1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
use std::borrow::Cow;
use std::collections::BTreeMap;
use std::fmt;
use std::hash::Hash;
use std::sync::Arc;

use crate::error::{Error, ErrorKind};
use crate::value::{intern, Value};
use crate::vm::State;

/// A trait that represents a dynamic object.
///
/// There is a type erased wrapper of this trait available called
/// [`DynObject`] which is what the engine actually holds internally.
///
/// # Basic Struct
///
/// The following example shows how to implement a dynamic object which
/// represents a struct.  All that's needed is to implement
/// [`get_value`](Self::get_value) to look up a field by name as well as
/// [`enumerate`](Self::enumerate) to return an enumerator over the known keys.
/// The [`repr`](Self::repr) defaults to `Map` so nothing needs to be done here.
///
/// ```
/// use std::sync::Arc;
/// use minijinja::value::{Value, Object, Enumerator};
///
/// #[derive(Debug)]
/// struct Point(f32, f32, f32);
///
/// impl Object for Point {
///     fn get_value(self: &Arc<Self>, key: &Value) -> Option<Value> {
///         match key.as_str()? {
///             "x" => Some(Value::from(self.0)),
///             "y" => Some(Value::from(self.1)),
///             "z" => Some(Value::from(self.2)),
///             _ => None,
///         }
///     }
///
///     fn enumerate(self: &Arc<Self>) -> Enumerator {
///         Enumerator::Str(&["x", "y", "z"])
///     }
/// }
///
/// let value = Value::from_object(Point(1.0, 2.5, 3.0));
/// ```
///
/// # Basic Sequence
///
/// The following example shows how to implement a dynamic object which
/// represents a sequence.  All that's needed is to implement
/// [`repr`](Self::repr) to indicate that this is a sequence,
/// [`get_value`](Self::get_value) to look up a field by index, and
/// [`enumerate`](Self::enumerate) to return a sequential enumerator.
/// This enumerator will automatically call `get_value` from `0..length`.
///
/// ```
/// use std::sync::Arc;
/// use minijinja::value::{Value, Object, ObjectRepr, Enumerator};
///
/// #[derive(Debug)]
/// struct Point(f32, f32, f32);
///
/// impl Object for Point {
///     fn repr(self: &Arc<Self>) -> ObjectRepr {
///         ObjectRepr::Seq
///     }
///
///     fn get_value(self: &Arc<Self>, key: &Value) -> Option<Value> {
///         match key.as_usize()? {
///             0 => Some(Value::from(self.0)),
///             1 => Some(Value::from(self.1)),
///             2 => Some(Value::from(self.2)),
///             _ => None,
///         }
///     }
///
///     fn enumerate(self: &Arc<Self>) -> Enumerator {
///         Enumerator::Seq(3)
///     }
/// }
///
/// let value = Value::from_object(Point(1.0, 2.5, 3.0));
/// ```
///
/// # Iterables
///
/// If you have something that is not quite a sequence but is capable of yielding
/// values over time, you can directly implement an iterable.  This is somewhat
/// uncommon as you can normally directly use [`Value::make_iterable`].  Here
/// is how this can be done though:
///
/// ```
/// use std::sync::Arc;
/// use minijinja::value::{Value, Object, ObjectRepr, Enumerator};
///
/// #[derive(Debug)]
/// struct Range10;
///
/// impl Object for Range10 {
///     fn repr(self: &Arc<Self>) -> ObjectRepr {
///         ObjectRepr::Iterable
///     }
///
///     fn enumerate(self: &Arc<Self>) -> Enumerator {
///         Enumerator::Iter(Box::new((1..10).map(Value::from)))
///     }
/// }
///
/// let value = Value::from_object(Range10);
/// ```
///
/// Iteration is encouraged to fail immediately (object is not iterable) or not at
/// all.  However this is not always possible, but the iteration interface itself
/// does not support fallible iteration.  It is however possible to accomplish the
/// same thing by creating an [invalid value](index.html#invalid-values).
///
/// # Map As Context
///
/// Map can also be used as template rendering context.  This has a lot of
/// benefits as it means that the serialization overhead can be largely to
/// completely avoided.  This means that even if templates take hundreds of
/// values, MiniJinja does not spend time eagerly converting them into values.
///
/// Here is a very basic example of how a template can be rendered with a dynamic
/// context.  Note that the implementation of [`enumerate`](Self::enumerate)
/// is optional for this to work.  It's in fact not used by the engine during
/// rendering but it is necessary for the [`debug()`](crate::functions::debug)
/// function to be able to show which values exist in the context.
///
/// ```
/// # fn main() -> Result<(), minijinja::Error> {
/// # use minijinja::Environment;
/// use std::sync::Arc;
/// use minijinja::value::{Value, Object};
///
/// #[derive(Debug)]
/// pub struct DynamicContext {
///     magic: i32,
/// }
///
/// impl Object for DynamicContext {
///     fn get_value(self: &Arc<Self>, field: &Value) -> Option<Value> {
///         match field.as_str()? {
///             "pid" => Some(Value::from(std::process::id())),
///             "env" => Some(Value::from_iter(std::env::vars())),
///             "magic" => Some(Value::from(self.magic)),
///             _ => None,
///         }
///     }
/// }
///
/// # let env = Environment::new();
/// let tmpl = env.template_from_str("HOME={{ env.HOME }}; PID={{ pid }}; MAGIC={{ magic }}")?;
/// let ctx = Value::from_object(DynamicContext { magic: 42 });
/// let rv = tmpl.render(ctx)?;
/// # Ok(()) }
/// ```
///
/// One thing of note here is that in the above example `env` would be re-created every
/// time the template needs it.  A better implementation would cache the value after it
/// was created first.
pub trait Object: fmt::Debug + Send + Sync {
    /// Indicates the natural representation of an object.
    ///
    /// The default implementation returns [`ObjectRepr::Map`].
    fn repr(self: &Arc<Self>) -> ObjectRepr {
        ObjectRepr::Map
    }

