minijinja/vm/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
use std::collections::BTreeMap;
use std::mem;
use std::sync::atomic::{AtomicUsize, Ordering};
use std::sync::{Arc, Mutex};

use crate::compiler::instructions::{
    Instruction, Instructions, LOOP_FLAG_RECURSIVE, LOOP_FLAG_WITH_LOOP_VAR, MAX_LOCALS,
};
use crate::environment::Environment;
use crate::error::{Error, ErrorKind};
use crate::output::{CaptureMode, Output};
use crate::utils::{untrusted_size_hint, AutoEscape, UndefinedBehavior};
use crate::value::namespace_object::Namespace;
use crate::value::{
    ops, value_map_with_capacity, value_optimization, Kwargs, ObjectRepr, Value, ValueMap,
};
use crate::vm::context::{Frame, LoopState, Stack};
use crate::vm::loop_object::Loop;
use crate::vm::state::BlockStack;

#[cfg(feature = "macros")]
use crate::vm::closure_object::Closure;

pub(crate) use crate::vm::context::Context;
pub use crate::vm::state::State;

#[cfg(feature = "macros")]
mod closure_object;
mod context;
#[cfg(feature = "fuel")]
mod fuel;
mod loop_object;
#[cfg(feature = "macros")]
mod macro_object;
mod state;

// the cost of a single include against the stack limit.
#[cfg(feature = "multi_template")]
const INCLUDE_RECURSION_COST: usize = 10;

// the cost of a single macro call against the stack limit.
#[cfg(feature = "macros")]
const MACRO_RECURSION_COST: usize = 4;

/// Helps to evaluate something.
#[cfg_attr(feature = "internal_debug", derive(Debug))]
pub struct Vm<'env> {
    env: &'env Environment<'env>,
}

pub(crate) fn prepare_blocks<'env, 'template>(
    blocks: &'template BTreeMap<&'env str, Instructions<'env>>,
) -> BTreeMap<&'env str, BlockStack<'template, 'env>> {
    blocks
        .iter()
        .map(|(name, instr)| (*name, BlockStack::new(instr)))
        .collect()
}

fn get_or_lookup_local<T, F>(vec: &mut [Option<T>], local_id: u8, f: F) -> Option<T>
where
    T: Copy,
    F: FnOnce() -> Option<T>,
{
    if local_id == !0 {
        f()
    } else if let Some(Some(rv)) = vec.get(local_id as usize) {
        Some(*rv)
    } else {
        let val = some!(f());
        vec[local_id as usize] = Some(val);
        Some(val)
    }
}

impl<'env> Vm<'env> {
    /// Creates a new VM.
    pub fn new(env: &'env Environment<'env>) -> Vm<'env> {
        Vm { env }
    }

    /// Evaluates the given inputs.
    ///
    /// It returns both the last value left on the stack as well as the state
    /// at the end of the evaluation.
    pub fn eval<'template>(
        &self,
        instructions: &'template Instructions<'env>,
        root: Value,
        blocks: &'template BTreeMap<&'env str, Instructions<'env>>,
        out: &mut Output,
        auto_escape: AutoEscape,
    ) -> Result<(Option<Value>, State<'template, 'env>), Error> {
        let _guard = value_optimization();
        let mut state = State::new(
            self.env,
            Context::new_with_frame(ok!(Frame::new_checked(root)), self.env.recursion_limit()),
            auto_escape,
            instructions,
            prepare_blocks(blocks),
        );
        self.eval_state(&mut state, out).map(|x| (x, state))
    }

    /// Evaluate a macro in a state.
    #[cfg(feature = "macros")]
    #[allow(clippy::too_many_arguments)]
    pub fn eval_macro(
        &self,
        instructions: &Instructions<'env>,
        pc: usize,
        closure: Value,
        context_base: Value,
        caller: Option<Value>,
        out: &mut Output,
        state: &State,
        args: Vec<Value>,
    ) -> Result<Option<Value>, Error> {
        let mut ctx = Context::new_with_frame(Frame::new(context_base), self.env.recursion_limit());
        ok!(ctx.push_frame(Frame::new(closure)));
        if let Some(caller) = caller {
            ctx.store("caller", caller);
        }
        ok!(ctx.incr_depth(state.ctx.depth() + MACRO_RECURSION_COST));
        self.do_eval(
            &mut State {
                env: self.env,
                ctx,
                current_block: None,
                auto_escape: state.auto_escape(),
                instructions,
                blocks: BTreeMap::default(),
                loaded_templates: Default::default(),
                #[cfg(feature = "macros")]
                id: state.id,
                #[cfg(feature = "macros")]
                macros: state.macros.clone(),
                #[cfg(feature = "macros")]
                closure_tracker: state.closure_tracker.clone(),
                #[cfg(feature = "fuel")]
                fuel_tracker: state.fuel_tracker.clone(),
            },
            out,
            Stack::from(args),
            pc,
        )
    }

