1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
//! Thread parking and unparking.
//!
//! A [`Parker`] is in either the notified or unnotified state. The [`park()`][`Parker::park()`] method blocks
//! the current thread until the [`Parker`] becomes notified and then puts it back into the unnotified
//! state. The [`unpark()`][`Unparker::unpark()`] method puts it into the notified state.
//!
//! This API is similar to [`thread::park()`] and [`Thread::unpark()`] from the standard library.
//! The difference is that the state "token" managed by those functions is shared across an entire
//! thread, and anyone can call [`thread::current()`] to access it. If you use `park` and `unpark`,
//! but you also call a function that uses `park` and `unpark` internally, that function could
//! cause a deadlock by consuming a wakeup that was intended for you. The [`Parker`] object in this
//! crate avoids that problem by managing its own state, which isn't shared with unrelated callers.
//!
//! [`thread::park()`]: https://doc.rust-lang.org/std/thread/fn.park.html
//! [`Thread::unpark()`]: https://doc.rust-lang.org/std/thread/struct.Thread.html#method.unpark
//! [`thread::current()`]: https://doc.rust-lang.org/std/thread/fn.current.html
//!
//! # Examples
//!
//! ```
//! use std::thread;
//! use std::time::Duration;
//! use parking::Parker;
//!
//! let p = Parker::new();
//! let u = p.unparker();
//!
//! // Notify the parker.
//! u.unpark();
//!
//! // Wakes up immediately because the parker is notified.
//! p.park();
//!
//! thread::spawn(move || {
//!     thread::sleep(Duration::from_millis(500));
//!     u.unpark();
//! });
//!
//! // Wakes up when `u.unpark()` notifies and then goes back into unnotified state.
//! p.park();
//! ```

#![forbid(unsafe_code)]
#![warn(missing_docs, missing_debug_implementations, rust_2018_idioms)]
#![doc(
    html_favicon_url = "https://raw.githubusercontent.com/smol-rs/smol/master/assets/images/logo_fullsize_transparent.png"
)]
#![doc(
    html_logo_url = "https://raw.githubusercontent.com/smol-rs/smol/master/assets/images/logo_fullsize_transparent.png"
)]

#[cfg(not(all(loom, feature = "loom")))]
use std::sync;

#[cfg(all(loom, feature = "loom"))]
use loom::sync;

use std::cell::Cell;
use std::fmt;
use std::marker::PhantomData;
use std::sync::Arc;
use std::task::{Wake, Waker};
use std::time::Duration;

#[cfg(not(all(loom, feature = "loom")))]
use std::time::Instant;

use sync::atomic::AtomicUsize;
use sync::atomic::Ordering::SeqCst;
use sync::{Condvar, Mutex};

/// Creates a parker and an associated unparker.
///
/// # Examples
///
/// ```
/// let (p, u) = parking::pair();
/// ```
pub fn pair() -> (Parker, Unparker) {
    let p = Parker::new();
    let u = p.unparker();
    (p, u)
}

/// Waits for a notification.
pub struct Parker {
    unparker: Unparker,
    _marker: PhantomData<Cell<()>>,
}

impl Parker {
    /// Creates a new parker.
    ///
    /// # Examples
    ///
    /// ```
    /// use parking::Parker;
    ///
    /// let p = Parker::new();
    /// ```
    ///
    pub fn new() -> Parker {
        Parker {
            unparker: Unparker {
                inner: Arc::new(Inner {
                    state: AtomicUsize::new(EMPTY),
                    lock: Mutex::new(()),
                    cvar: Condvar::new(),
                }),
            },
            _marker: PhantomData,
        }
    }

    /// Blocks until notified and then goes back into unnotified state.
    ///
    /// # Examples
    ///
    /// ```
    /// use parking::Parker;
    ///
    /// let p = Parker::new();
    /// let u = p.unparker();
    ///
    /// // Notify the parker.
    /// u.unpark();
    ///
    /// // Wakes up immediately because the parker is notified.
    /// p.park();
    /// ```
    pub fn park(&self) {
        self.unparker.inner.park(None);
    }