    /// Given a key, looks up the associated value.
    fn get_value(self: &Arc<Self>, key: &Value) -> Option<Value> {
        let _ = key;
        None
    }

    /// Enumerates the object.
    ///
    /// The engine uses the returned enumerator to implement iteration and
    /// the size information of an object.  For more information see
    /// [`Enumerator`].  The default implementation returns `Empty` for
    /// all object representations other than [`ObjectRepr::Plain`] which
    /// default to `NonEnumerable`.
    ///
    /// When wrapping other objects you might want to consider using
    /// [`ObjectExt::mapped_enumerator`] and [`ObjectExt::mapped_rev_enumerator`].
    fn enumerate(self: &Arc<Self>) -> Enumerator {
        match self.repr() {
            ObjectRepr::Plain => Enumerator::NonEnumerable,
            ObjectRepr::Iterable | ObjectRepr::Map | ObjectRepr::Seq => Enumerator::Empty,
        }
    }

    /// Returns the length of the enumerator.
    ///
    /// By default the length is taken by calling [`enumerate`](Self::enumerate) and
    /// inspecting the [`Enumerator`].  This means that in order to determine
    /// the length, an iteration is started.  If you this is a problem for your
    /// uses, you can manually implement this.  This might for instance be
    /// needed if your type can only be iterated over once.
    fn enumerator_len(self: &Arc<Self>) -> Option<usize> {
        self.enumerate().query_len()
    }

    /// Returns `true` if this object is considered true for if conditions.
    ///
    /// The default implementation checks if the [`enumerator_len`](Self::enumerator_len)
    /// is not `Some(0)` which is the recommended behavior for objects.
    fn is_true(self: &Arc<Self>) -> bool {
        self.enumerator_len() != Some(0)
    }

    /// The engine calls this to invoke the object itself.
    ///
    /// The default implementation returns an
    /// [`InvalidOperation`](crate::ErrorKind::InvalidOperation) error.
    fn call(self: &Arc<Self>, state: &State<'_, '_>, args: &[Value]) -> Result<Value, Error> {
        let (_, _) = (state, args);
        Err(Error::new(
            ErrorKind::InvalidOperation,
            "object is not callable",
        ))
    }