    /// This is the actual evaluation loop that works with a specific context.
    #[inline(always)]
    fn eval_state(
        &self,
        state: &mut State<'_, 'env>,
        out: &mut Output,
    ) -> Result<Option<Value>, Error> {
        self.do_eval(state, out, Stack::default(), 0)
    }

    /// Performs the actual evaluation, optionally with stack growth functionality.
    fn do_eval(
        &self,
        state: &mut State<'_, 'env>,
        out: &mut Output,
        stack: Stack,
        pc: usize,
    ) -> Result<Option<Value>, Error> {
        #[cfg(feature = "stacker")]
        {
            stacker::maybe_grow(32 * 1024, 1024 * 1024, || {
                self.eval_impl(state, out, stack, pc)
            })
        }
        #[cfg(not(feature = "stacker"))]
        {
            self.eval_impl(state, out, stack, pc)
        }
    }

    #[inline]
    fn eval_impl(
        &self,
        state: &mut State<'_, 'env>,
        out: &mut Output,
        mut stack: Stack,
        mut pc: usize,
    ) -> Result<Option<Value>, Error> {
        let initial_auto_escape = state.auto_escape;
        let undefined_behavior = state.undefined_behavior();
        let mut auto_escape_stack = vec![];
        let mut next_loop_recursion_jump = None;
        let mut loaded_filters = [None; MAX_LOCALS];
        let mut loaded_tests = [None; MAX_LOCALS];

        // If we are extending we are holding the instructions of the target parent
        // template here.  This is used to detect multiple extends and the evaluation
        // uses these instructions when it makes it to the end of the instructions.
        #[cfg(feature = "multi_template")]
        let mut parent_instructions = None;

        macro_rules! recurse_loop {
            ($capture:expr) => {{
                let jump_target = ctx_ok!(self.prepare_loop_recursion(state));
                // the way this works is that we remember the next instruction
                // as loop exit jump target.  Whenever a loop is pushed, it
                // memorizes the value in `next_loop_iteration_jump` to jump
                // to.
                next_loop_recursion_jump = Some((pc + 1, $capture));
                if $capture {
                    out.begin_capture(CaptureMode::Capture);
                }
                pc = jump_target;
                continue;
            }};
        }

        // looks nicer this way
        #[allow(clippy::while_let_loop)]
        loop {
            let instr = match state.instructions.get(pc) {
                Some(instr) => instr,
                #[cfg(not(feature = "multi_template"))]
                None => break,
                #[cfg(feature = "multi_template")]
                None => {
                    // when an extends statement appears in a template, when we hit the
                    // last instruction we need to check if parent instructions were
                    // stashed away (which means we found an extends tag which invoked
                    // `LoadBlocks`).  If we do find instructions, we reset back to 0
                    // from the new instructions.
                    state.instructions = match parent_instructions.take() {
                        Some(instr) => instr,
                        None => break,
                    };
                    out.end_capture(AutoEscape::None);
                    pc = 0;
                    // because we swap out the instructions we also need to unload all
                    // the filters and tests to ensure that we are not accidentally
                    // reusing the local_ids for completely different filters.
                    loaded_filters = [None; MAX_LOCALS];
                    loaded_tests = [None; MAX_LOCALS];
                    continue;
                }
            };

            // if we only have two arguments that we pull from the stack, we
            // can assign them to a and b.  This slightly reduces the amount of
            // code bloat generated here.  Same with the error.
            let a;
            let b;
            let mut err;

            macro_rules! func_binop {
                ($method:ident) => {{
                    b = stack.pop();
                    a = stack.pop();
                    stack.push(ctx_ok!(ops::$method(&a, &b)));
                }};
            }

            macro_rules! op_binop {
                ($op:tt) => {{
                    b = stack.pop();
                    a = stack.pop();
                    stack.push(Value::from(a $op b));
                }};
            }

            macro_rules! bail {
                ($err:expr) => {{
                    err = $err;
                    process_err(&mut err, pc, state);
                    return Err(err);
                }};
            }

            macro_rules! ctx_ok {
                ($expr:expr) => {
                    match $expr {
                        Ok(rv) => rv,
                        Err(err) => bail!(err),
                    }
                };
            }

            macro_rules! assert_valid {
                ($expr:expr) => {{
                    let val = $expr;
                    match val.validate() {
                        Ok(val) => val,
                        Err(err) => bail!(err),
                    }
                }};
            }

