minimal_lexical/bigint.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
//! A simple big-integer type for slow path algorithms.
//!
//! This includes minimal stackvector for use in big-integer arithmetic.
#![doc(hidden)]
#[cfg(feature = "alloc")]
use crate::heapvec::HeapVec;
use crate::num::Float;
#[cfg(not(feature = "alloc"))]
use crate::stackvec::StackVec;
#[cfg(not(feature = "compact"))]
use crate::table::{LARGE_POW5, LARGE_POW5_STEP};
use core::{cmp, ops, ptr};
/// Number of bits in a Bigint.
///
/// This needs to be at least the number of bits required to store
/// a Bigint, which is `log2(radix**digits)`.
/// ≅ 3600 for base-10, rounded-up.
pub const BIGINT_BITS: usize = 4000;
/// The number of limbs for the bigint.
pub const BIGINT_LIMBS: usize = BIGINT_BITS / LIMB_BITS;
#[cfg(feature = "alloc")]
pub type VecType = HeapVec;
#[cfg(not(feature = "alloc"))]
pub type VecType = StackVec;
/// Storage for a big integer type.
///
/// This is used for algorithms when we have a finite number of digits.
/// Specifically, it stores all the significant digits scaled to the
/// proper exponent, as an integral type, and then directly compares
/// these digits.
///
/// This requires us to store the number of significant bits, plus the
/// number of exponent bits (required) since we scale everything
/// to the same exponent.
#[derive(Clone, PartialEq, Eq)]
pub struct Bigint {
/// Significant digits for the float, stored in a big integer in LE order.
///
/// This is pretty much the same number of digits for any radix, since the
/// significant digits balances out the zeros from the exponent:
/// 1. Decimal is 1091 digits, 767 mantissa digits + 324 exponent zeros.
/// 2. Base 6 is 1097 digits, or 680 mantissa digits + 417 exponent zeros.
/// 3. Base 36 is 1086 digits, or 877 mantissa digits + 209 exponent zeros.
///
/// However, the number of bytes required is larger for large radixes:
/// for decimal, we need `log2(10**1091) ≅ 3600`, while for base 36
/// we need `log2(36**1086) ≅ 5600`. Since we use uninitialized data,
/// we avoid a major performance hit from the large buffer size.
pub data: VecType,
}
#[allow(clippy::new_without_default)]
impl Bigint {
/// Construct a bigint representing 0.
#[inline(always)]
pub fn new() -> Self {
Self {
data: VecType::new(),
}
}
/// Construct a bigint from an integer.
#[inline(always)]
pub fn from_u64(value: u64) -> Self {
Self {
data: VecType::from_u64(value),
}
}
#[inline(always)]
pub fn hi64(&self) -> (u64, bool) {
self.data.hi64()
}
/// Multiply and assign as if by exponentiation by a power.
#[inline]
pub fn pow(&mut self, base: u32, exp: u32) -> Option<()> {
debug_assert!(base == 2 || base == 5 || base == 10);
if base % 5 == 0 {
pow(&mut self.data, exp)?;
}
if base % 2 == 0 {
shl(&mut self.data, exp as usize)?;
}
Some(())
}
/// Calculate the bit-length of the big-integer.
#[inline]
pub fn bit_length(&self) -> u32 {
bit_length(&self.data)
}
}
impl ops::MulAssign<&Bigint> for Bigint {
fn mul_assign(&mut self, rhs: &Bigint) {
self.data *= &rhs.data;
}
}
/// REVERSE VIEW
/// Reverse, immutable view of a sequence.
pub struct ReverseView<'a, T: 'a> {
inner: &'a [T],
}
impl<'a, T> ops::Index<usize> for ReverseView<'a, T> {
type Output = T;
#[inline]
fn index(&self, index: usize) -> &T {
let len = self.inner.len();
&(*self.inner)[len - index - 1]
}
}
/// Create a reverse view of the vector for indexing.