    /// The engine calls this to invoke a method on the object.
    ///
    /// The default implementation returns an
    /// [`UnknownMethod`](crate::ErrorKind::UnknownMethod) error.  When this error
    /// is returned the engine will invoke the
    /// [`unknown_method_callback`](crate::Environment::set_unknown_method_callback) of
    /// the environment.
    fn call_method(
        self: &Arc<Self>,
        state: &State<'_, '_>,
        method: &str,
        args: &[Value],
    ) -> Result<Value, Error> {
        if let Some(value) = self.get_value(&Value::from(method)) {
            return value.call(state, args);
        }

        Err(Error::from(ErrorKind::UnknownMethod))
    }

    /// Formats the object for stringification.
    ///
    /// The default implementation is specific to the behavior of
    /// [`repr`](Self::repr) and usually does not need modification.
    fn render(self: &Arc<Self>, f: &mut fmt::Formatter<'_>) -> fmt::Result
    where
        Self: Sized + 'static,
    {
        match self.repr() {
            ObjectRepr::Map => {
                let mut dbg = f.debug_map();
                for (key, value) in self.try_iter_pairs().into_iter().flatten() {
                    dbg.entry(&key, &value);
                }
                dbg.finish()
            }
            // for either sequences or iterables, a length is needed, otherwise we
            // don't want to risk iteration during printing and fall back to the
            // debug print.
            ObjectRepr::Seq | ObjectRepr::Iterable if self.enumerator_len().is_some() => {
                let mut dbg = f.debug_list();
                for value in self.try_iter().into_iter().flatten() {
                    dbg.entry(&value);
                }
                dbg.finish()
            }
            _ => {
                write!(f, "{self:?}")
            }
        }
    }
}

macro_rules! impl_object_helpers {
    ($vis:vis $self_ty: ty) => {
        /// Iterates over this object.
        ///
        /// If this returns `None` then the default object iteration as defined by
        /// the object's `enumeration` is used.
        $vis fn try_iter(self: $self_ty) -> Option<Box<dyn Iterator<Item = Value> + Send + Sync>>
        where
            Self: 'static,
        {
            match self.enumerate() {
                Enumerator::NonEnumerable => None,
                Enumerator::Empty => Some(Box::new(None::<Value>.into_iter())),
                Enumerator::Seq(l) => {
                    let self_clone = self.clone();
                    Some(Box::new((0..l).map(move |idx| {
                        self_clone.get_value(&Value::from(idx)).unwrap_or_default()
                    })))
                }
                Enumerator::Iter(iter) => Some(iter),
                Enumerator::RevIter(iter) => Some(Box::new(iter)),
                Enumerator::Str(s) => Some(Box::new(s.iter().copied().map(intern).map(Value::from))),
                Enumerator::Values(v) => Some(Box::new(v.into_iter())),
            }
        }

        /// Iterate over key and value at once.
        $vis fn try_iter_pairs(
            self: $self_ty,
        ) -> Option<Box<dyn Iterator<Item = (Value, Value)> + Send + Sync>> {
            let iter = some!(self.try_iter());
            let repr = self.repr();
            let self_clone = self.clone();
            Some(Box::new(iter.enumerate().map(move |(idx, item)| {
                match repr {
                    ObjectRepr::Map => {
                        let value = self_clone.get_value(&item);
                        (item, value.unwrap_or_default())
                    }
                    _ => (Value::from(idx), item)
                }
            })))
        }
    };
}

/// Provides utility methods for working with objects.
pub trait ObjectExt: Object + Send + Sync + 'static {
    /// Creates a new iterator enumeration that projects into the given object.
    ///
    /// It takes a method that is passed a reference to `self` and is expected
    /// to return an [`Iterator`].  This iterator is then wrapped in an
    /// [`Enumerator::Iter`].  This allows one to create an iterator that borrows
    /// out of the object.
    ///
    /// # Example
    ///
    /// ```
    /// # use std::collections::HashMap;
    /// use std::sync::Arc;
    /// use minijinja::value::{Value, Object, ObjectExt, Enumerator};
    ///
    /// #[derive(Debug)]
    /// struct CustomMap(HashMap<usize, i64>);
    ///
    /// impl Object for CustomMap {
    ///     fn get_value(self: &Arc<Self>, key: &Value) -> Option<Value> {
    ///         self.0.get(&key.as_usize()?).copied().map(Value::from)
    ///     }
    ///
    ///     fn enumerate(self: &Arc<Self>) -> Enumerator {
    ///         self.mapped_enumerator(|this| {
    ///             Box::new(this.0.keys().copied().map(Value::from))
    ///         })
    ///     }
    /// }
    /// ```
    fn mapped_enumerator<F>(self: &Arc<Self>, maker: F) -> Enumerator
    where
        F: for<'a> FnOnce(&'a Self) -> Box<dyn Iterator<Item = Value> + Send + Sync + 'a>
            + Send
            + Sync
            + 'static,
        Self: Sized,
    {
        struct IterObject<T> {
            iter: Box<dyn Iterator<Item = Value> + Send + Sync + 'static>,
            _object: Arc<T>,
        }

