1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
/*!
A lazy DFA backed `Regex`.
This module provides a [`Regex`] backed by a lazy DFA. A `Regex` implements
convenience routines you might have come to expect, such as finding a match
and iterating over all non-overlapping matches. This `Regex` type is limited
in its capabilities to what a lazy DFA can provide. Therefore, APIs involving
capturing groups, for example, are not provided.
Internally, a `Regex` is composed of two DFAs. One is a "forward" DFA that
finds the end offset of a match, where as the other is a "reverse" DFA that
find the start offset of a match.
See the [parent module](crate::hybrid) for examples.
*/
use crate::{
hybrid::{
dfa::{self, DFA},
error::BuildError,
},
nfa::thompson,
util::{
iter,
search::{Anchored, Input, Match, MatchError, MatchKind},
},
};
/// A regular expression that uses hybrid NFA/DFAs (also called "lazy DFAs")
/// for searching.
///
/// A regular expression is comprised of two lazy DFAs, a "forward" DFA and a
/// "reverse" DFA. The forward DFA is responsible for detecting the end of
/// a match while the reverse DFA is responsible for detecting the start
/// of a match. Thus, in order to find the bounds of any given match, a
/// forward search must first be run followed by a reverse search. A match
/// found by the forward DFA guarantees that the reverse DFA will also find
/// a match.
///
/// # Fallibility
///
/// Most of the search routines defined on this type will _panic_ when the
/// underlying search fails. This might be because the DFA gave up because it
/// saw a quit byte, whether configured explicitly or via heuristic Unicode
/// word boundary support, although neither are enabled by default. It might
/// also fail if the underlying DFA determines it isn't making effective use of
/// the cache (which also never happens by default). Or it might fail because
/// an invalid `Input` configuration is given, for example, with an unsupported
/// [`Anchored`] mode.
///
/// If you need to handle these error cases instead of allowing them to trigger
/// a panic, then the lower level [`Regex::try_search`] provides a fallible API
/// that never panics.
///
/// # Example
///
/// This example shows how to cause a search to terminate if it sees a
/// `\n` byte, and handle the error returned. This could be useful if, for
/// example, you wanted to prevent a user supplied pattern from matching
/// across a line boundary.
///
/// ```
/// # if cfg!(miri) { return Ok(()); } // miri takes too long
/// use regex_automata::{hybrid::{dfa, regex::Regex}, Input, MatchError};
///
/// let re = Regex::builder()
/// .dfa(dfa::Config::new().quit(b'\n', true))
/// .build(r"foo\p{any}+bar")?;
/// let mut cache = re.create_cache();
///
/// let input = Input::new("foo\nbar");
/// // Normally this would produce a match, since \p{any} contains '\n'.
/// // But since we instructed the automaton to enter a quit state if a
/// // '\n' is observed, this produces a match error instead.
/// let expected = MatchError::quit(b'\n', 3);
/// let got = re.try_search(&mut cache, &input).unwrap_err();
/// assert_eq!(expected, got);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[derive(Debug)]
pub struct Regex {
/// The forward lazy DFA. This can only find the end of a match.
forward: DFA,
/// The reverse lazy DFA. This can only find the start of a match.
///
/// This is built with 'all' match semantics (instead of leftmost-first)
/// so that it always finds the longest possible match (which corresponds
/// to the leftmost starting position). It is also compiled as an anchored
/// matcher and has 'starts_for_each_pattern' enabled. Including starting
/// states for each pattern is necessary to ensure that we only look for
/// matches of a pattern that matched in the forward direction. Otherwise,
/// we might wind up finding the "leftmost" starting position of a totally
/// different pattern!
reverse: DFA,
}
/// Convenience routines for regex and cache construction.
impl Regex {
/// Parse the given regular expression using the default configuration and
/// return the corresponding regex.
///
/// If you want a non-default configuration, then use the [`Builder`] to
/// set your own configuration.
///
/// # Example
///
/// ```
/// use regex_automata::{hybrid::regex::Regex, Match};
///
/// let re = Regex::new("foo[0-9]+bar")?;
/// let mut cache = re.create_cache();
/// assert_eq!(
/// Some(Match::must(0, 3..14)),
/// re.find(&mut cache, "zzzfoo12345barzzz"),
/// );
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[cfg(feature = "syntax")]
pub fn new(pattern: &str) -> Result<Regex, BuildError> {
Regex::builder().build(pattern)
}
/// Like `new`, but parses multiple patterns into a single "multi regex."
