nom/sequence/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
//! Combinators applying parsers in sequence
#[cfg(test)]
mod tests;
use crate::error::ParseError;
use crate::internal::{IResult, Parser};
/// Gets an object from the first parser,
/// then gets another object from the second parser.
///
/// # Arguments
/// * `first` The first parser to apply.
/// * `second` The second parser to apply.
///
/// ```rust
/// # use nom::{Err, error::ErrorKind, Needed};
/// # use nom::Needed::Size;
/// use nom::sequence::pair;
/// use nom::bytes::complete::tag;
///
/// let mut parser = pair(tag("abc"), tag("efg"));
///
/// assert_eq!(parser("abcefg"), Ok(("", ("abc", "efg"))));
/// assert_eq!(parser("abcefghij"), Ok(("hij", ("abc", "efg"))));
/// assert_eq!(parser(""), Err(Err::Error(("", ErrorKind::Tag))));
/// assert_eq!(parser("123"), Err(Err::Error(("123", ErrorKind::Tag))));
/// ```
pub fn pair<I, O1, O2, E: ParseError<I>, F, G>(
mut first: F,
mut second: G,
) -> impl FnMut(I) -> IResult<I, (O1, O2), E>
where
F: Parser<I, O1, E>,
G: Parser<I, O2, E>,
{
move |input: I| {
let (input, o1) = first.parse(input)?;
second.parse(input).map(|(i, o2)| (i, (o1, o2)))
}
}
/// Matches an object from the first parser and discards it,
/// then gets an object from the second parser.
///
/// # Arguments
/// * `first` The opening parser.
/// * `second` The second parser to get object.
///
/// ```rust
/// # use nom::{Err, error::ErrorKind, Needed};
/// # use nom::Needed::Size;
/// use nom::sequence::preceded;
/// use nom::bytes::complete::tag;
///
/// let mut parser = preceded(tag("abc"), tag("efg"));
///
/// assert_eq!(parser("abcefg"), Ok(("", "efg")));
/// assert_eq!(parser("abcefghij"), Ok(("hij", "efg")));
/// assert_eq!(parser(""), Err(Err::Error(("", ErrorKind::Tag))));
/// assert_eq!(parser("123"), Err(Err::Error(("123", ErrorKind::Tag))));
/// ```
pub fn preceded<I, O1, O2, E: ParseError<I>, F, G>(
mut first: F,
mut second: G,
) -> impl FnMut(I) -> IResult<I, O2, E>
where
F: Parser<I, O1, E>,
G: Parser<I, O2, E>,
{
move |input: I| {
let (input, _) = first.parse(input)?;
second.parse(input)
}
}
/// Gets an object from the first parser,
/// then matches an object from the second parser and discards it.
///
/// # Arguments
/// * `first` The first parser to apply.
/// * `second` The second parser to match an object.
///
/// ```rust
/// # use nom::{Err, error::ErrorKind, Needed};
/// # use nom::Needed::Size;
/// use nom::sequence::terminated;
/// use nom::bytes::complete::tag;
///
/// let mut parser = terminated(tag("abc"), tag("efg"));
///
/// assert_eq!(parser("abcefg"), Ok(("", "abc")));
/// assert_eq!(parser("abcefghij"), Ok(("hij", "abc")));
/// assert_eq!(parser(""), Err(Err::Error(("", ErrorKind::Tag))));
/// assert_eq!(parser("123"), Err(Err::Error(("123", ErrorKind::Tag))));
/// ```
pub fn terminated<I, O1, O2, E: ParseError<I>, F, G>(
mut first: F,
mut second: G,
) -> impl FnMut(I) -> IResult<I, O1, E>
where
F: Parser<I, O1, E>,
G: Parser<I, O2, E>,
{
move |input: I| {
let (input, o1) = first.parse(input)?;
second.parse(input).map(|(i, _)| (i, o1))
}
}
/// Gets an object from the first parser,
/// then matches an object from the sep_parser and discards it,
/// then gets another object from the second parser.
///
/// # Arguments
/// * `first` The first parser to apply.
/// * `sep` The separator parser to apply.
/// * `second` The second parser to apply.
///
/// ```rust
/// # use nom::{Err, error::ErrorKind, Needed};
/// # use nom::Needed::Size;
/// use nom::sequence::separated_pair;
/// use nom::bytes::complete::tag;
///
/// let mut parser = separated_pair(tag("abc"), tag("|"), tag("efg"));
///
/// assert_eq!(parser("abc|efg"), Ok(("", ("abc", "efg"))));
/// assert_eq!(parser("abc|efghij"), Ok(("hij", ("abc", "efg"))));
/// assert_eq!(parser(""), Err(Err::Error(("", ErrorKind::Tag))));
/// assert_eq!(parser("123"), Err(Err::Error(("123", ErrorKind::Tag))));
/// ```
pub fn separated_pair<I, O1, O2, O3, E: ParseError<I>, F, G, H>(
mut first: F,
mut sep: G,
mut second: H,
) -> impl FnMut(I) -> IResult<I, (O1, O3), E>
where
F: Parser<I, O1, E>,
G: Parser<I, O2, E>,
H: Parser<I, O3, E>,
{
move |input: I| {
let (input, o1) = first.parse(input)?;
let (input, _) = sep.parse(input)?;
second.parse(input).map(|(i, o2)| (i, (o1, o2)))
}
}
/// Matches an object from the first parser and discards it,
/// then gets an object from the second parser,
/// and finally matches an object from the third parser and discards it.