#[inline]
pub fn rview(x: &[Limb]) -> ReverseView<Limb> {
ReverseView {
inner: x,
}
}
// COMPARE
// -------
/// Compare `x` to `y`, in little-endian order.
#[inline]
pub fn compare(x: &[Limb], y: &[Limb]) -> cmp::Ordering {
match x.len().cmp(&y.len()) {
cmp::Ordering::Equal => {
let iter = x.iter().rev().zip(y.iter().rev());
for (&xi, yi) in iter {
match xi.cmp(yi) {
cmp::Ordering::Equal => (),
ord => return ord,
}
}
// Equal case.
cmp::Ordering::Equal
},
ord => ord,
}
}
// NORMALIZE
// ---------
/// Normalize the integer, so any leading zero values are removed.
#[inline]
pub fn normalize(x: &mut VecType) {
// We don't care if this wraps: the index is bounds-checked.
while let Some(&value) = x.get(x.len().wrapping_sub(1)) {
if value == 0 {
unsafe { x.set_len(x.len() - 1) };
} else {
break;
}
}
}
/// Get if the big integer is normalized.
#[inline]
#[allow(clippy::match_like_matches_macro)]
pub fn is_normalized(x: &[Limb]) -> bool {
// We don't care if this wraps: the index is bounds-checked.
match x.get(x.len().wrapping_sub(1)) {
Some(&0) => false,
_ => true,
}
}
// FROM
// ----
/// Create StackVec from u64 value.
#[inline(always)]
#[allow(clippy::branches_sharing_code)]
pub fn from_u64(x: u64) -> VecType {
let mut vec = VecType::new();
debug_assert!(vec.capacity() >= 2);
if LIMB_BITS == 32 {
vec.try_push(x as Limb).unwrap();
vec.try_push((x >> 32) as Limb).unwrap();
} else {
vec.try_push(x as Limb).unwrap();
}
vec.normalize();
vec
}
// HI
// --
/// Check if any of the remaining bits are non-zero.
///
/// # Safety
///
/// Safe as long as `rindex <= x.len()`.
#[inline]
pub fn nonzero(x: &[Limb], rindex: usize) -> bool {
debug_assert!(rindex <= x.len());
let len = x.len();
let slc = &x[..len - rindex];
slc.iter().rev().any(|&x| x != 0)
}
// These return the high X bits and if the bits were truncated.
/// Shift 32-bit integer to high 64-bits.
#[inline]
pub fn u32_to_hi64_1(r0: u32) -> (u64, bool) {
u64_to_hi64_1(r0 as u64)
}
/// Shift 2 32-bit integers to high 64-bits.
#[inline]
pub fn u32_to_hi64_2(r0: u32, r1: u32) -> (u64, bool) {
let r0 = (r0 as u64) << 32;
let r1 = r1 as u64;
u64_to_hi64_1(r0 | r1)
}
/// Shift 3 32-bit integers to high 64-bits.
#[inline]
pub fn u32_to_hi64_3(r0: u32, r1: u32, r2: u32) -> (u64, bool) {
let r0 = r0 as u64;
let r1 = (r1 as u64) << 32;
let r2 = r2 as u64;
u64_to_hi64_2(r0, r1 | r2)
}
/// Shift 64-bit integer to high 64-bits.
#[inline]
pub fn u64_to_hi64_1(r0: u64) -> (u64, bool) {
let ls = r0.leading_zeros();
(r0 << ls, false)
}
/// Shift 2 64-bit integers to high 64-bits.
#[inline]
pub fn u64_to_hi64_2(r0: u64, r1: u64) -> (u64, bool) {
let ls = r0.leading_zeros();
let rs = 64 - ls;
let v = match ls {
0 => r0,
_ => (r0 << ls) | (r1 >> rs),
};
let n = r1 << ls != 0;
(v, n)
}
/// Extract the hi bits from the buffer.
macro_rules! hi {
// # Safety
//
// Safe as long as the `stackvec.len() >= 1`.