/// This similarly uses the default regex configuration.
///
/// # Example
///
/// ```
/// use regex_automata::{hybrid::regex::Regex, Match};
///
/// let re = Regex::new_many(&["[a-z]+", "[0-9]+"])?;
/// let mut cache = re.create_cache();
///
/// let mut it = re.find_iter(&mut cache, "abc 1 foo 4567 0 quux");
/// assert_eq!(Some(Match::must(0, 0..3)), it.next());
/// assert_eq!(Some(Match::must(1, 4..5)), it.next());
/// assert_eq!(Some(Match::must(0, 6..9)), it.next());
/// assert_eq!(Some(Match::must(1, 10..14)), it.next());
/// assert_eq!(Some(Match::must(1, 15..16)), it.next());
/// assert_eq!(Some(Match::must(0, 17..21)), it.next());
/// assert_eq!(None, it.next());
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[cfg(feature = "syntax")]
pub fn new_many<P: AsRef<str>>(
patterns: &[P],
) -> Result<Regex, BuildError> {
Regex::builder().build_many(patterns)
}
/// Return a builder for configuring the construction of a `Regex`.
///
/// This is a convenience routine to avoid needing to import the
/// [`Builder`] type in common cases.
///
/// # Example
///
/// This example shows how to use the builder to disable UTF-8 mode
/// everywhere.
///
/// ```
/// # if cfg!(miri) { return Ok(()); } // miri takes too long
/// use regex_automata::{
/// hybrid::regex::Regex, nfa::thompson, util::syntax, Match,
/// };
///
/// let re = Regex::builder()
/// .syntax(syntax::Config::new().utf8(false))
/// .thompson(thompson::Config::new().utf8(false))
/// .build(r"foo(?-u:[^b])ar.*")?;
/// let mut cache = re.create_cache();
///
/// let haystack = b"\xFEfoo\xFFarzz\xE2\x98\xFF\n";
/// let expected = Some(Match::must(0, 1..9));
/// let got = re.find(&mut cache, haystack);
/// assert_eq!(expected, got);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn builder() -> Builder {
Builder::new()
}
/// Create a new cache for this `Regex`.
///
/// The cache returned should only be used for searches for this
/// `Regex`. If you want to reuse the cache for another `Regex`, then
/// you must call [`Cache::reset`] with that `Regex` (or, equivalently,
/// [`Regex::reset_cache`]).
pub fn create_cache(&self) -> Cache {
Cache::new(self)
}
/// Reset the given cache such that it can be used for searching with the
/// this `Regex` (and only this `Regex`).
///
/// A cache reset permits reusing memory already allocated in this cache
/// with a different `Regex`.
///
/// Resetting a cache sets its "clear count" to 0. This is relevant if the
/// `Regex` has been configured to "give up" after it has cleared the cache
/// a certain number of times.
///
/// # Example
///
/// This shows how to re-purpose a cache for use with a different `Regex`.
///
/// ```
/// # if cfg!(miri) { return Ok(()); } // miri takes too long
/// use regex_automata::{hybrid::regex::Regex, Match};
///
/// let re1 = Regex::new(r"\w")?;
/// let re2 = Regex::new(r"\W")?;
///
/// let mut cache = re1.create_cache();
/// assert_eq!(
/// Some(Match::must(0, 0..2)),
/// re1.find(&mut cache, "Δ"),
/// );
///
/// // Using 'cache' with re2 is not allowed. It may result in panics or
/// // incorrect results. In order to re-purpose the cache, we must reset
/// // it with the Regex we'd like to use it with.
/// //
/// // Similarly, after this reset, using the cache with 're1' is also not
/// // allowed.
/// re2.reset_cache(&mut cache);
/// assert_eq!(
/// Some(Match::must(0, 0..3)),
/// re2.find(&mut cache, "☃"),
/// );
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn reset_cache(&self, cache: &mut Cache) {
self.forward().reset_cache(&mut cache.forward);
self.reverse().reset_cache(&mut cache.reverse);
}
}
/// Standard infallible search routines for finding and iterating over matches.
impl Regex {
/// Returns true if and only if this regex matches the given haystack.
///
/// This routine may short circuit if it knows that scanning future input
/// will never lead to a different result. In particular, if the underlying
/// DFA enters a match state or a dead state, then this routine will return
/// `true` or `false`, respectively, without inspecting any future input.
