minimal_lexical/slow.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
//! Slow, fallback cases where we cannot unambiguously round a float.
//!
//! This occurs when we cannot determine the exact representation using
//! both the fast path (native) cases nor the Lemire/Bellerophon algorithms,
//! and therefore must fallback to a slow, arbitrary-precision representation.
#![doc(hidden)]
use crate::bigint::{Bigint, Limb, LIMB_BITS};
use crate::extended_float::{extended_to_float, ExtendedFloat};
use crate::num::Float;
use crate::number::Number;
use crate::rounding::{round, round_down, round_nearest_tie_even};
use core::cmp;
// ALGORITHM
// ---------
/// Parse the significant digits and biased, binary exponent of a float.
///
/// This is a fallback algorithm that uses a big-integer representation
/// of the float, and therefore is considerably slower than faster
/// approximations. However, it will always determine how to round
/// the significant digits to the nearest machine float, allowing
/// use to handle near half-way cases.
///
/// Near half-way cases are halfway between two consecutive machine floats.
/// For example, the float `16777217.0` has a bitwise representation of
/// `100000000000000000000000 1`. Rounding to a single-precision float,
/// the trailing `1` is truncated. Using round-nearest, tie-even, any
/// value above `16777217.0` must be rounded up to `16777218.0`, while
/// any value before or equal to `16777217.0` must be rounded down
/// to `16777216.0`. These near-halfway conversions therefore may require
/// a large number of digits to unambiguously determine how to round.
#[inline]
pub fn slow<'a, F, Iter1, Iter2>(
num: Number,
fp: ExtendedFloat,
integer: Iter1,
fraction: Iter2,
) -> ExtendedFloat
where
F: Float,
Iter1: Iterator<Item = &'a u8> + Clone,
Iter2: Iterator<Item = &'a u8> + Clone,
{
// Ensure our preconditions are valid:
// 1. The significant digits are not shifted into place.
debug_assert!(fp.mant & (1 << 63) != 0);
// This assumes the sign bit has already been parsed, and we're
// starting with the integer digits, and the float format has been
// correctly validated.
let sci_exp = scientific_exponent(&num);
// We have 2 major algorithms we use for this:
// 1. An algorithm with a finite number of digits and a positive exponent.
// 2. An algorithm with a finite number of digits and a negative exponent.
let (bigmant, digits) = parse_mantissa(integer, fraction, F::MAX_DIGITS);
let exponent = sci_exp + 1 - digits as i32;
if exponent >= 0 {
positive_digit_comp::<F>(bigmant, exponent)
} else {
negative_digit_comp::<F>(bigmant, fp, exponent)
}
}
/// Generate the significant digits with a positive exponent relative to mantissa.
pub fn positive_digit_comp<F: Float>(mut bigmant: Bigint, exponent: i32) -> ExtendedFloat {
// Simple, we just need to multiply by the power of the radix.
// Now, we can calculate the mantissa and the exponent from this.
// The binary exponent is the binary exponent for the mantissa
// shifted to the hidden bit.
bigmant.pow(10, exponent as u32).unwrap();
// Get the exact representation of the float from the big integer.
// hi64 checks **all** the remaining bits after the mantissa,
// so it will check if **any** truncated digits exist.
let (mant, is_truncated) = bigmant.hi64();
let exp = bigmant.bit_length() as i32 - 64 + F::EXPONENT_BIAS;
let mut fp = ExtendedFloat {
mant,
exp,
};
// Shift the digits into position and determine if we need to round-up.
round::<F, _>(&mut fp, |f, s| {
round_nearest_tie_even(f, s, |is_odd, is_halfway, is_above| {
is_above || (is_halfway && is_truncated) || (is_odd && is_halfway)
});
});
fp
}
/// Generate the significant digits with a negative exponent relative to mantissa.
///
/// This algorithm is quite simple: we have the significant digits `m1 * b^N1`,
/// where `m1` is the bigint mantissa, `b` is the radix, and `N1` is the radix
/// exponent. We then calculate the theoretical representation of `b+h`, which
/// is `m2 * 2^N2`, where `m2` is the bigint mantissa and `N2` is the binary
/// exponent. If we had infinite, efficient floating precision, this would be
/// equal to `m1 / b^-N1` and then compare it to `m2 * 2^N2`.
///
/// Since we cannot divide and keep precision, we must multiply the other:
/// if we want to do `m1 / b^-N1 >= m2 * 2^N2`, we can do
/// `m1 >= m2 * b^-N1 * 2^N2` Going to the decimal case, we can show and example
/// and simplify this further: `m1 >= m2 * 2^N2 * 10^-N1`. Since we can remove
/// a power-of-two, this is `m1 >= m2 * 2^(N2 - N1) * 5^-N1`. Therefore, if
/// `N2 - N1 > 0`, we need have `m1 >= m2 * 2^(N2 - N1) * 5^-N1`, otherwise,
/// we have `m1 * 2^(N1 - N2) >= m2 * 5^-N1`, where the resulting exponents
/// are all positive.
