})
}
}