            // if the fuel consumption feature is enabled, track the fuel
            // consumption here.
            #[cfg(feature = "fuel")]
            if let Some(ref tracker) = state.fuel_tracker {
                ctx_ok!(tracker.track(instr));
            }

            match instr {
                Instruction::Swap => {
                    let a = stack.pop();
                    let b = stack.pop();
                    stack.push(a);
                    stack.push(b);
                }
                Instruction::EmitRaw(val) => {
                    // this only produces a format error, no need to attach
                    // location information.
                    ok!(out.write_str(val).map_err(Error::from));
                }
                Instruction::Emit => {
                    ctx_ok!(self.env.format(&stack.pop(), state, out));
                }
                Instruction::StoreLocal(name) => {
                    state.ctx.store(name, stack.pop());
                }
                Instruction::Lookup(name) => {
                    stack.push(assert_valid!(state
                        .lookup(name)
                        .unwrap_or(Value::UNDEFINED)));
                }
                Instruction::GetAttr(name) => {
                    a = stack.pop();
                    // This is a common enough operation that it's interesting to consider a fast
                    // path here.  This is slightly faster than the regular attr lookup because we
                    // do not need to pass down the error object for the more common success case.
                    // Only when we cannot look up something, we start to consider the undefined
                    // special case.
                    stack.push(match a.get_attr_fast(name) {
                        Some(value) => assert_valid!(value),
                        None => ctx_ok!(undefined_behavior.handle_undefined(a.is_undefined())),
                    });
                }
                Instruction::SetAttr(name) => {
                    b = stack.pop();
                    a = stack.pop();
                    if let Some(ns) = b.downcast_object_ref::<Namespace>() {
                        ns.set_value(name, a);
                    } else {
                        bail!(Error::new(
                            ErrorKind::InvalidOperation,
                            format!("can only assign to namespaces, not {}", b.kind())
                        ));
                    }
                }
                Instruction::GetItem => {
                    a = stack.pop();
                    b = stack.pop();
                    stack.push(match b.get_item_opt(&a) {
                        Some(value) => assert_valid!(value),
                        None => ctx_ok!(undefined_behavior.handle_undefined(b.is_undefined())),
                    });
                }
                Instruction::Slice => {
                    let step = stack.pop();
                    let stop = stack.pop();
                    b = stack.pop();
                    a = stack.pop();
                    if a.is_undefined() && matches!(undefined_behavior, UndefinedBehavior::Strict) {
                        bail!(Error::from(ErrorKind::UndefinedError));
                    }
                    stack.push(ctx_ok!(ops::slice(a, b, stop, step)));
                }
                Instruction::LoadConst(value) => {
                    stack.push(value.clone());
                }
                Instruction::BuildMap(pair_count) => {
                    let mut map = value_map_with_capacity(*pair_count);
                    stack.reverse_top(*pair_count * 2);
                    for _ in 0..*pair_count {
                        let key = stack.pop();
                        let value = stack.pop();
                        map.insert(key, value);
                    }
                    stack.push(Value::from_object(map))
                }
                Instruction::BuildKwargs(pair_count) => {
                    let mut map = value_map_with_capacity(*pair_count);
                    stack.reverse_top(*pair_count * 2);
                    for _ in 0..*pair_count {
                        let key = stack.pop();
                        let value = stack.pop();
                        map.insert(key, value);
                    }
                    stack.push(Kwargs::wrap(map))
                }
                Instruction::MergeKwargs(count) => {
                    let mut kwargs_sources = Vec::new();
                    for _ in 0..*count {
                        kwargs_sources.push(stack.pop());
                    }
                    kwargs_sources.reverse();
                    let values: &[Value] = &kwargs_sources;
                    let mut rv = ValueMap::new();
                    for value in values {
                        ctx_ok!(self.env.undefined_behavior().assert_iterable(value));