///
/// This allows us to compare both floats using integers efficiently
/// without any loss of precision.
#[allow(clippy::comparison_chain)]
pub fn negative_digit_comp<F: Float>(
bigmant: Bigint,
mut fp: ExtendedFloat,
exponent: i32,
) -> ExtendedFloat {
// Ensure our preconditions are valid:
// 1. The significant digits are not shifted into place.
debug_assert!(fp.mant & (1 << 63) != 0);
// Get the significant digits and radix exponent for the real digits.
let mut real_digits = bigmant;
let real_exp = exponent;
debug_assert!(real_exp < 0);
// Round down our extended-precision float and calculate `b`.
let mut b = fp;
round::<F, _>(&mut b, round_down);
let b = extended_to_float::<F>(b);
// Get the significant digits and the binary exponent for `b+h`.
let theor = bh(b);
let mut theor_digits = Bigint::from_u64(theor.mant);
let theor_exp = theor.exp;
// We need to scale the real digits and `b+h` digits to be the same
// order. We currently have `real_exp`, in `radix`, that needs to be
// shifted to `theor_digits` (since it is negative), and `theor_exp`
// to either `theor_digits` or `real_digits` as a power of 2 (since it
// may be positive or negative). Try to remove as many powers of 2
// as possible. All values are relative to `theor_digits`, that is,
// reflect the power you need to multiply `theor_digits` by.
//
// Both are on opposite-sides of equation, can factor out a
// power of two.
//
// Example: 10^-10, 2^-10 -> ( 0, 10, 0)
// Example: 10^-10, 2^-15 -> (-5, 10, 0)
// Example: 10^-10, 2^-5 -> ( 5, 10, 0)
// Example: 10^-10, 2^5 -> (15, 10, 0)
let binary_exp = theor_exp - real_exp;
let halfradix_exp = -real_exp;
if halfradix_exp != 0 {
theor_digits.pow(5, halfradix_exp as u32).unwrap();
}
if binary_exp > 0 {
theor_digits.pow(2, binary_exp as u32).unwrap();
} else if binary_exp < 0 {
real_digits.pow(2, (-binary_exp) as u32).unwrap();
}
// Compare our theoretical and real digits and round nearest, tie even.
let ord = real_digits.data.cmp(&theor_digits.data);
round::<F, _>(&mut fp, |f, s| {
round_nearest_tie_even(f, s, |is_odd, _, _| {
// Can ignore `is_halfway` and `is_above`, since those were
// calculates using less significant digits.
match ord {
cmp::Ordering::Greater => true,
cmp::Ordering::Less => false,
cmp::Ordering::Equal if is_odd => true,
cmp::Ordering::Equal => false,
}
});
});
fp
}
/// Add a digit to the temporary value.
macro_rules! add_digit {
($c:ident, $value:ident, $counter:ident, $count:ident) => {{
let digit = $c - b'0';
$value *= 10 as Limb;
$value += digit as Limb;
// Increment our counters.
$counter += 1;
$count += 1;
}};
}
/// Add a temporary value to our mantissa.
macro_rules! add_temporary {
// Multiply by the small power and add the native value.
(@mul $result:ident, $power:expr, $value:expr) => {
$result.data.mul_small($power).unwrap();
$result.data.add_small($value).unwrap();
};
// # Safety
//
// Safe is `counter <= step`, or smaller than the table size.
($format:ident, $result:ident, $counter:ident, $value:ident) => {
if $counter != 0 {
// SAFETY: safe, since `counter <= step`, or smaller than the table size.
let small_power = unsafe { f64::int_pow_fast_path($counter, 10) };
add_temporary!(@mul $result, small_power as Limb, $value);
$counter = 0;
$value = 0;
}
};
// Add a temporary where we won't read the counter results internally.
//
// # Safety
//
// Safe is `counter <= step`, or smaller than the table size.
(@end $format:ident, $result:ident, $counter:ident, $value:ident) => {
if $counter != 0 {
// SAFETY: safe, since `counter <= step`, or smaller than the table size.
let small_power = unsafe { f64::int_pow_fast_path($counter, 10) };
add_temporary!(@mul $result, small_power as Limb, $value);
}
};
// Add the maximum native value.