    /// Blocks until notified and then goes back into unnotified state, or times out after
    /// `duration`.
    ///
    /// Returns `true` if notified before the timeout.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::time::Duration;
    /// use parking::Parker;
    ///
    /// let p = Parker::new();
    ///
    /// // Wait for a notification, or time out after 500 ms.
    /// p.park_timeout(Duration::from_millis(500));
    /// ```
    #[cfg(not(loom))]
    pub fn park_timeout(&self, duration: Duration) -> bool {
        self.unparker.inner.park(Some(duration))
    }

    /// Blocks until notified and then goes back into unnotified state, or times out at `instant`.
    ///
    /// Returns `true` if notified before the deadline.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::time::{Duration, Instant};
    /// use parking::Parker;
    ///
    /// let p = Parker::new();
    ///
    /// // Wait for a notification, or time out after 500 ms.
    /// p.park_deadline(Instant::now() + Duration::from_millis(500));
    /// ```
    #[cfg(not(loom))]
    pub fn park_deadline(&self, instant: Instant) -> bool {
        self.unparker
            .inner
            .park(Some(instant.saturating_duration_since(Instant::now())))
    }

    /// Notifies the parker.
    ///
    /// Returns `true` if this call is the first to notify the parker, or `false` if the parker
    /// was already notified.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::thread;
    /// use std::time::Duration;
    /// use parking::Parker;
    ///
    /// let p = Parker::new();
    ///
    /// assert_eq!(p.unpark(), true);
    /// assert_eq!(p.unpark(), false);
    ///
    /// // Wakes up immediately.
    /// p.park();
    /// ```
    pub fn unpark(&self) -> bool {
        self.unparker.unpark()
    }

    /// Returns a handle for unparking.
    ///
    /// The returned [`Unparker`] can be cloned and shared among threads.
    ///
    /// # Examples
    ///
    /// ```
    /// use parking::Parker;
    ///
    /// let p = Parker::new();
    /// let u = p.unparker();
    ///
    /// // Notify the parker.
    /// u.unpark();
    ///
    /// // Wakes up immediately because the parker is notified.
    /// p.park();
    /// ```
    pub fn unparker(&self) -> Unparker {
        self.unparker.clone()
    }
}

impl Default for Parker {
    fn default() -> Parker {
        Parker::new()
    }
}

impl fmt::Debug for Parker {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.pad("Parker { .. }")
    }
}

/// Notifies a parker.
pub struct Unparker {
    inner: Arc<Inner>,
}

impl Unparker {
    /// Notifies the associated parker.
    ///
    /// Returns `true` if this call is the first to notify the parker, or `false` if the parker
    /// was already notified.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::thread;
    /// use std::time::Duration;
    /// use parking::Parker;
    ///
    /// let p = Parker::new();
    /// let u = p.unparker();
    ///
    /// thread::spawn(move || {
    ///     thread::sleep(Duration::from_millis(500));
    ///     u.unpark();
    /// });
    ///
    /// // Wakes up when `u.unpark()` notifies and then goes back into unnotified state.
    /// p.park();
    /// ```
    pub fn unpark(&self) -> bool {
        self.inner.unpark()
    }

    /// Indicates whether this unparker will unpark the associated parker.
    ///
    /// This can be used to avoid unnecessary work before calling `unpark()`.
    ///
    /// # Examples
    ///
    /// ```
    /// use parking::Parker;
    ///
    /// let p = Parker::new();
    /// let u = p.unparker();
    ///
    /// assert!(u.will_unpark(&p));
    /// ```
    pub fn will_unpark(&self, parker: &Parker) -> bool {
        Arc::ptr_eq(&self.inner, &parker.unparker.inner)
    }

    /// Indicates whether two unparkers will unpark the same parker.
    ///
    /// # Examples
    ///
    /// ```
    /// use parking::Parker;
    ///
    /// let p = Parker::new();
    /// let u1 = p.unparker();
    /// let u2 = p.unparker();
    ///
    /// assert!(u1.same_parker(&u2));
    /// ```
    pub fn same_parker(&self, other: &Unparker) -> bool {
        Arc::ptr_eq(&self.inner, &other.inner)
    }
}

impl fmt::Debug for Unparker {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.pad("Unparker { .. }")
    }
}

impl Clone for Unparker {
    fn clone(&self) -> Unparker {
        Unparker {
            inner: self.inner.clone(),
        }
    }
}

impl From<Unparker> for Waker {
    fn from(up: Unparker) -> Self {
        Waker::from(up.inner)
    }
}

const EMPTY: usize = 0;
const PARKED: usize = 1;
const NOTIFIED: usize = 2;

struct Inner {
    state: AtomicUsize,
    lock: Mutex<()>,
    cvar: Condvar,
}

impl Inner {
    fn park(&self, timeout: Option<Duration>) -> bool {
        // If we were previously notified then we consume this notification and return quickly.
        if self
            .state
            .compare_exchange(NOTIFIED, EMPTY, SeqCst, SeqCst)
            .is_ok()
        {
            return true;
        }