///
/// # Arguments
/// * `first` The first parser to apply and discard.
/// * `second` The second parser to apply.
/// * `third` The third parser to apply and discard.
///
/// ```rust
/// # use nom::{Err, error::ErrorKind, Needed};
/// # use nom::Needed::Size;
/// use nom::sequence::delimited;
/// use nom::bytes::complete::tag;
///
/// let mut parser = delimited(tag("("), tag("abc"), tag(")"));
///
/// assert_eq!(parser("(abc)"), Ok(("", "abc")));
/// assert_eq!(parser("(abc)def"), Ok(("def", "abc")));
/// assert_eq!(parser(""), Err(Err::Error(("", ErrorKind::Tag))));
/// assert_eq!(parser("123"), Err(Err::Error(("123", ErrorKind::Tag))));
/// ```
pub fn delimited<I, O1, O2, O3, E: ParseError<I>, F, G, H>(
mut first: F,
mut second: G,
mut third: H,
) -> impl FnMut(I) -> IResult<I, O2, E>
where
F: Parser<I, O1, E>,
G: Parser<I, O2, E>,
H: Parser<I, O3, E>,
{
move |input: I| {
let (input, _) = first.parse(input)?;
let (input, o2) = second.parse(input)?;
third.parse(input).map(|(i, _)| (i, o2))
}
}
/// Helper trait for the tuple combinator.
///
/// This trait is implemented for tuples of parsers of up to 21 elements.
pub trait Tuple<I, O, E> {
/// Parses the input and returns a tuple of results of each parser.
fn parse(&mut self, input: I) -> IResult<I, O, E>;
}
impl<Input, Output, Error: ParseError<Input>, F: Parser<Input, Output, Error>>
Tuple<Input, (Output,), Error> for (F,)
{
fn parse(&mut self, input: Input) -> IResult<Input, (Output,), Error> {
self.0.parse(input).map(|(i, o)| (i, (o,)))
}
}
macro_rules! tuple_trait(
($name1:ident $ty1:ident, $name2: ident $ty2:ident, $($name:ident $ty:ident),*) => (
tuple_trait!(__impl $name1 $ty1, $name2 $ty2; $($name $ty),*);
);
(__impl $($name:ident $ty: ident),+; $name1:ident $ty1:ident, $($name2:ident $ty2:ident),*) => (
tuple_trait_impl!($($name $ty),+);
tuple_trait!(__impl $($name $ty),+ , $name1 $ty1; $($name2 $ty2),*);
);
(__impl $($name:ident $ty: ident),+; $name1:ident $ty1:ident) => (
tuple_trait_impl!($($name $ty),+);
tuple_trait_impl!($($name $ty),+, $name1 $ty1);
);
);
macro_rules! tuple_trait_impl(
($($name:ident $ty: ident),+) => (
impl<
Input: Clone, $($ty),+ , Error: ParseError<Input>,
$($name: Parser<Input, $ty, Error>),+
> Tuple<Input, ( $($ty),+ ), Error> for ( $($name),+ ) {
fn parse(&mut self, input: Input) -> IResult<Input, ( $($ty),+ ), Error> {
tuple_trait_inner!(0, self, input, (), $($name)+)
}
}
);
);
macro_rules! tuple_trait_inner(
($it:tt, $self:expr, $input:expr, (), $head:ident $($id:ident)+) => ({
let (i, o) = $self.$it.parse($input.clone())?;
succ!($it, tuple_trait_inner!($self, i, ( o ), $($id)+))
});
($it:tt, $self:expr, $input:expr, ($($parsed:tt)*), $head:ident $($id:ident)+) => ({
let (i, o) = $self.$it.parse($input.clone())?;
succ!($it, tuple_trait_inner!($self, i, ($($parsed)* , o), $($id)+))
});
($it:tt, $self:expr, $input:expr, ($($parsed:tt)*), $head:ident) => ({
let (i, o) = $self.$it.parse($input.clone())?;
Ok((i, ($($parsed)* , o)))
});
);
tuple_trait!(FnA A, FnB B, FnC C, FnD D, FnE E, FnF F, FnG G, FnH H, FnI I, FnJ J, FnK K, FnL L,
FnM M, FnN N, FnO O, FnP P, FnQ Q, FnR R, FnS S, FnT T, FnU U);
// Special case: implement `Tuple` for `()`, the unit type.
// This can come up in macros which accept a variable number of arguments.
// Literally, `()` is an empty tuple, so it should simply parse nothing.
impl<I, E: ParseError<I>> Tuple<I, (), E> for () {
fn parse(&mut self, input: I) -> IResult<I, (), E> {
Ok((input, ()))
}
}
///Applies a tuple of parsers one by one and returns their results as a tuple.
///There is a maximum of 21 parsers
/// ```rust
/// # use nom::{Err, error::ErrorKind};
/// use nom::sequence::tuple;
/// use nom::character::complete::{alpha1, digit1};
/// let mut parser = tuple((alpha1, digit1, alpha1));
///
/// assert_eq!(parser("abc123def"), Ok(("", ("abc", "123", "def"))));
/// assert_eq!(parser("123def"), Err(Err::Error(("123def", ErrorKind::Alpha))));
/// ```
pub fn tuple<I, O, E: ParseError<I>, List: Tuple<I, O, E>>(
mut l: List,
) -> impl FnMut(I) -> IResult<I, O, E> {
move |i: I| l.parse(i)
}