///
/// # Panics
///
/// This routine panics if the search could not complete. This can occur
/// in a number of circumstances:
///
/// * The configuration of the lazy DFA may permit it to "quit" the search.
/// For example, setting quit bytes or enabling heuristic support for
/// Unicode word boundaries. The default configuration does not enable any
/// option that could result in the lazy DFA quitting.
/// * The configuration of the lazy DFA may also permit it to "give up"
/// on a search if it makes ineffective use of its transition table
/// cache. The default configuration does not enable this by default,
/// although it is typically a good idea to.
/// * When the provided `Input` configuration is not supported. For
/// example, by providing an unsupported anchor mode.
///
/// When a search panics, callers cannot know whether a match exists or
/// not.
///
/// Use [`Regex::try_search`] if you want to handle these error conditions.
///
/// # Example
///
/// ```
/// use regex_automata::hybrid::regex::Regex;
///
/// let re = Regex::new("foo[0-9]+bar")?;
/// let mut cache = re.create_cache();
///
/// assert!(re.is_match(&mut cache, "foo12345bar"));
/// assert!(!re.is_match(&mut cache, "foobar"));
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn is_match<'h, I: Into<Input<'h>>>(
&self,
cache: &mut Cache,
input: I,
) -> bool {
// Not only can we do an "earliest" search, but we can avoid doing a
// reverse scan too.
self.forward()
.try_search_fwd(&mut cache.forward, &input.into().earliest(true))
.unwrap()
.is_some()
}
/// Returns the start and end offset of the leftmost match. If no match
/// exists, then `None` is returned.
///
/// # Panics
///
/// This routine panics if the search could not complete. This can occur
/// in a number of circumstances:
///
/// * The configuration of the lazy DFA may permit it to "quit" the search.
/// For example, setting quit bytes or enabling heuristic support for
/// Unicode word boundaries. The default configuration does not enable any
/// option that could result in the lazy DFA quitting.
/// * The configuration of the lazy DFA may also permit it to "give up"
/// on a search if it makes ineffective use of its transition table
/// cache. The default configuration does not enable this by default,
/// although it is typically a good idea to.
/// * When the provided `Input` configuration is not supported. For
/// example, by providing an unsupported anchor mode.
///
/// When a search panics, callers cannot know whether a match exists or
/// not.
///
/// Use [`Regex::try_search`] if you want to handle these error conditions.
///
/// # Example
///
/// ```
/// use regex_automata::{Match, hybrid::regex::Regex};
///
/// let re = Regex::new("foo[0-9]+")?;
/// let mut cache = re.create_cache();
/// assert_eq!(
/// Some(Match::must(0, 3..11)),
/// re.find(&mut cache, "zzzfoo12345zzz"),
/// );
///
/// // Even though a match is found after reading the first byte (`a`),
/// // the default leftmost-first match semantics demand that we find the
/// // earliest match that prefers earlier parts of the pattern over latter
/// // parts.
/// let re = Regex::new("abc|a")?;
/// let mut cache = re.create_cache();
/// assert_eq!(Some(Match::must(0, 0..3)), re.find(&mut cache, "abc"));
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn find<'h, I: Into<Input<'h>>>(
&self,
cache: &mut Cache,
input: I,
) -> Option<Match> {
self.try_search(cache, &input.into()).unwrap()
}
/// Returns an iterator over all non-overlapping leftmost matches in the
/// given bytes. If no match exists, then the iterator yields no elements.
///
/// # Panics
///
/// This routine panics if the search could not complete. This can occur
/// in a number of circumstances:
///
/// * The configuration of the lazy DFA may permit it to "quit" the search.
/// For example, setting quit bytes or enabling heuristic support for
/// Unicode word boundaries. The default configuration does not enable any
/// option that could result in the lazy DFA quitting.
/// * The configuration of the lazy DFA may also permit it to "give up"
/// on a search if it makes ineffective use of its transition table
/// cache. The default configuration does not enable this by default,
/// although it is typically a good idea to.
/// * When the provided `Input` configuration is not supported. For
/// example, by providing an unsupported anchor mode.
///
/// When a search panics, callers cannot know whether a match exists or
/// not.
///
/// The above conditions also apply to the iterator returned as well. For
/// example, if the lazy DFA gives up or quits during a search using this
/// method, then a panic will occur during iteration.