        // If the timeout is zero, then there is no need to actually block.
        if let Some(dur) = timeout {
            if dur == Duration::from_millis(0) {
                return false;
            }
        }

        // Otherwise we need to coordinate going to sleep.
        let mut m = self.lock.lock().unwrap();

        match self.state.compare_exchange(EMPTY, PARKED, SeqCst, SeqCst) {
            Ok(_) => {}
            // Consume this notification to avoid spurious wakeups in the next park.
            Err(NOTIFIED) => {
                // We must read `state` here, even though we know it will be `NOTIFIED`. This is
                // because `unpark` may have been called again since we read `NOTIFIED` in the
                // `compare_exchange` above. We must perform an acquire operation that synchronizes
                // with that `unpark` to observe any writes it made before the call to `unpark`. To
                // do that we must read from the write it made to `state`.
                let old = self.state.swap(EMPTY, SeqCst);
                assert_eq!(old, NOTIFIED, "park state changed unexpectedly");
                return true;
            }
            Err(n) => panic!("inconsistent park_timeout state: {}", n),
        }

        match timeout {
            None => {
                loop {
                    // Block the current thread on the conditional variable.
                    m = self.cvar.wait(m).unwrap();

                    if self
                        .state
                        .compare_exchange(NOTIFIED, EMPTY, SeqCst, SeqCst)
                        .is_ok()
                    {
                        // got a notification
                        return true;
                    }
                }
            }
            Some(timeout) => {
                #[cfg(not(loom))]
                {
                    // Wait with a timeout, and if we spuriously wake up or otherwise wake up from a
                    // notification we just want to unconditionally set `state` back to `EMPTY`, either
                    // consuming a notification or un-flagging ourselves as parked.
                    let (_m, _result) = self.cvar.wait_timeout(m, timeout).unwrap();

                    match self.state.swap(EMPTY, SeqCst) {
                        NOTIFIED => true, // got a notification
                        PARKED => false,  // no notification
                        n => panic!("inconsistent park_timeout state: {}", n),
                    }
                }

                #[cfg(loom)]
                {
                    let _ = timeout;
                    panic!("park_timeout is not supported under loom");
                }
            }
        }
    }

    pub fn unpark(&self) -> bool {
        // To ensure the unparked thread will observe any writes we made before this call, we must
        // perform a release operation that `park` can synchronize with. To do that we must write
        // `NOTIFIED` even if `state` is already `NOTIFIED`. That is why this must be a swap rather
        // than a compare-and-swap that returns if it reads `NOTIFIED` on failure.
        match self.state.swap(NOTIFIED, SeqCst) {
            EMPTY => return true,     // no one was waiting
            NOTIFIED => return false, // already unparked
            PARKED => {}              // gotta go wake someone up
            _ => panic!("inconsistent state in unpark"),
        }

        // There is a period between when the parked thread sets `state` to `PARKED` (or last
        // checked `state` in the case of a spurious wakeup) and when it actually waits on `cvar`.
        // If we were to notify during this period it would be ignored and then when the parked
        // thread went to sleep it would never wake up. Fortunately, it has `lock` locked at this
        // stage so we can acquire `lock` to wait until it is ready to receive the notification.
        //
        // Releasing `lock` before the call to `notify_one` means that when the parked thread wakes
        // it doesn't get woken only to have to wait for us to release `lock`.
        drop(self.lock.lock().unwrap());
        self.cvar.notify_one();
        true
    }
}

impl Wake for Inner {
    #[inline]
    fn wake(self: Arc<Self>) {
        self.unpark();
    }

    #[inline]
    fn wake_by_ref(self: &Arc<Self>) {
        self.unpark();
    }
}