(@1 $self:ident, $rview:ident, $t:ident, $fn:ident) => {{
$fn($rview[0] as $t)
}};
// # Safety
//
// Safe as long as the `stackvec.len() >= 2`.
(@2 $self:ident, $rview:ident, $t:ident, $fn:ident) => {{
let r0 = $rview[0] as $t;
let r1 = $rview[1] as $t;
$fn(r0, r1)
}};
// # Safety
//
// Safe as long as the `stackvec.len() >= 2`.
(@nonzero2 $self:ident, $rview:ident, $t:ident, $fn:ident) => {{
let (v, n) = hi!(@2 $self, $rview, $t, $fn);
(v, n || nonzero($self, 2 ))
}};
// # Safety
//
// Safe as long as the `stackvec.len() >= 3`.
(@3 $self:ident, $rview:ident, $t:ident, $fn:ident) => {{
let r0 = $rview[0] as $t;
let r1 = $rview[1] as $t;
let r2 = $rview[2] as $t;
$fn(r0, r1, r2)
}};
// # Safety
//
// Safe as long as the `stackvec.len() >= 3`.
(@nonzero3 $self:ident, $rview:ident, $t:ident, $fn:ident) => {{
let (v, n) = hi!(@3 $self, $rview, $t, $fn);
(v, n || nonzero($self, 3))
}};
}
/// Get the high 64 bits from the vector.
#[inline(always)]
pub fn hi64(x: &[Limb]) -> (u64, bool) {
let rslc = rview(x);
// SAFETY: the buffer must be at least length bytes long.
match x.len() {
0 => (0, false),
1 if LIMB_BITS == 32 => hi!(@1 x, rslc, u32, u32_to_hi64_1),
1 => hi!(@1 x, rslc, u64, u64_to_hi64_1),
2 if LIMB_BITS == 32 => hi!(@2 x, rslc, u32, u32_to_hi64_2),
2 => hi!(@2 x, rslc, u64, u64_to_hi64_2),
_ if LIMB_BITS == 32 => hi!(@nonzero3 x, rslc, u32, u32_to_hi64_3),
_ => hi!(@nonzero2 x, rslc, u64, u64_to_hi64_2),
}
}
// POWERS
// ------
/// MulAssign by a power of 5.
///
/// Theoretically...
///
/// Use an exponentiation by squaring method, since it reduces the time
/// complexity of the multiplication to ~`O(log(n))` for the squaring,
/// and `O(n*m)` for the result. Since `m` is typically a lower-order
/// factor, this significantly reduces the number of multiplications
/// we need to do. Iteratively multiplying by small powers follows
/// the nth triangular number series, which scales as `O(p^2)`, but
/// where `p` is `n+m`. In short, it scales very poorly.
///
/// Practically....
///
/// Exponentiation by Squaring:
/// running 2 tests
/// test bigcomp_f32_lexical ... bench: 1,018 ns/iter (+/- 78)
/// test bigcomp_f64_lexical ... bench: 3,639 ns/iter (+/- 1,007)
///
/// Exponentiation by Iterative Small Powers:
/// running 2 tests
/// test bigcomp_f32_lexical ... bench: 518 ns/iter (+/- 31)
/// test bigcomp_f64_lexical ... bench: 583 ns/iter (+/- 47)
///
/// Exponentiation by Iterative Large Powers (of 2):
/// running 2 tests
/// test bigcomp_f32_lexical ... bench: 671 ns/iter (+/- 31)
/// test bigcomp_f64_lexical ... bench: 1,394 ns/iter (+/- 47)
///
/// The following benchmarks were run on `1 * 5^300`, using native `pow`,
/// a version with only small powers, and one with pre-computed powers
/// of `5^(3 * max_exp)`, rather than `5^(5 * max_exp)`.