(@max $format:ident, $result:ident, $counter:ident, $value:ident, $max:ident) => {
add_temporary!(@mul $result, $max, $value);
$counter = 0;
$value = 0;
};
}
/// Round-up a truncated value.
macro_rules! round_up_truncated {
($format:ident, $result:ident, $count:ident) => {{
// Need to round-up.
// Can't just add 1, since this can accidentally round-up
// values to a halfway point, which can cause invalid results.
add_temporary!(@mul $result, 10, 1);
$count += 1;
}};
}
/// Check and round-up the fraction if any non-zero digits exist.
macro_rules! round_up_nonzero {
($format:ident, $iter:expr, $result:ident, $count:ident) => {{
for &digit in $iter {
if digit != b'0' {
round_up_truncated!($format, $result, $count);
return ($result, $count);
}
}
}};
}
/// Parse the full mantissa into a big integer.
///
/// Returns the parsed mantissa and the number of digits in the mantissa.
/// The max digits is the maximum number of digits plus one.
pub fn parse_mantissa<'a, Iter1, Iter2>(
mut integer: Iter1,
mut fraction: Iter2,
max_digits: usize,
) -> (Bigint, usize)
where
Iter1: Iterator<Item = &'a u8> + Clone,
Iter2: Iterator<Item = &'a u8> + Clone,
{
// Iteratively process all the data in the mantissa.
// We do this via small, intermediate values which once we reach
// the maximum number of digits we can process without overflow,
// we add the temporary to the big integer.
let mut counter: usize = 0;
let mut count: usize = 0;
let mut value: Limb = 0;
let mut result = Bigint::new();
// Now use our pre-computed small powers iteratively.
// This is calculated as `⌊log(2^BITS - 1, 10)⌋`.
let step: usize = if LIMB_BITS == 32 {
9
} else {
19
};
let max_native = (10 as Limb).pow(step as u32);
// Process the integer digits.
'integer: loop {
// Parse a digit at a time, until we reach step.
while counter < step && count < max_digits {
if let Some(&c) = integer.next() {
add_digit!(c, value, counter, count);
} else {
break 'integer;
}
}
// Check if we've exhausted our max digits.
if count == max_digits {
// Need to check if we're truncated, and round-up accordingly.
// SAFETY: safe since `counter <= step`.
add_temporary!(@end format, result, counter, value);
round_up_nonzero!(format, integer, result, count);
round_up_nonzero!(format, fraction, result, count);
return (result, count);
} else {
// Add our temporary from the loop.
// SAFETY: safe since `counter <= step`.
add_temporary!(@max format, result, counter, value, max_native);
}
}
// Skip leading fraction zeros.
// Required to get an accurate count.
if count == 0 {
for &c in &mut fraction {
if c != b'0' {
add_digit!(c, value, counter, count);
break;
}
}
}
// Process the fraction digits.
'fraction: loop {
// Parse a digit at a time, until we reach step.
while counter < step && count < max_digits {
if let Some(&c) = fraction.next() {
add_digit!(c, value, counter, count);
} else {
break 'fraction;
}
}
// Check if we've exhausted our max digits.
if count == max_digits {
// SAFETY: safe since `counter <= step`.
add_temporary!(@end format, result, counter, value);
round_up_nonzero!(format, fraction, result, count);
return (result, count);
} else {
// Add our temporary from the loop.
// SAFETY: safe since `counter <= step`.
add_temporary!(@max format, result, counter, value, max_native);
}
}
// We will always have a remainder, as long as we entered the loop
// once, or counter % step is 0.
// SAFETY: safe since `counter <= step`.
add_temporary!(@end format, result, counter, value);
(result, count)
}
// SCALING
// -------
/// Calculate the scientific exponent from a `Number` value.
/// Any other attempts would require slowdowns for faster algorithms.
#[inline]
pub fn scientific_exponent(num: &Number) -> i32 {
// Use power reduction to make this faster.
let mut mantissa = num.mantissa;
let mut exponent = num.exponent;
while mantissa >= 10000 {
mantissa /= 10000;
exponent += 4;
}
while mantissa >= 100 {
mantissa /= 100;
exponent += 2;
}
while mantissa >= 10 {
mantissa /= 10;
exponent += 1;
}
exponent as i32
}
/// Calculate `b` from a a representation of `b` as a float.
#[inline]
pub fn b<F: Float>(float: F) -> ExtendedFloat {
ExtendedFloat {
mant: float.mantissa(),
exp: float.exponent(),
}
}
/// Calculate `b+h` from a a representation of `b` as a float.
#[inline]
pub fn bh<F: Float>(float: F) -> ExtendedFloat {
let fp = b(float);
ExtendedFloat {
mant: (fp.mant << 1) + 1,
exp: fp.exp - 1,
}
}