        impl<T> Iterator for IterObject<T> {
            type Item = Value;

            fn next(&mut self) -> Option<Self::Item> {
                self.iter.next()
            }

            fn size_hint(&self) -> (usize, Option<usize>) {
                self.iter.size_hint()
            }
        }

        // SAFETY: this is safe because the `IterObject` will keep our object alive.
        let iter = unsafe {
            std::mem::transmute::<
                Box<dyn Iterator<Item = _>>,
                Box<dyn Iterator<Item = _> + Send + Sync>,
            >(maker(self))
        };
        let _object = self.clone();
        Enumerator::Iter(Box::new(IterObject { iter, _object }))
    }

    /// Creates a new reversible iterator enumeration that projects into the given object.
    ///
    /// It takes a method that is passed a reference to `self` and is expected
    /// to return a [`DoubleEndedIterator`].  This iterator is then wrapped in an
    /// [`Enumerator::RevIter`].  This allows one to create an iterator that borrows
    /// out of the object and is reversible.
    ///
    /// # Example
    ///
    /// ```
    /// # use std::collections::HashMap;
    /// use std::sync::Arc;
    /// use std::ops::Range;
    /// use minijinja::value::{Value, Object, ObjectExt, ObjectRepr, Enumerator};
    ///
    /// #[derive(Debug)]
    /// struct VecView(Vec<usize>);
    ///
    /// impl Object for VecView {
    ///     fn repr(self: &Arc<Self>) -> ObjectRepr {
    ///         ObjectRepr::Iterable
    ///     }
    ///
    ///     fn enumerate(self: &Arc<Self>) -> Enumerator {
    ///         self.mapped_enumerator(|this| {
    ///             Box::new(this.0.iter().cloned().map(Value::from))
    ///         })
    ///     }
    /// }
    /// ```
    fn mapped_rev_enumerator<F>(self: &Arc<Self>, maker: F) -> Enumerator
    where
        F: for<'a> FnOnce(
                &'a Self,
            )
                -> Box<dyn DoubleEndedIterator<Item = Value> + Send + Sync + 'a>
            + Send
            + Sync
            + 'static,
        Self: Sized,
    {
        struct IterObject<T> {
            iter: Box<dyn DoubleEndedIterator<Item = Value> + Send + Sync + 'static>,
            _object: Arc<T>,
        }

        impl<T> Iterator for IterObject<T> {
            type Item = Value;

            fn next(&mut self) -> Option<Self::Item> {
                self.iter.next()
            }

            fn size_hint(&self) -> (usize, Option<usize>) {
                self.iter.size_hint()
            }
        }

        impl<T> DoubleEndedIterator for IterObject<T> {
            fn next_back(&mut self) -> Option<Self::Item> {
                self.iter.next_back()
            }
        }

        // SAFETY: this is safe because the `IterObject` will keep our object alive.
        let iter = unsafe {
            std::mem::transmute::<
                Box<dyn DoubleEndedIterator<Item = _>>,
                Box<dyn DoubleEndedIterator<Item = _> + Send + Sync>,
            >(maker(self))
        };
        let _object = self.clone();
        Enumerator::RevIter(Box::new(IterObject { iter, _object }))
    }