///
/// However, using large powers is crucial for good performance for higher
/// powers.
/// pow/default time: [426.20 ns 427.96 ns 429.89 ns]
/// pow/small time: [2.9270 us 2.9411 us 2.9565 us]
/// pow/large:3 time: [838.51 ns 842.21 ns 846.27 ns]
///
/// Even using worst-case scenarios, exponentiation by squaring is
/// significantly slower for our workloads. Just multiply by small powers,
/// in simple cases, and use precalculated large powers in other cases.
///
/// Furthermore, using sufficiently big large powers is also crucial for
/// performance. This is a tradeoff of binary size and performance, and
/// using a single value at ~`5^(5 * max_exp)` seems optimal.
pub fn pow(x: &mut VecType, mut exp: u32) -> Option<()> {
// Minimize the number of iterations for large exponents: just
// do a few steps with a large powers.
#[cfg(not(feature = "compact"))]
{
while exp >= LARGE_POW5_STEP {
large_mul(x, &LARGE_POW5)?;
exp -= LARGE_POW5_STEP;
}
}
// Now use our pre-computed small powers iteratively.
// This is calculated as `⌊log(2^BITS - 1, 5)⌋`.
let small_step = if LIMB_BITS == 32 {
13
} else {
27
};
let max_native = (5 as Limb).pow(small_step);
while exp >= small_step {
small_mul(x, max_native)?;
exp -= small_step;
}
if exp != 0 {
// SAFETY: safe, since `exp < small_step`.
let small_power = unsafe { f64::int_pow_fast_path(exp as usize, 5) };
small_mul(x, small_power as Limb)?;
}
Some(())
}
// SCALAR
// ------
/// Add two small integers and return the resulting value and if overflow happens.
#[inline(always)]
pub fn scalar_add(x: Limb, y: Limb) -> (Limb, bool) {
x.overflowing_add(y)
}
/// Multiply two small integers (with carry) (and return the overflow contribution).
///
/// Returns the (low, high) components.
#[inline(always)]
pub fn scalar_mul(x: Limb, y: Limb, carry: Limb) -> (Limb, Limb) {
// Cannot overflow, as long as wide is 2x as wide. This is because
// the following is always true:
// `Wide::MAX - (Narrow::MAX * Narrow::MAX) >= Narrow::MAX`
let z: Wide = (x as Wide) * (y as Wide) + (carry as Wide);
(z as Limb, (z >> LIMB_BITS) as Limb)
}
// SMALL
// -----
/// Add small integer to bigint starting from offset.
#[inline]
pub fn small_add_from(x: &mut VecType, y: Limb, start: usize) -> Option<()> {
let mut index = start;
let mut carry = y;
while carry != 0 && index < x.len() {
let result = scalar_add(x[index], carry);
x[index] = result.0;
carry = result.1 as Limb;
index += 1;
}
// If we carried past all the elements, add to the end of the buffer.
if carry != 0 {
x.try_push(carry)?;
}
Some(())
}
/// Add small integer to bigint.
#[inline(always)]
pub fn small_add(x: &mut VecType, y: Limb) -> Option<()> {
small_add_from(x, y, 0)
}
/// Multiply bigint by small integer.
#[inline]
pub fn small_mul(x: &mut VecType, y: Limb) -> Option<()> {
let mut carry = 0;
for xi in x.iter_mut() {
let result = scalar_mul(*xi, y, carry);
*xi = result.0;
carry = result.1;
}
// If we carried past all the elements, add to the end of the buffer.
if carry != 0 {
x.try_push(carry)?;
}
Some(())
}
// LARGE
// -----
/// Add bigint to bigint starting from offset.
pub fn large_add_from(x: &mut VecType, y: &[Limb], start: usize) -> Option<()> {
// The effective x buffer is from `xstart..x.len()`, so we need to treat
// that as the current range. If the effective y buffer is longer, need
// to resize to that, + the start index.
if y.len() > x.len().saturating_sub(start) {
// Ensure we panic if we can't extend the buffer.
