minimal_lexical/
stackvec.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
//! Simple stack-allocated vector.

#![cfg(not(feature = "alloc"))]
#![doc(hidden)]

use crate::bigint;
use core::{cmp, mem, ops, ptr, slice};

/// Simple stack vector implementation.
#[derive(Clone)]
pub struct StackVec {
    /// The raw buffer for the elements.
    data: [mem::MaybeUninit<bigint::Limb>; bigint::BIGINT_LIMBS],
    /// The number of elements in the array (we never need more than u16::MAX).
    length: u16,
}

#[allow(clippy::new_without_default)]
impl StackVec {
    /// Construct an empty vector.
    #[inline]
    pub const fn new() -> Self {
        Self {
            length: 0,
            data: [mem::MaybeUninit::uninit(); bigint::BIGINT_LIMBS],
        }
    }

    /// Construct a vector from an existing slice.
    #[inline]
    pub fn try_from(x: &[bigint::Limb]) -> Option<Self> {
        let mut vec = Self::new();
        vec.try_extend(x)?;
        Some(vec)
    }

    /// Sets the length of a vector.
    ///
    /// This will explicitly set the size of the vector, without actually
    /// modifying its buffers, so it is up to the caller to ensure that the
    /// vector is actually the specified size.
    ///
    /// # Safety
    ///
    /// Safe as long as `len` is less than `BIGINT_LIMBS`.
    #[inline]
    pub unsafe fn set_len(&mut self, len: usize) {
        // Constant is `u16::MAX` for older Rustc versions.
        debug_assert!(len <= 0xffff);
        debug_assert!(len <= bigint::BIGINT_LIMBS);
        self.length = len as u16;
    }

    /// The number of elements stored in the vector.
    #[inline]
    pub const fn len(&self) -> usize {
        self.length as usize
    }

    /// If the vector is empty.
    #[inline]
    pub const fn is_empty(&self) -> bool {
        self.len() == 0
    }

    /// The number of items the vector can hold.
    #[inline]
    pub const fn capacity(&self) -> usize {
        bigint::BIGINT_LIMBS as usize
    }

    /// Append an item to the vector, without bounds checking.
    ///
    /// # Safety
    ///
    /// Safe if `self.len() < self.capacity()`.
    #[inline]
    pub unsafe fn push_unchecked(&mut self, value: bigint::Limb) {
        debug_assert!(self.len() < self.capacity());
        // SAFETY: safe, capacity is less than the current size.
        unsafe {
            ptr::write(self.as_mut_ptr().add(self.len()), value);
            self.length += 1;
        }
    }

    /// Append an item to the vector.
    #[inline]
    pub fn try_push(&mut self, value: bigint::Limb) -> Option<()> {
        if self.len() < self.capacity() {
            // SAFETY: safe, capacity is less than the current size.
            unsafe { self.push_unchecked(value) };
            Some(())
        } else {
            None
        }
    }

    /// Remove an item from the end of a vector, without bounds checking.
    ///
    /// # Safety
    ///
    /// Safe if `self.len() > 0`.
    #[inline]
    pub unsafe fn pop_unchecked(&mut self) -> bigint::Limb {
        debug_assert!(!self.is_empty());
        // SAFETY: safe if `self.length > 0`.
        // We have a trivial drop and copy, so this is safe.
        self.length -= 1;
        unsafe { ptr::read(self.as_mut_ptr().add(self.len())) }
    }

    /// Remove an item from the end of the vector and return it, or None if empty.
    #[inline]
    pub fn pop(&mut self) -> Option<bigint::Limb> {
        if self.is_empty() {
            None
        } else {
            // SAFETY: safe, since `self.len() > 0`.
            unsafe { Some(self.pop_unchecked()) }
        }
    }

    /// Add items from a slice to the vector, without bounds checking.
    ///
    /// # Safety
    ///
    /// Safe if `self.len() + slc.len() <= self.capacity()`.
    #[inline]
    pub unsafe fn extend_unchecked(&mut self, slc: &[bigint::Limb]) {
        let index = self.len();
        let new_len = index + slc.len();
        debug_assert!(self.len() + slc.len() <= self.capacity());
        let src = slc.as_ptr();
        // SAFETY: safe if `self.len() + slc.len() <= self.capacity()`.
        unsafe {
            let dst = self.as_mut_ptr().add(index);
            ptr::copy_nonoverlapping(src, dst, slc.len());
            self.set_len(new_len);
        }
    }