///
/// Use [`Regex::try_search`] with [`util::iter::Searcher`](iter::Searcher)
/// if you want to handle these error conditions.
///
/// # Example
///
/// ```
/// use regex_automata::{hybrid::regex::Regex, Match};
///
/// let re = Regex::new("foo[0-9]+")?;
/// let mut cache = re.create_cache();
///
/// let text = "foo1 foo12 foo123";
/// let matches: Vec<Match> = re.find_iter(&mut cache, text).collect();
/// assert_eq!(matches, vec![
/// Match::must(0, 0..4),
/// Match::must(0, 5..10),
/// Match::must(0, 11..17),
/// ]);
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn find_iter<'r, 'c, 'h, I: Into<Input<'h>>>(
&'r self,
cache: &'c mut Cache,
input: I,
) -> FindMatches<'r, 'c, 'h> {
let it = iter::Searcher::new(input.into());
FindMatches { re: self, cache, it }
}
}
/// Lower level "search" primitives that accept a `&Input` for cheap reuse
/// and return an error if one occurs instead of panicking.
impl Regex {
/// Returns the start and end offset of the leftmost match. If no match
/// exists, then `None` is returned.
///
/// This is like [`Regex::find`] but with two differences:
///
/// 1. It is not generic over `Into<Input>` and instead accepts a
/// `&Input`. This permits reusing the same `Input` for multiple searches
/// without needing to create a new one. This _may_ help with latency.
/// 2. It returns an error if the search could not complete where as
/// [`Regex::find`] will panic.
///
/// # Errors
///
/// This routine errors if the search could not complete. This can occur
/// in a number of circumstances:
///
/// * The configuration of the lazy DFA may permit it to "quit" the search.
/// For example, setting quit bytes or enabling heuristic support for
/// Unicode word boundaries. The default configuration does not enable any
/// option that could result in the lazy DFA quitting.
/// * The configuration of the lazy DFA may also permit it to "give up"
/// on a search if it makes ineffective use of its transition table
/// cache. The default configuration does not enable this by default,
/// although it is typically a good idea to.
/// * When the provided `Input` configuration is not supported. For
/// example, by providing an unsupported anchor mode.
///
/// When a search returns an error, callers cannot know whether a match
/// exists or not.
#[inline]
pub fn try_search(
&self,
cache: &mut Cache,
input: &Input<'_>,
) -> Result<Option<Match>, MatchError> {
let (fcache, rcache) = (&mut cache.forward, &mut cache.reverse);
let end = match self.forward().try_search_fwd(fcache, input)? {
None => return Ok(None),
Some(end) => end,
};
// This special cases an empty match at the beginning of the search. If
// our end matches our start, then since a reverse DFA can't match past
// the start, it must follow that our starting position is also our end
// position. So short circuit and skip the reverse search.
if input.start() == end.offset() {
return Ok(Some(Match::new(
end.pattern(),
end.offset()..end.offset(),
)));
}
// We can also skip the reverse search if we know our search was
// anchored. This occurs either when the input config is anchored or
// when we know the regex itself is anchored. In this case, we know the
// start of the match, if one is found, must be the start of the
// search.
if self.is_anchored(input) {
return Ok(Some(Match::new(
end.pattern(),
input.start()..end.offset(),
)));
}
// N.B. I have tentatively convinced myself that it isn't necessary
// to specify the specific pattern for the reverse search since the
// reverse search will always find the same pattern to match as the
// forward search. But I lack a rigorous proof. Why not just provide
// the pattern anyway? Well, if it is needed, then leaving it out
// gives us a chance to find a witness. (Also, if we don't need to
// specify the pattern, then we don't need to build the reverse DFA
// with 'starts_for_each_pattern' enabled. It doesn't matter too much
// for the lazy DFA, but does make the overall DFA bigger.)
//
// We also need to be careful to disable 'earliest' for the reverse
// search, since it could be enabled for the forward search. In the
// reverse case, to satisfy "leftmost" criteria, we need to match as
// much as we can. We also need to be careful to make the search
// anchored. We don't want the reverse search to report any matches
// other than the one beginning at the end of our forward search.
let revsearch = input
.clone()
.span(input.start()..end.offset())
.anchored(Anchored::Yes)
.earliest(false);
let start = self
.reverse()
.try_search_rev(rcache, &revsearch)?