                        let iter = ctx_ok!(value
                            .as_object()
                            .filter(|x| x.repr() == ObjectRepr::Map)
                            .and_then(|x| x.try_iter_pairs())
                            .ok_or_else(|| {
                                Error::new(
                                    ErrorKind::InvalidOperation,
                                    format!(
                                        "attempted to apply keyword arguments from non map (got {})",
                                        value.kind()
                                    ),
                                )
                            }));
                        for (key, value) in iter {
                            rv.insert(key, value);
                        }
                    }
                    stack.push(Kwargs::wrap(rv));
                }
                Instruction::BuildList(n) => {
                    let count = n.unwrap_or_else(|| stack.pop().try_into().unwrap());
                    let mut v = Vec::with_capacity(untrusted_size_hint(count));
                    for _ in 0..count {
                        v.push(stack.pop());
                    }
                    v.reverse();
                    stack.push(Value::from_object(v))
                }
                Instruction::UnpackList(count) => {
                    ctx_ok!(self.unpack_list(&mut stack, *count));
                }
                Instruction::UnpackLists(count) => {
                    let mut lists = Vec::new();
                    for _ in 0..*count {
                        lists.push(stack.pop());
                    }
                    let mut len = 0;
                    for list in lists.into_iter().rev() {
                        for item in ctx_ok!(list.try_iter()) {
                            stack.push(item);
                            len += 1;
                        }
                    }
                    stack.push(Value::from(len));
                }
                Instruction::Add => func_binop!(add),
                Instruction::Sub => func_binop!(sub),
                Instruction::Mul => func_binop!(mul),
                Instruction::Div => func_binop!(div),
                Instruction::IntDiv => func_binop!(int_div),
                Instruction::Rem => func_binop!(rem),
                Instruction::Pow => func_binop!(pow),
                Instruction::Eq => op_binop!(==),
                Instruction::Ne => op_binop!(!=),
                Instruction::Gt => op_binop!(>),
                Instruction::Gte => op_binop!(>=),
                Instruction::Lt => op_binop!(<),
                Instruction::Lte => op_binop!(<=),
                Instruction::Not => {
                    a = stack.pop();
                    stack.push(Value::from(!a.is_true()));
                }
                Instruction::StringConcat => {
                    a = stack.pop();
                    b = stack.pop();
                    stack.push(ops::string_concat(b, &a));
                }
                Instruction::In => {
                    a = stack.pop();
                    b = stack.pop();
                    // the in-operator can fail if the value is undefined and
                    // we are in strict mode.
                    ctx_ok!(state.undefined_behavior().assert_iterable(&a));
                    stack.push(ctx_ok!(ops::contains(&a, &b)));
                }
                Instruction::Neg => {
                    a = stack.pop();
                    stack.push(ctx_ok!(ops::neg(&a)));
                }
                Instruction::PushWith => {
                    ctx_ok!(state.ctx.push_frame(Frame::default()));
                }
                Instruction::PopFrame => {
                    if let Some(mut loop_ctx) = state.ctx.pop_frame().current_loop {
                        if let Some((target, end_capture)) = loop_ctx.current_recursion_jump.take()
                        {
                            pc = target;
                            if end_capture {
                                stack.push(out.end_capture(state.auto_escape));
                            }
                            continue;
                        }
                    }
                }
                #[cfg(feature = "macros")]
                Instruction::IsUndefined => {
                    a = stack.pop();
                    stack.push(Value::from(a.is_undefined()));
                }
                Instruction::PushLoop(flags) => {
                    a = stack.pop();
                    ctx_ok!(self.push_loop(state, a, *flags, pc, next_loop_recursion_jump.take()));
                }
                Instruction::Iterate(jump_target) => {
                    let l = state.ctx.current_loop().unwrap();
                    l.object.idx.fetch_add(1, Ordering::Relaxed);