    /// Copy elements from a slice and append them to the vector.
    #[inline]
    pub fn try_extend(&mut self, slc: &[bigint::Limb]) -> Option<()> {
        if self.len() + slc.len() <= self.capacity() {
            // SAFETY: safe, since `self.len() + slc.len() <= self.capacity()`.
            unsafe { self.extend_unchecked(slc) };
            Some(())
        } else {
            None
        }
    }

    /// Truncate vector to new length, dropping any items after `len`.
    ///
    /// # Safety
    ///
    /// Safe as long as `len <= self.capacity()`.
    unsafe fn truncate_unchecked(&mut self, len: usize) {
        debug_assert!(len <= self.capacity());
        self.length = len as u16;
    }

    /// Resize the buffer, without bounds checking.
    ///
    /// # Safety
    ///
    /// Safe as long as `len <= self.capacity()`.
    #[inline]
    pub unsafe fn resize_unchecked(&mut self, len: usize, value: bigint::Limb) {
        debug_assert!(len <= self.capacity());
        let old_len = self.len();
        if len > old_len {
            // We have a trivial drop, so there's no worry here.
            // Just, don't set the length until all values have been written,
            // so we don't accidentally read uninitialized memory.

            // SAFETY: safe if `len < self.capacity()`.
            let count = len - old_len;
            for index in 0..count {
                unsafe {
                    let dst = self.as_mut_ptr().add(old_len + index);
                    ptr::write(dst, value);
                }
            }
            self.length = len as u16;
        } else {
            // SAFETY: safe since `len < self.len()`.
            unsafe { self.truncate_unchecked(len) };
        }
    }

    /// Try to resize the buffer.
    ///
    /// If the new length is smaller than the current length, truncate
    /// the input. If it's larger, then append elements to the buffer.
    #[inline]
    pub fn try_resize(&mut self, len: usize, value: bigint::Limb) -> Option<()> {
        if len > self.capacity() {
            None
        } else {
            // SAFETY: safe, since `len <= self.capacity()`.
            unsafe { self.resize_unchecked(len, value) };
            Some(())
        }
    }

    // HI

    /// Get the high 64 bits from the vector.
    #[inline(always)]
    pub fn hi64(&self) -> (u64, bool) {
        bigint::hi64(self)
    }

    // FROM

    /// Create StackVec from u64 value.
    #[inline(always)]
    pub fn from_u64(x: u64) -> Self {
        bigint::from_u64(x)
    }

    // MATH

    /// Normalize the integer, so any leading zero values are removed.
    #[inline]
    pub fn normalize(&mut self) {
        bigint::normalize(self)
    }

    /// Get if the big integer is normalized.
    #[inline]
    pub fn is_normalized(&self) -> bool {
        bigint::is_normalized(self)
    }

    /// AddAssign small integer.
    #[inline]
    pub fn add_small(&mut self, y: bigint::Limb) -> Option<()> {
        bigint::small_add(self, y)
    }

    /// MulAssign small integer.
    #[inline]
    pub fn mul_small(&mut self, y: bigint::Limb) -> Option<()> {
        bigint::small_mul(self, y)
    }
}

impl PartialEq for StackVec {
    #[inline]
    #[allow(clippy::op_ref)]
    fn eq(&self, other: &Self) -> bool {
        use core::ops::Deref;
        self.len() == other.len() && self.deref() == other.deref()
    }
}

impl Eq for StackVec {
}

impl cmp::PartialOrd for StackVec {
    #[inline]
    fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
        Some(bigint::compare(self, other))
    }
}

impl cmp::Ord for StackVec {
    #[inline]
    fn cmp(&self, other: &Self) -> cmp::Ordering {
        bigint::compare(self, other)
    }
}

impl ops::Deref for StackVec {
    type Target = [bigint::Limb];
    #[inline]
    fn deref(&self) -> &[bigint::Limb] {
        // SAFETY: safe since `self.data[..self.len()]` must be initialized
        // and `self.len() <= self.capacity()`.
        unsafe {
            let ptr = self.data.as_ptr() as *const bigint::Limb;
            slice::from_raw_parts(ptr, self.len())
        }
    }
}

impl ops::DerefMut for StackVec {
    #[inline]
    fn deref_mut(&mut self) -> &mut [bigint::Limb] {
        // SAFETY: safe since `self.data[..self.len()]` must be initialized
        // and `self.len() <= self.capacity()`.
        unsafe {
            let ptr = self.data.as_mut_ptr() as *mut bigint::Limb;
            slice::from_raw_parts_mut(ptr, self.len())
        }
    }
}

impl ops::MulAssign<&[bigint::Limb]> for StackVec {
    #[inline]
    fn mul_assign(&mut self, rhs: &[bigint::Limb]) {
        bigint::large_mul(self, rhs).unwrap();
    }
}