.expect("reverse search must match if forward search does");
debug_assert_eq!(
start.pattern(),
end.pattern(),
"forward and reverse search must match same pattern",
);
debug_assert!(start.offset() <= end.offset());
Ok(Some(Match::new(end.pattern(), start.offset()..end.offset())))
}
/// Returns true if either the given input specifies an anchored search
/// or if the underlying NFA is always anchored.
fn is_anchored(&self, input: &Input<'_>) -> bool {
match input.get_anchored() {
Anchored::No => {
self.forward().get_nfa().is_always_start_anchored()
}
Anchored::Yes | Anchored::Pattern(_) => true,
}
}
}
/// Non-search APIs for querying information about the regex and setting a
/// prefilter.
impl Regex {
/// Return the underlying lazy DFA responsible for forward matching.
///
/// This is useful for accessing the underlying lazy DFA and using it
/// directly if the situation calls for it.
pub fn forward(&self) -> &DFA {
&self.forward
}
/// Return the underlying lazy DFA responsible for reverse matching.
///
/// This is useful for accessing the underlying lazy DFA and using it
/// directly if the situation calls for it.
pub fn reverse(&self) -> &DFA {
&self.reverse
}
/// Returns the total number of patterns matched by this regex.
///
/// # Example
///
/// ```
/// # if cfg!(miri) { return Ok(()); } // miri takes too long
/// use regex_automata::hybrid::regex::Regex;
///
/// let re = Regex::new_many(&[r"[a-z]+", r"[0-9]+", r"\w+"])?;
/// assert_eq!(3, re.pattern_len());
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn pattern_len(&self) -> usize {
assert_eq!(self.forward().pattern_len(), self.reverse().pattern_len());
self.forward().pattern_len()
}
}
/// An iterator over all non-overlapping matches for an infallible search.
///
/// The iterator yields a [`Match`] value until no more matches could be found.
/// If the underlying regex engine returns an error, then a panic occurs.
///
/// The lifetime parameters are as follows:
///
/// * `'r` represents the lifetime of the regex object.
/// * `'h` represents the lifetime of the haystack being searched.
/// * `'c` represents the lifetime of the regex cache.
///
/// This iterator can be created with the [`Regex::find_iter`] method.
#[derive(Debug)]
pub struct FindMatches<'r, 'c, 'h> {
re: &'r Regex,
cache: &'c mut Cache,
it: iter::Searcher<'h>,
}
impl<'r, 'c, 'h> Iterator for FindMatches<'r, 'c, 'h> {
type Item = Match;
#[inline]
fn next(&mut self) -> Option<Match> {
let FindMatches { re, ref mut cache, ref mut it } = *self;
it.advance(|input| re.try_search(cache, input))
}
}
/// A cache represents a partially computed forward and reverse DFA.
///
/// A cache is the key component that differentiates a classical DFA and a
/// hybrid NFA/DFA (also called a "lazy DFA"). Where a classical DFA builds a
/// complete transition table that can handle all possible inputs, a hybrid
/// NFA/DFA starts with an empty transition table and builds only the parts
/// required during search. The parts that are built are stored in a cache. For
/// this reason, a cache is a required parameter for nearly every operation on
/// a [`Regex`].
///
/// Caches can be created from their corresponding `Regex` via
/// [`Regex::create_cache`]. A cache can only be used with either the `Regex`
/// that created it, or the `Regex` that was most recently used to reset it
/// with [`Cache::reset`]. Using a cache with any other `Regex` may result in
/// panics or incorrect results.
#[derive(Debug, Clone)]
pub struct Cache {
forward: dfa::Cache,
reverse: dfa::Cache,
}
impl Cache {
/// Create a new cache for the given `Regex`.
///
/// The cache returned should only be used for searches for the given
/// `Regex`. If you want to reuse the cache for another `Regex`, then you
/// must call [`Cache::reset`] with that `Regex`.
pub fn new(re: &Regex) -> Cache {
let forward = dfa::Cache::new(re.forward());
let reverse = dfa::Cache::new(re.reverse());
Cache { forward, reverse }
}
/// Reset this cache such that it can be used for searching with the given
/// `Regex` (and only that `Regex`).
///
/// A cache reset permits reusing memory already allocated in this cache
/// with a different `Regex`.
///
/// Resetting a cache sets its "clear count" to 0. This is relevant if the
/// `Regex` has been configured to "give up" after it has cleared the cache
/// a certain number of times.
///
/// # Example
///
/// This shows how to re-purpose a cache for use with a different `Regex`.