                    let next = {
                        #[cfg(feature = "adjacent_loop_items")]
                        {
                            let mut triple = l.object.value_triple.lock().unwrap();
                            triple.0 = triple.1.take();
                            triple.1 = triple.2.take();
                            triple.2 = l.iterator.next();
                            triple.1.clone()
                        }
                        #[cfg(not(feature = "adjacent_loop_items"))]
                        {
                            l.iterator.next()
                        }
                    };
                    match next {
                        Some(item) => stack.push(assert_valid!(item)),
                        None => {
                            pc = *jump_target;
                            continue;
                        }
                    };
                }
                Instruction::PushDidNotIterate => {
                    let l = state.ctx.current_loop().unwrap();
                    stack.push(Value::from(l.object.idx.load(Ordering::Relaxed) == 0));
                }
                Instruction::Jump(jump_target) => {
                    pc = *jump_target;
                    continue;
                }
                Instruction::JumpIfFalse(jump_target) => {
                    a = stack.pop();
                    if !ctx_ok!(undefined_behavior.is_true(&a)) {
                        pc = *jump_target;
                        continue;
                    }
                }
                Instruction::JumpIfFalseOrPop(jump_target) => {
                    if !ctx_ok!(undefined_behavior.is_true(stack.peek())) {
                        pc = *jump_target;
                        continue;
                    } else {
                        stack.pop();
                    }
                }
                Instruction::JumpIfTrueOrPop(jump_target) => {
                    if ctx_ok!(undefined_behavior.is_true(stack.peek())) {
                        pc = *jump_target;
                        continue;
                    } else {
                        stack.pop();
                    }
                }
                #[cfg(feature = "multi_template")]
                Instruction::CallBlock(name) => {
                    if parent_instructions.is_none() && !out.is_discarding() {
                        self.call_block(name, state, out)?;
                    }
                }
                Instruction::PushAutoEscape => {
                    a = stack.pop();
                    auto_escape_stack.push(state.auto_escape);
                    state.auto_escape = ctx_ok!(self.derive_auto_escape(a, initial_auto_escape));
                }
                Instruction::PopAutoEscape => {
                    state.auto_escape = auto_escape_stack.pop().unwrap();
                }
                Instruction::BeginCapture(mode) => {
                    out.begin_capture(*mode);
                }
                Instruction::EndCapture => {
                    stack.push(out.end_capture(state.auto_escape));
                }
                Instruction::ApplyFilter(name, arg_count, local_id) => {
                    let filter =
                        ctx_ok!(get_or_lookup_local(&mut loaded_filters, *local_id, || {
                            state.env.get_filter(name)
                        })
                        .ok_or_else(|| {
                            Error::new(
                                ErrorKind::UnknownFilter,
                                format!("filter {name} is unknown"),
                            )
                        }));
                    let args = stack.get_call_args(*arg_count);
                    let arg_count = args.len();
                    a = ctx_ok!(filter.apply_to(state, args));
                    stack.drop_top(arg_count);
                    stack.push(a);
                }
                Instruction::PerformTest(name, arg_count, local_id) => {
                    let test = ctx_ok!(get_or_lookup_local(&mut loaded_tests, *local_id, || {
                        state.env.get_test(name)
                    })
                    .ok_or_else(|| {
                        Error::new(ErrorKind::UnknownTest, format!("test {name} is unknown"))
                    }));
                    let args = stack.get_call_args(*arg_count);
                    let arg_count = args.len();
                    let rv = ctx_ok!(test.perform(state, args));
                    stack.drop_top(arg_count);
                    stack.push(Value::from(rv));
                }
                Instruction::CallFunction(name, arg_count) => {
                    let args = stack.get_call_args(*arg_count);
                    // super is a special function reserved for super-ing into blocks.
                    let rv = if *name == "super" {
                        if !args.is_empty() {
                            bail!(Error::new(
                                ErrorKind::InvalidOperation,
                                "super() takes no arguments",
                            ));
                        }
                        ctx_ok!(self.perform_super(state, out, true))
                    // loop is a special name which when called recurses the current loop.
                    } else if *name == "loop" {
                        if args.len() != 1 {
                            bail!(Error::new(
                                ErrorKind::InvalidOperation,
                                "loop() takes one argument"
                            ));
                        }
                        // leave the one argument on the stack for the recursion.  The
                        // recurse_loop! macro itself will perform a jump and not return here.