// This avoids any unsafe behavior afterwards.
x.try_resize(y.len() + start, 0)?;
}
// Iteratively add elements from y to x.
let mut carry = false;
for (index, &yi) in y.iter().enumerate() {
// We panicked in `try_resize` if this wasn't true.
let xi = x.get_mut(start + index).unwrap();
// Only one op of the two ops can overflow, since we added at max
// Limb::max_value() + Limb::max_value(). Add the previous carry,
// and store the current carry for the next.
let result = scalar_add(*xi, yi);
*xi = result.0;
let mut tmp = result.1;
if carry {
let result = scalar_add(*xi, 1);
*xi = result.0;
tmp |= result.1;
}
carry = tmp;
}
// Handle overflow.
if carry {
small_add_from(x, 1, y.len() + start)?;
}
Some(())
}
/// Add bigint to bigint.
#[inline(always)]
pub fn large_add(x: &mut VecType, y: &[Limb]) -> Option<()> {
large_add_from(x, y, 0)
}
/// Grade-school multiplication algorithm.
///
/// Slow, naive algorithm, using limb-bit bases and just shifting left for
/// each iteration. This could be optimized with numerous other algorithms,
/// but it's extremely simple, and works in O(n*m) time, which is fine
/// by me. Each iteration, of which there are `m` iterations, requires
/// `n` multiplications, and `n` additions, or grade-school multiplication.
///
/// Don't use Karatsuba multiplication, since out implementation seems to
/// be slower asymptotically, which is likely just due to the small sizes
/// we deal with here. For example, running on the following data:
///
/// ```text
/// const SMALL_X: &[u32] = &[
/// 766857581, 3588187092, 1583923090, 2204542082, 1564708913, 2695310100, 3676050286,
/// 1022770393, 468044626, 446028186
/// ];
/// const SMALL_Y: &[u32] = &[
/// 3945492125, 3250752032, 1282554898, 1708742809, 1131807209, 3171663979, 1353276095,
/// 1678845844, 2373924447, 3640713171
/// ];
/// const LARGE_X: &[u32] = &[
/// 3647536243, 2836434412, 2154401029, 1297917894, 137240595, 790694805, 2260404854,
/// 3872698172, 690585094, 99641546, 3510774932, 1672049983, 2313458559, 2017623719,
/// 638180197, 1140936565, 1787190494, 1797420655, 14113450, 2350476485, 3052941684,
/// 1993594787, 2901001571, 4156930025, 1248016552, 848099908, 2660577483, 4030871206,
/// 692169593, 2835966319, 1781364505, 4266390061, 1813581655, 4210899844, 2137005290,
/// 2346701569, 3715571980, 3386325356, 1251725092, 2267270902, 474686922, 2712200426,
/// 197581715, 3087636290, 1379224439, 1258285015, 3230794403, 2759309199, 1494932094,
/// 326310242
/// ];
/// const LARGE_Y: &[u32] = &[
/// 1574249566, 868970575, 76716509, 3198027972, 1541766986, 1095120699, 3891610505,
/// 2322545818, 1677345138, 865101357, 2650232883, 2831881215, 3985005565, 2294283760,
/// 3468161605, 393539559, 3665153349, 1494067812, 106699483, 2596454134, 797235106,
/// 705031740, 1209732933, 2732145769, 4122429072, 141002534, 790195010, 4014829800,
/// 1303930792, 3649568494, 308065964, 1233648836, 2807326116, 79326486, 1262500691,
/// 621809229, 2258109428, 3819258501, 171115668, 1139491184, 2979680603, 1333372297,
/// 1657496603, 2790845317, 4090236532, 4220374789, 601876604, 1828177209, 2372228171,
/// 2247372529
/// ];
/// ```
///
/// We get the following results:
/// ```text
/// mul/small:long time: [220.23 ns 221.47 ns 222.81 ns]
/// Found 4 outliers among 100 measurements (4.00%)
/// 2 (2.00%) high mild
/// 2 (2.00%) high severe
/// mul/small:karatsuba time: [233.88 ns 234.63 ns 235.44 ns]
/// Found 11 outliers among 100 measurements (11.00%)
/// 8 (8.00%) high mild
/// 3 (3.00%) high severe
/// mul/large:long time: [1.9365 us 1.9455 us 1.9558 us]
/// Found 12 outliers among 100 measurements (12.00%)
/// 7 (7.00%) high mild
/// 5 (5.00%) high severe
/// mul/large:karatsuba time: [4.4250 us 4.4515 us 4.4812 us]
/// ```
///
/// In short, Karatsuba multiplication is never worthwhile for out use-case.