///
/// ```
/// # if cfg!(miri) { return Ok(()); } // miri takes too long
/// use regex_automata::{hybrid::regex::Regex, Match};
///
/// let re1 = Regex::new(r"\w")?;
/// let re2 = Regex::new(r"\W")?;
///
/// let mut cache = re1.create_cache();
/// assert_eq!(
/// Some(Match::must(0, 0..2)),
/// re1.find(&mut cache, "Δ"),
/// );
///
/// // Using 'cache' with re2 is not allowed. It may result in panics or
/// // incorrect results. In order to re-purpose the cache, we must reset
/// // it with the Regex we'd like to use it with.
/// //
/// // Similarly, after this reset, using the cache with 're1' is also not
/// // allowed.
/// cache.reset(&re2);
/// assert_eq!(
/// Some(Match::must(0, 0..3)),
/// re2.find(&mut cache, "☃"),
/// );
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn reset(&mut self, re: &Regex) {
self.forward.reset(re.forward());
self.reverse.reset(re.reverse());
}
/// Return a reference to the forward cache.
pub fn forward(&mut self) -> &dfa::Cache {
&self.forward
}
/// Return a reference to the reverse cache.
pub fn reverse(&mut self) -> &dfa::Cache {
&self.reverse
}
/// Return a mutable reference to the forward cache.
///
/// If you need mutable references to both the forward and reverse caches,
/// then use [`Cache::as_parts_mut`].
pub fn forward_mut(&mut self) -> &mut dfa::Cache {
&mut self.forward
}
/// Return a mutable reference to the reverse cache.
///
/// If you need mutable references to both the forward and reverse caches,
/// then use [`Cache::as_parts_mut`].
pub fn reverse_mut(&mut self) -> &mut dfa::Cache {
&mut self.reverse
}
/// Return references to the forward and reverse caches, respectively.
pub fn as_parts(&self) -> (&dfa::Cache, &dfa::Cache) {
(&self.forward, &self.reverse)
}
/// Return mutable references to the forward and reverse caches,
/// respectively.
pub fn as_parts_mut(&mut self) -> (&mut dfa::Cache, &mut dfa::Cache) {
(&mut self.forward, &mut self.reverse)
}
/// Returns the heap memory usage, in bytes, as a sum of the forward and
/// reverse lazy DFA caches.
///
/// This does **not** include the stack size used up by this cache. To
/// compute that, use `std::mem::size_of::<Cache>()`.
pub fn memory_usage(&self) -> usize {
self.forward.memory_usage() + self.reverse.memory_usage()
}
}
/// A builder for a regex based on a hybrid NFA/DFA.
///
/// This builder permits configuring options for the syntax of a pattern, the
/// NFA construction, the lazy DFA construction and finally the regex searching
/// itself. This builder is different from a general purpose regex builder
/// in that it permits fine grain configuration of the construction process.
/// The trade off for this is complexity, and the possibility of setting a
/// configuration that might not make sense. For example, there are two
/// different UTF-8 modes:
///
/// * [`syntax::Config::utf8`](crate::util::syntax::Config::utf8) controls
/// whether the pattern itself can contain sub-expressions that match invalid
/// UTF-8.
/// * [`thompson::Config::utf8`] controls how the regex iterators themselves
/// advance the starting position of the next search when a match with zero
/// length is found.
///
/// Generally speaking, callers will want to either enable all of these or
/// disable all of these.
///
/// Internally, building a regex requires building two hybrid NFA/DFAs,
/// where one is responsible for finding the end of a match and the other is
/// responsible for finding the start of a match. If you only need to detect
/// whether something matched, or only the end of a match, then you should use
/// a [`dfa::Builder`] to construct a single hybrid NFA/DFA, which is cheaper
/// than building two of them.
///
/// # Example
///
/// This example shows how to disable UTF-8 mode in the syntax and the regex
/// itself. This is generally what you want for matching on arbitrary bytes.
///
/// ```
/// # if cfg!(miri) { return Ok(()); } // miri takes too long
/// use regex_automata::{
/// hybrid::regex::Regex, nfa::thompson, util::syntax, Match,
/// };
///
/// let re = Regex::builder()
/// .syntax(syntax::Config::new().utf8(false))
/// .thompson(thompson::Config::new().utf8(false))
/// .build(r"foo(?-u:[^b])ar.*")?;
/// let mut cache = re.create_cache();
///
/// let haystack = b"\xFEfoo\xFFarzz\xE2\x98\xFF\n";
/// let expected = Some(Match::must(0, 1..9));
/// let got = re.find(&mut cache, haystack);
/// assert_eq!(expected, got);
/// // Notice that `(?-u:[^b])` matches invalid UTF-8,
/// // but the subsequent `.*` does not! Disabling UTF-8
/// // on the syntax permits this.