                        recurse_loop!(true);
                    } else if let Some(func) = state.lookup(name) {
                        ctx_ok!(func.call(state, args))
                    } else {
                        bail!(Error::new(
                            ErrorKind::UnknownFunction,
                            format!("{name} is unknown"),
                        ));
                    };
                    let arg_count = args.len();
                    stack.drop_top(arg_count);
                    stack.push(rv);
                }
                Instruction::CallMethod(name, arg_count) => {
                    let args = stack.get_call_args(*arg_count);
                    let arg_count = args.len();
                    a = ctx_ok!(args[0].call_method(state, name, &args[1..]));
                    stack.drop_top(arg_count);
                    stack.push(a);
                }
                Instruction::CallObject(arg_count) => {
                    let args = stack.get_call_args(*arg_count);
                    let arg_count = args.len();
                    a = ctx_ok!(args[0].call(state, &args[1..]));
                    stack.drop_top(arg_count);
                    stack.push(a);
                }
                Instruction::DupTop => {
                    stack.push(stack.peek().clone());
                }
                Instruction::DiscardTop => {
                    stack.pop();
                }
                Instruction::FastSuper => {
                    ctx_ok!(self.perform_super(state, out, false));
                }
                Instruction::FastRecurse => {
                    recurse_loop!(false);
                }
                // Explanation on the behavior of `LoadBlocks` and rendering of
                // inherited templates:
                //
                // MiniJinja inherits the behavior from Jinja2 where extending
                // loads the blocks (`LoadBlocks`) and the rest of the template
                // keeps executing but with output disabled, only at the end the
                // parent template is then invoked.  This has the effect that
                // you can still set variables or declare macros and that they
                // become visible in the blocks.
                //
                // This behavior has a few downsides.  First of all what happens
                // in the parent template overrides what happens in the child.
                // For instance if you declare a macro named `foo` after `{%
                // extends %}` and then a variable with that named is also set
                // in the parent template, then you won't be able to call that
                // macro in the body.
                //
                // The reason for this is that blocks unlike macros do not have
                // closures in Jinja2/MiniJinja.
                //
                // However for the common case this is convenient because it
                // lets you put some imports there and for as long as you do not
                // create name clashes this works fine.
                #[cfg(feature = "multi_template")]
                Instruction::LoadBlocks => {
                    a = stack.pop();
                    if parent_instructions.is_some() {
                        bail!(Error::new(
                            ErrorKind::InvalidOperation,
                            "tried to extend a second time in a template"
                        ));
                    }
                    parent_instructions = Some(ctx_ok!(self.load_blocks(a, state)));
                    out.begin_capture(CaptureMode::Discard);
                }
                #[cfg(feature = "multi_template")]
                Instruction::Include(ignore_missing) => {
                    a = stack.pop();
                    ctx_ok!(self.perform_include(a, state, out, *ignore_missing));
                }
                #[cfg(feature = "multi_template")]
                Instruction::ExportLocals => {
                    let locals = state.ctx.current_locals_mut();
                    let mut module = value_map_with_capacity(locals.len());
                    for (key, value) in locals.iter() {
                        module.insert(Value::from(*key), value.clone());
                    }
                    stack.push(Value::from_object(module));
                }
                #[cfg(feature = "macros")]
                Instruction::BuildMacro(name, offset, flags) => {
                    self.build_macro(&mut stack, state, *offset, name, *flags);
                }
                #[cfg(feature = "macros")]
                Instruction::Return => break,
                #[cfg(feature = "macros")]
                Instruction::Enclose(name) => {
                    // the first time we enclose a value, we need to create a closure
                    // and store it on the context, and add it to the closure tracker
                    // for cycle breaking.
                    if state.ctx.closure().is_none() {
                        let closure = Arc::new(Closure::default());
                        state.closure_tracker.track_closure(closure.clone());
                        state.ctx.reset_closure(Some(closure));
                    }
                    state.ctx.enclose(state.env, name);
                }
                #[cfg(feature = "macros")]
                Instruction::GetClosure => {
                    stack.push(
                        state
                            .ctx
                            .closure()
                            .map_or(Value::UNDEFINED, |x| Value::from_dyn_object(x.clone())),
                    );
                }
            }
            pc += 1;
        }