    impl_object_helpers!(&Arc<Self>);
}

impl<T: Object + Send + Sync + 'static> ObjectExt for T {}

/// Enumerators help define iteration behavior for [`Object`]s.
///
/// When Jinja wants to know the length of an object, if it's empty or
/// not or if it wants to iterate over it, it will ask the [`Object`] to
/// enumerate itself with the [`enumerate`](Object::enumerate) method.  The
/// returned enumerator has enough information so that the object can be
/// iterated over, but it does not necessarily mean that iteration actually
/// starts or that it has the data to yield the right values.
///
/// In fact, you should never inspect an enumerator.  You can create it or
/// forward it.  For actual iteration use [`ObjectExt::try_iter`] etc.
#[non_exhaustive]
pub enum Enumerator {
    /// Marks non enumerable objects.
    ///
    /// Such objects cannot be iterated over, the length is unknown which
    /// means they are not considered empty by the engine.  This is a good
    /// choice for plain objects.
    ///
    /// | Iterable | Length  |
    /// |----------|---------|
    /// | no       | unknown |
    NonEnumerable,

    /// The empty enumerator.  It yields no elements.
    ///
    /// | Iterable | Length      |
    /// |----------|-------------|
    /// | yes      | known (`0`) |
    Empty,

    /// A slice of static strings.
    ///
    /// This is a useful enumerator to enumerate the attributes of an
    /// object or the keys in a string hash map.
    ///
    /// | Iterable | Length       |
    /// |----------|--------------|
    /// | yes      | known        |
    Str(&'static [&'static str]),

    /// A dynamic iterator over values.
    ///
    /// The length is known if the [`Iterator::size_hint`] has matching lower
    /// and upper bounds.  The logic used by the engine is the following:
    ///
    /// ```
    /// # let iter = Some(1).into_iter();
    /// let len = match iter.size_hint() {
    ///     (lower, Some(upper)) if lower == upper => Some(lower),
    ///     _ => None
    /// };
    /// ```
    ///
    /// Because the engine prefers repeatable iteration, it will keep creating
    /// new enumerators every time the iteration should restart.  Sometimes
    /// that might not always be possible (eg: you stream data in) in which
    /// case
    ///
    /// | Iterable | Length          |
    /// |----------|-----------------|
    /// | yes      | sometimes known |
    Iter(Box<dyn Iterator<Item = Value> + Send + Sync>),

    /// Like `Iter` but supports efficient reversing.
    ///
    /// This means that the iterator has to be of type [`DoubleEndedIterator`].
    ///
    /// | Iterable | Length          |
    /// |----------|-----------------|
    /// | yes      | sometimes known |
    RevIter(Box<dyn DoubleEndedIterator<Item = Value> + Send + Sync>),

    /// Indicates sequential iteration.
    ///
    /// This instructs the engine to iterate over an object by enumerating it
    /// from `0` to `n` by calling [`Object::get_value`].  This is essentially the
    /// way sequences are supposed to be enumerated.
    ///
    /// | Iterable | Length          |
    /// |----------|-----------------|
    /// | yes      | known           |
    Seq(usize),

    /// A vector of known values to iterate over.
    ///
    /// The iterator will yield each value in the vector one after another.
    ///
    /// | Iterable | Length          |
    /// |----------|-----------------|
    /// | yes      | known           |
    Values(Vec<Value>),
}

/// Defines the natural representation of this object.
///
/// An [`ObjectRepr`] is a reduced form of
/// [`ValueKind`](crate::value::ValueKind) which only contains value which can
/// be represented by objects.  For instance an object can never be a primitive
/// and as such those kinds are unavailable.
///
/// The representation influences how values are serialized, stringified or
/// what kind they report.
#[derive(Debug, Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[non_exhaustive]
pub enum ObjectRepr {
    /// An object that has no reasonable representation.
    ///
    /// - **Default Render:** [`Debug`]
    /// - **Collection Behavior:** none
    /// - **Iteration Behavior:** none
    /// - **Serialize:** [`Debug`] / [`render`](Object::render) output as string
    Plain,

    /// Represents a map or object.
    ///
    /// - **Default Render:** `{key: value,...}` pairs
    /// - **Collection Behavior:** looks like a map, can be indexed by key, has a length
    /// - **Iteration Behavior:** iterates over keys
    /// - **Serialize:** Serializes as map
    Map,

    /// Represents a sequence (eg: array/list).
    ///
    /// - **Default Render:** `[value,...]`
    /// - **Collection Behavior:** looks like a list, can be indexed by index, has a length
    /// - **Iteration Behavior:** iterates over values
    /// - **Serialize:** Serializes as list
    Seq,