/// assert_eq!(b"foo\xFFarzz", &haystack[got.unwrap().range()]);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[derive(Clone, Debug)]
pub struct Builder {
dfa: dfa::Builder,
}
impl Builder {
/// Create a new regex builder with the default configuration.
pub fn new() -> Builder {
Builder { dfa: DFA::builder() }
}
/// Build a regex from the given pattern.
///
/// If there was a problem parsing or compiling the pattern, then an error
/// is returned.
#[cfg(feature = "syntax")]
pub fn build(&self, pattern: &str) -> Result<Regex, BuildError> {
self.build_many(&[pattern])
}
/// Build a regex from the given patterns.
#[cfg(feature = "syntax")]
pub fn build_many<P: AsRef<str>>(
&self,
patterns: &[P],
) -> Result<Regex, BuildError> {
let forward = self.dfa.build_many(patterns)?;
let reverse = self
.dfa
.clone()
.configure(
DFA::config()
.prefilter(None)
.specialize_start_states(false)
.match_kind(MatchKind::All),
)
.thompson(thompson::Config::new().reverse(true))
.build_many(patterns)?;
Ok(self.build_from_dfas(forward, reverse))
}
/// Build a regex from its component forward and reverse hybrid NFA/DFAs.
///
/// This is useful when you've built a forward and reverse lazy DFA
/// separately, and want to combine them into a single regex. Once build,
/// the individual DFAs given can still be accessed via [`Regex::forward`]
/// and [`Regex::reverse`].
///
/// It is important that the reverse lazy DFA be compiled under the
/// following conditions:
///
/// * It should use [`MatchKind::All`] semantics.
/// * It should match in reverse.
/// * Otherwise, its configuration should match the forward DFA.
///
/// If these conditions aren't satisfied, then the behavior of searches is
/// unspecified.
///
/// Note that when using this constructor, no configuration is applied.
/// Since this routine provides the DFAs to the builder, there is no
/// opportunity to apply other configuration options.
///
/// # Example
///
/// This shows how to build individual lazy forward and reverse DFAs, and
/// then combine them into a single `Regex`.
///
/// ```
/// use regex_automata::{
/// hybrid::{dfa::DFA, regex::Regex},
/// nfa::thompson,
/// MatchKind,
/// };
///
/// let fwd = DFA::new(r"foo[0-9]+")?;
/// let rev = DFA::builder()
/// .configure(DFA::config().match_kind(MatchKind::All))
/// .thompson(thompson::Config::new().reverse(true))
/// .build(r"foo[0-9]+")?;
///
/// let re = Regex::builder().build_from_dfas(fwd, rev);
/// let mut cache = re.create_cache();
/// assert_eq!(true, re.is_match(&mut cache, "foo123"));
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn build_from_dfas(&self, forward: DFA, reverse: DFA) -> Regex {
Regex { forward, reverse }
}
/// Set the syntax configuration for this builder using
/// [`syntax::Config`](crate::util::syntax::Config).
///
/// This permits setting things like case insensitivity, Unicode and multi
/// line mode.
#[cfg(feature = "syntax")]
pub fn syntax(
&mut self,
config: crate::util::syntax::Config,
) -> &mut Builder {
self.dfa.syntax(config);
self
}
/// Set the Thompson NFA configuration for this builder using
/// [`nfa::thompson::Config`](thompson::Config).
///
/// This permits setting things like whether additional time should be
/// spent shrinking the size of the NFA.
#[cfg(feature = "syntax")]
pub fn thompson(&mut self, config: thompson::Config) -> &mut Builder {
self.dfa.thompson(config);
self
}
/// Set the lazy DFA compilation configuration for this builder using
/// [`dfa::Config`].
///
/// This permits setting things like whether Unicode word boundaries should
/// be heuristically supported or settings how the behavior of the cache.
pub fn dfa(&mut self, config: dfa::Config) -> &mut Builder {
self.dfa.configure(config);
self
}
}
impl Default for Builder {
fn default() -> Builder {
Builder::new()
}
}