        Ok(stack.try_pop())
    }

    #[cfg(feature = "multi_template")]
    fn perform_include(
        &self,
        name: Value,
        state: &mut State<'_, 'env>,
        out: &mut Output,
        ignore_missing: bool,
    ) -> Result<(), Error> {
        let obj = name.as_object();
        let choices = obj
            .as_ref()
            .and_then(|d| d.try_iter())
            .into_iter()
            .flatten()
            .chain(obj.is_none().then(|| name.clone()));

        let mut templates_tried = vec![];
        for choice in choices {
            let name = ok!(choice.as_str().ok_or_else(|| {
                Error::new(
                    ErrorKind::InvalidOperation,
                    "template name was not a string",
                )
            }));
            let tmpl = match state.get_template(name) {
                Ok(tmpl) => tmpl,
                Err(err) => {
                    if err.kind() == ErrorKind::TemplateNotFound {
                        templates_tried.push(choice);
                    } else {
                        return Err(err);
                    }
                    continue;
                }
            };

            let (new_instructions, new_blocks) = ok!(tmpl.instructions_and_blocks());
            let old_escape = mem::replace(&mut state.auto_escape, tmpl.initial_auto_escape());
            let old_instructions = mem::replace(&mut state.instructions, new_instructions);
            let old_blocks = mem::replace(&mut state.blocks, prepare_blocks(new_blocks));
            // we need to make a copy of the loaded templates here as we want
            // to forget about the templates that an include triggered by the
            // time the include finishes.
            let old_loaded_templates = state.loaded_templates.clone();
            ok!(state.ctx.incr_depth(INCLUDE_RECURSION_COST));
            let rv;
            #[cfg(feature = "macros")]
            {
                let old_closure = state.ctx.take_closure();
                rv = self.eval_state(state, out);
                state.ctx.reset_closure(old_closure);
            }
            #[cfg(not(feature = "macros"))]
            {
                rv = self.eval_state(state, out);
            }
            state.ctx.decr_depth(INCLUDE_RECURSION_COST);
            state.loaded_templates = old_loaded_templates;
            state.auto_escape = old_escape;
            state.instructions = old_instructions;
            state.blocks = old_blocks;
            ok!(rv.map_err(|err| {
                Error::new(
                    ErrorKind::BadInclude,
                    format!("error in \"{}\"", tmpl.name()),
                )
                .with_source(err)
            }));
            return Ok(());
        }
        if !templates_tried.is_empty() && !ignore_missing {
            Err(Error::new(
                ErrorKind::TemplateNotFound,
                if templates_tried.len() == 1 {
                    format!(
                        "tried to include non-existing template {:?}",
                        templates_tried[0]
                    )
                } else {
                    format!(
                        "tried to include one of multiple templates, none of which existed {}",
                        Value::from(templates_tried)
                    )
                },
            ))
        } else {
            Ok(())
        }
    }

    fn perform_super(
        &self,
        state: &mut State<'_, 'env>,
        out: &mut Output,
        capture: bool,
    ) -> Result<Value, Error> {
        let name = ok!(state.current_block.ok_or_else(|| {
            Error::new(ErrorKind::InvalidOperation, "cannot super outside of block")
        }));

        let block_stack = state.blocks.get_mut(name).unwrap();
        if !block_stack.push() {
            return Err(Error::new(
                ErrorKind::InvalidOperation,
                "no parent block exists",
            ));
        }

        if capture {
            out.begin_capture(CaptureMode::Capture);
        }

        let old_instructions = mem::replace(&mut state.instructions, block_stack.instructions());
        ok!(state.ctx.push_frame(Frame::default()));
        let rv = self.eval_state(state, out);
        state.ctx.pop_frame();
        state.instructions = old_instructions;
        state.blocks.get_mut(name).unwrap().pop();

        ok!(rv.map_err(|err| {
            Error::new(ErrorKind::EvalBlock, "error in super block").with_source(err)
        }));
        if capture {
            Ok(out.end_capture(state.auto_escape))
        } else {
            Ok(Value::UNDEFINED)
        }
    }

    fn prepare_loop_recursion(&self, state: &mut State) -> Result<usize, Error> {
        if let Some(loop_ctx) = state.ctx.current_loop() {
            if let Some(recurse_jump_target) = loop_ctx.recurse_jump_target {
                Ok(recurse_jump_target)
            } else {
                Err(Error::new(
                    ErrorKind::InvalidOperation,
                    "cannot recurse outside of recursive loop",
                ))
            }
        } else {
            Err(Error::new(
                ErrorKind::InvalidOperation,
                "cannot recurse outside of loop",
            ))
        }
    }

    #[cfg(feature = "multi_template")]
    fn load_blocks(
        &self,
        name: Value,
        state: &mut State<'_, 'env>,
    ) -> Result<&'env Instructions<'env>, Error> {
        let name = match name.as_str() {
            Some(name) => name,
            None => {
                return Err(Error::new(
                    ErrorKind::InvalidOperation,
                    "template name was not a string",
                ))
            }
        };
        if state.loaded_templates.contains(&name) {
            return Err(Error::new(
                ErrorKind::InvalidOperation,
                format!("cycle in template inheritance. {name:?} was referenced more than once"),
            ));
        }
        let tmpl = ok!(state.get_template(name));
        let (new_instructions, new_blocks) = ok!(tmpl.instructions_and_blocks());
        state.loaded_templates.insert(new_instructions.name());
        for (name, instr) in new_blocks.iter() {
            state
                .blocks
                .entry(name)
                .or_default()
                .append_instructions(instr);
        }
        Ok(new_instructions)
    }

    #[cfg(feature = "multi_template")]
    pub(crate) fn call_block(
        &self,
        name: &str,
        state: &mut State<'_, 'env>,
        out: &mut Output,
    ) -> Result<Option<Value>, Error> {
        if let Some((name, block_stack)) = state.blocks.get_key_value(name) {
            let old_block = mem::replace(&mut state.current_block, Some(name));
            let old_instructions =
                mem::replace(&mut state.instructions, block_stack.instructions());
            state.ctx.push_frame(Frame::default())?;
            let rv = self.eval_state(state, out);
            state.ctx.pop_frame();
            state.instructions = old_instructions;
            state.current_block = old_block;
            rv
        } else {
            Err(Error::new(
                ErrorKind::UnknownBlock,
                format!("block '{}' not found", name),
            ))
        }
    }