pub fn long_mul(x: &[Limb], y: &[Limb]) -> Option<VecType> {
// Using the immutable value, multiply by all the scalars in y, using
// the algorithm defined above. Use a single buffer to avoid
// frequent reallocations. Handle the first case to avoid a redundant
// addition, since we know y.len() >= 1.
let mut z = VecType::try_from(x)?;
if !y.is_empty() {
let y0 = y[0];
small_mul(&mut z, y0)?;
for (index, &yi) in y.iter().enumerate().skip(1) {
if yi != 0 {
let mut zi = VecType::try_from(x)?;
small_mul(&mut zi, yi)?;
large_add_from(&mut z, &zi, index)?;
}
}
}
z.normalize();
Some(z)
}
/// Multiply bigint by bigint using grade-school multiplication algorithm.
#[inline(always)]
pub fn large_mul(x: &mut VecType, y: &[Limb]) -> Option<()> {
// Karatsuba multiplication never makes sense, so just use grade school
// multiplication.
if y.len() == 1 {
// SAFETY: safe since `y.len() == 1`.
small_mul(x, y[0])?;
} else {
*x = long_mul(y, x)?;
}
Some(())
}
// SHIFT
// -----
/// Shift-left `n` bits inside a buffer.
#[inline]
pub fn shl_bits(x: &mut VecType, n: usize) -> Option<()> {
debug_assert!(n != 0);
// Internally, for each item, we shift left by n, and add the previous
// right shifted limb-bits.
// For example, we transform (for u8) shifted left 2, to:
// b10100100 b01000010
// b10 b10010001 b00001000
debug_assert!(n < LIMB_BITS);
let rshift = LIMB_BITS - n;
let lshift = n;
let mut prev: Limb = 0;
for xi in x.iter_mut() {
let tmp = *xi;
*xi <<= lshift;
*xi |= prev >> rshift;
prev = tmp;
}
// Always push the carry, even if it creates a non-normal result.
let carry = prev >> rshift;
if carry != 0 {
x.try_push(carry)?;
}
Some(())
}
/// Shift-left `n` limbs inside a buffer.
#[inline]
pub fn shl_limbs(x: &mut VecType, n: usize) -> Option<()> {
debug_assert!(n != 0);
if n + x.len() > x.capacity() {
None
} else if !x.is_empty() {
let len = n + x.len();
// SAFE: since x is not empty, and `x.len() + n <= x.capacity()`.
unsafe {
// Move the elements.
let src = x.as_ptr();
let dst = x.as_mut_ptr().add(n);
ptr::copy(src, dst, x.len());
// Write our 0s.
ptr::write_bytes(x.as_mut_ptr(), 0, n);
x.set_len(len);
}
Some(())
} else {
Some(())
}
}
/// Shift-left buffer by n bits.
#[inline]
pub fn shl(x: &mut VecType, n: usize) -> Option<()> {
let rem = n % LIMB_BITS;
let div = n / LIMB_BITS;
if rem != 0 {
shl_bits(x, rem)?;
}
if div != 0 {
shl_limbs(x, div)?;
}
Some(())
}
/// Get number of leading zero bits in the storage.