    /// Represents a non indexable, iterable object.
    ///
    /// - **Default Render:** `[value,...]` (if length is known), `"<iterator>"` otherwise.
    /// - **Collection Behavior:** looks like a list if length is known, cannot be indexed
    /// - **Iteration Behavior:** iterates over values
    /// - **Serialize:** Serializes as list
    Iterable,
}

type_erase! {
    pub trait Object => DynObject {
        fn repr(&self) -> ObjectRepr;

        fn get_value(&self, key: &Value) -> Option<Value>;

        fn enumerate(&self) -> Enumerator;

        fn is_true(&self) -> bool;

        fn enumerator_len(&self) -> Option<usize>;

        fn call(
            &self,
            state: &State<'_, '_>,
            args: &[Value]
        ) -> Result<Value, Error>;

        fn call_method(
            &self,
            state: &State<'_, '_>,
            method: &str,
            args: &[Value]
        ) -> Result<Value, Error>;

        fn render(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result;

        impl fmt::Debug {
            fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result;
        }
    }
}

unsafe impl Send for DynObject {}
unsafe impl Sync for DynObject {}

impl DynObject {
    impl_object_helpers!(pub &Self);

    /// Checks if this dyn object is the same as another.
    pub(crate) fn is_same_object(&self, other: &DynObject) -> bool {
        self.ptr == other.ptr && self.vtable == other.vtable
    }
}

impl Hash for DynObject {
    fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
        if let Some(iter) = self.try_iter_pairs() {
            for (key, value) in iter {
                key.hash(state);
                value.hash(state);
            }
        }
    }
}

impl fmt::Display for DynObject {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        self.render(f)
    }
}

impl Enumerator {
    fn query_len(&self) -> Option<usize> {
        Some(match self {
            Enumerator::Empty => 0,
            Enumerator::Values(v) => v.len(),
            Enumerator::Str(v) => v.len(),
            Enumerator::Iter(i) => match i.size_hint() {
                (a, Some(b)) if a == b => a,
                _ => return None,
            },
            Enumerator::RevIter(i) => match i.size_hint() {
                (a, Some(b)) if a == b => a,
                _ => return None,
            },
            Enumerator::Seq(v) => *v,
            Enumerator::NonEnumerable => return None,
        })
    }
}

macro_rules! impl_value_vec {
    ($vec_type:ident) => {
        impl<T> Object for $vec_type<T>
        where
            T: Into<Value> + Clone + Send + Sync + fmt::Debug + 'static,
        {
            fn repr(self: &Arc<Self>) -> ObjectRepr {
                ObjectRepr::Seq
            }

            fn get_value(self: &Arc<Self>, key: &Value) -> Option<Value> {
                self.get(some!(key.as_usize())).cloned().map(|v| v.into())
            }

            fn enumerate(self: &Arc<Self>) -> Enumerator {
                Enumerator::Seq(self.len())
            }
        }

        impl<T> From<$vec_type<T>> for Value
        where
            T: Into<Value> + Clone + Send + Sync + fmt::Debug + 'static,
        {
            fn from(val: $vec_type<T>) -> Self {
                Value::from_object(val)
            }
        }
    };
}

#[allow(unused)]
macro_rules! impl_value_iterable {
    ($iterable_type:ident, $enumerator:ident) => {
        impl<T> Object for $iterable_type<T>
        where
            T: Into<Value> + Clone + Send + Sync + fmt::Debug + 'static,
        {
            fn repr(self: &Arc<Self>) -> ObjectRepr {
                ObjectRepr::Iterable
            }

            fn enumerate(self: &Arc<Self>) -> Enumerator {
                self.clone()
                    .$enumerator(|this| Box::new(this.iter().map(|x| x.clone().into())))
            }
        }

        impl<T> From<$iterable_type<T>> for Value
        where
            T: Into<Value> + Clone + Send + Sync + fmt::Debug + 'static,
        {
            fn from(val: $iterable_type<T>) -> Self {
                Value::from_object(val)
            }
        }
    };
}

macro_rules! impl_str_map_helper {
    ($map_type:ident, $key_type:ty, $enumerator:ident) => {
        impl<V> Object for $map_type<$key_type, V>
        where
            V: Into<Value> + Clone + Send + Sync + fmt::Debug + 'static,
        {
            fn get_value(self: &Arc<Self>, key: &Value) -> Option<Value> {
                self.get(some!(key.as_str())).cloned().map(|v| v.into())
            }