    fn derive_auto_escape(
        &self,
        value: Value,
        initial_auto_escape: AutoEscape,
    ) -> Result<AutoEscape, Error> {
        match (value.as_str(), value == Value::from(true)) {
            (Some("html"), _) => Ok(AutoEscape::Html),
            #[cfg(feature = "json")]
            (Some("json"), _) => Ok(AutoEscape::Json),
            (Some("none"), _) | (None, false) => Ok(AutoEscape::None),
            (None, true) => Ok(if matches!(initial_auto_escape, AutoEscape::None) {
                AutoEscape::Html
            } else {
                initial_auto_escape
            }),
            _ => Err(Error::new(
                ErrorKind::InvalidOperation,
                "invalid value to autoescape tag",
            )),
        }
    }

    fn push_loop(
        &self,
        state: &mut State<'_, 'env>,
        iterable: Value,
        flags: u8,
        pc: usize,
        current_recursion_jump: Option<(usize, bool)>,
    ) -> Result<(), Error> {
        #[allow(unused_mut)]
        let mut iterator = ok!(state.undefined_behavior().try_iter(iterable));
        // for an iterator where the lower and upper bound are matching we can
        // consider them to have ExactSizeIterator semantics.  We do however not
        // expect ExactSizeIterator bounds themselves to support iteration by
        // other means.
        let len = match iterator.size_hint() {
            (lower, Some(upper)) if lower == upper => Some(lower),
            _ => None,
        };
        let depth = state
            .ctx
            .current_loop()
            .filter(|x| x.recurse_jump_target.is_some())
            .map_or(0, |x| x.object.depth + 1);
        let recursive = flags & LOOP_FLAG_RECURSIVE != 0;
        let with_loop_var = flags & LOOP_FLAG_WITH_LOOP_VAR != 0;
        ok!(state.ctx.push_frame(Frame {
            current_loop: Some(LoopState {
                with_loop_var,
                recurse_jump_target: if recursive { Some(pc) } else { None },
                current_recursion_jump,
                object: Arc::new(Loop {
                    idx: AtomicUsize::new(!0usize),
                    len,
                    depth,
                    #[cfg(feature = "adjacent_loop_items")]
                    value_triple: Mutex::new((None, None, iterator.next())),
                    last_changed_value: Mutex::default(),
                }),
                iterator,
            }),
            ..Frame::default()
        }));
        Ok(())
    }

    fn unpack_list(&self, stack: &mut Stack, count: usize) -> Result<(), Error> {
        let top = stack.pop();
        let iter = ok!(top
            .as_object()
            .and_then(|x| x.try_iter())
            .ok_or_else(|| Error::new(ErrorKind::CannotUnpack, "value is not iterable")));

        let mut n = 0;
        for item in iter {
            stack.push(item);
            n += 1;
        }

        if n == count {
            stack.reverse_top(n);
            Ok(())
        } else {
            Err(Error::new(
                ErrorKind::CannotUnpack,
                format!("sequence of wrong length (expected {}, got {})", count, n,),
            ))
        }
    }

    #[cfg(feature = "macros")]
    fn build_macro(
        &self,
        stack: &mut Stack,
        state: &mut State,
        offset: usize,
        name: &str,
        flags: u8,
    ) {
        use crate::{compiler::instructions::MACRO_CALLER, vm::macro_object::Macro};

        let arg_spec = stack.pop().try_iter().unwrap().collect();
        let closure = stack.pop();
        let macro_ref_id = state.macros.len();
        Arc::make_mut(&mut state.macros).push((state.instructions, offset));
        stack.push(Value::from_object(Macro {
            name: Value::from(name),
            arg_spec,
            macro_ref_id,
            state_id: state.id,
            closure,
            caller_reference: (flags & MACRO_CALLER) != 0,
        }));
    }
}

#[inline(never)]
#[cold]
fn process_err(err: &mut Error, pc: usize, state: &State) {
    // only attach line information if the error does not have line info yet.
    if err.line().is_none() {
        if let Some(span) = state.instructions.get_span(pc) {
            err.set_filename_and_span(state.instructions.name(), span);
        } else if let Some(lineno) = state.instructions.get_line(pc) {
            err.set_filename_and_line(state.instructions.name(), lineno);
        }
    }
    // only attach debug info if we don't have one yet and we are in debug mode.
    #[cfg(feature = "debug")]
    {
        if state.env.debug() && err.debug_info().is_none() {
            err.attach_debug_info(state.make_debug_info(pc, state.instructions));
        }
    }
}