#[inline]
pub fn leading_zeros(x: &[Limb]) -> u32 {
let length = x.len();
// wrapping_sub is fine, since it'll just return None.
if let Some(&value) = x.get(length.wrapping_sub(1)) {
value.leading_zeros()
} else {
0
}
}
/// Calculate the bit-length of the big-integer.
#[inline]
pub fn bit_length(x: &[Limb]) -> u32 {
let nlz = leading_zeros(x);
LIMB_BITS as u32 * x.len() as u32 - nlz
}
// LIMB
// ----
// Type for a single limb of the big integer.
//
// A limb is analogous to a digit in base10, except, it stores 32-bit
// or 64-bit numbers instead. We want types where 64-bit multiplication
// is well-supported by the architecture, rather than emulated in 3
// instructions. The quickest way to check this support is using a
// cross-compiler for numerous architectures, along with the following
// source file and command:
//
// Compile with `gcc main.c -c -S -O3 -masm=intel`
//
// And the source code is:
// ```text
// #include <stdint.h>
//
// struct i128 {
// uint64_t hi;
// uint64_t lo;
// };
//
// // Type your code here, or load an example.
// struct i128 square(uint64_t x, uint64_t y) {
// __int128 prod = (__int128)x * (__int128)y;
// struct i128 z;
// z.hi = (uint64_t)(prod >> 64);
// z.lo = (uint64_t)prod;
// return z;
// }
// ```
//
// If the result contains `call __multi3`, then the multiplication
// is emulated by the compiler. Otherwise, it's natively supported.
//
// This should be all-known 64-bit platforms supported by Rust.
// https://forge.rust-lang.org/platform-support.html
//
// # Supported
//
// Platforms where native 128-bit multiplication is explicitly supported:
// - x86_64 (Supported via `MUL`).
// - mips64 (Supported via `DMULTU`, which `HI` and `LO` can be read-from).
// - s390x (Supported via `MLGR`).
//
// # Efficient
//
// Platforms where native 64-bit multiplication is supported and
// you can extract hi-lo for 64-bit multiplications.
// - aarch64 (Requires `UMULH` and `MUL` to capture high and low bits).
// - powerpc64 (Requires `MULHDU` and `MULLD` to capture high and low bits).
// - riscv64 (Requires `MUL` and `MULH` to capture high and low bits).
//
// # Unsupported
//
// Platforms where native 128-bit multiplication is not supported,
// requiring software emulation.
// sparc64 (`UMUL` only supports double-word arguments).
// sparcv9 (Same as sparc64).
//
// These tests are run via `xcross`, my own library for C cross-compiling,
// which supports numerous targets (far in excess of Rust's tier 1 support,
// or rust-embedded/cross's list). xcross may be found here:
// https://github.com/Alexhuszagh/xcross
//
// To compile for the given target, run:
// `xcross gcc main.c -c -S -O3 --target $target`
//
// All 32-bit architectures inherently do not have support. That means
// we can essentially look for 64-bit architectures that are not SPARC.
#[cfg(all(target_pointer_width = "64", not(target_arch = "sparc")))]
pub type Limb = u64;
#[cfg(all(target_pointer_width = "64", not(target_arch = "sparc")))]
pub type Wide = u128;
#[cfg(all(target_pointer_width = "64", not(target_arch = "sparc")))]
pub const LIMB_BITS: usize = 64;
#[cfg(not(all(target_pointer_width = "64", not(target_arch = "sparc"))))]
pub type Limb = u32;
#[cfg(not(all(target_pointer_width = "64", not(target_arch = "sparc"))))]
pub type Wide = u64;
#[cfg(not(all(target_pointer_width = "64", not(target_arch = "sparc"))))]
pub const LIMB_BITS: usize = 32;