            fn enumerate(self: &Arc<Self>) -> Enumerator {
                self.$enumerator(|this| {
                    Box::new(this.keys().map(|k| intern(k.as_ref())).map(Value::from))
                })
            }

            fn enumerator_len(self: &Arc<Self>) -> Option<usize> {
                Some(self.len())
            }
        }
    };
}

macro_rules! impl_str_map {
    ($map_type:ident, $enumerator:ident) => {
        impl_str_map_helper!($map_type, String, $enumerator);
        impl_str_map_helper!($map_type, Arc<str>, $enumerator);

        impl<V> From<$map_type<String, V>> for Value
        where
            V: Into<Value> + Send + Sync + Clone + fmt::Debug + 'static,
        {
            fn from(val: $map_type<String, V>) -> Self {
                Value::from_object(val)
            }
        }

        impl<V> From<$map_type<Arc<str>, V>> for Value
        where
            V: Into<Value> + Send + Sync + Clone + fmt::Debug + 'static,
        {
            fn from(val: $map_type<Arc<str>, V>) -> Self {
                Value::from_object(val)
            }
        }

        impl<'a, V> From<$map_type<&'a str, V>> for Value
        where
            V: Into<Value> + Send + Sync + Clone + fmt::Debug + 'static,
        {
            fn from(val: $map_type<&'a str, V>) -> Self {
                Value::from(
                    val.into_iter()
                        .map(|(k, v)| (intern(k), v))
                        .collect::<$map_type<Arc<str>, V>>(),
                )
            }
        }

        impl<'a, V> From<$map_type<Cow<'a, str>, V>> for Value
        where
            V: Into<Value> + Send + Sync + Clone + fmt::Debug + 'static,
        {
            fn from(val: $map_type<Cow<'a, str>, V>) -> Self {
                Value::from(
                    val.into_iter()
                        .map(|(k, v)| {
                            (
                                match k {
                                    Cow::Borrowed(s) => intern(s),
                                    Cow::Owned(s) => Arc::<str>::from(s),
                                },
                                v,
                            )
                        })
                        .collect::<$map_type<Arc<str>, V>>(),
                )
            }
        }
    };
}

macro_rules! impl_value_map {
    ($map_type:ident, $enumerator:ident) => {
        impl<V> Object for $map_type<Value, V>
        where
            V: Into<Value> + Clone + Send + Sync + fmt::Debug + 'static,
        {
            fn get_value(self: &Arc<Self>, key: &Value) -> Option<Value> {
                self.get(key).cloned().map(|v| v.into())
            }

            fn enumerate(self: &Arc<Self>) -> Enumerator {
                self.$enumerator(|this| Box::new(this.keys().cloned()))
            }

            fn enumerator_len(self: &Arc<Self>) -> Option<usize> {
                Some(self.len())
            }
        }

        impl<V> From<$map_type<Value, V>> for Value
        where
            V: Into<Value> + Send + Sync + Clone + fmt::Debug + 'static,
        {
            fn from(val: $map_type<Value, V>) -> Self {
                Value::from_object(val)
            }
        }
    };
}

impl_value_vec!(Vec);
impl_value_map!(BTreeMap, mapped_rev_enumerator);
impl_str_map!(BTreeMap, mapped_rev_enumerator);

#[cfg(feature = "std_collections")]
mod std_collections_impls {
    use super::*;
    use std::collections::{BTreeSet, HashMap, HashSet, LinkedList, VecDeque};

    impl_value_iterable!(LinkedList, mapped_rev_enumerator);
    impl_value_iterable!(HashSet, mapped_enumerator);
    impl_value_iterable!(BTreeSet, mapped_rev_enumerator);
    impl_str_map!(HashMap, mapped_enumerator);
    impl_value_map!(HashMap, mapped_enumerator);
    impl_value_vec!(VecDeque);
}

#[cfg(feature = "preserve_order")]
mod preserve_order_impls {
    use super::*;
    use indexmap::IndexMap;

    impl_value_map!(IndexMap, mapped_rev_enumerator);
}