1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
/*!
This module provides a regular expression printer for `Hir`.
*/

use core::fmt;

use crate::{
    hir::{
        self,
        visitor::{self, Visitor},
        Hir, HirKind,
    },
    is_meta_character,
};

/// A builder for constructing a printer.
///
/// Note that since a printer doesn't have any configuration knobs, this type
/// remains unexported.
#[derive(Clone, Debug)]
struct PrinterBuilder {
    _priv: (),
}

impl Default for PrinterBuilder {
    fn default() -> PrinterBuilder {
        PrinterBuilder::new()
    }
}

impl PrinterBuilder {
    fn new() -> PrinterBuilder {
        PrinterBuilder { _priv: () }
    }

    fn build(&self) -> Printer {
        Printer { _priv: () }
    }
}

/// A printer for a regular expression's high-level intermediate
/// representation.
///
/// A printer converts a high-level intermediate representation (HIR) to a
/// regular expression pattern string. This particular printer uses constant
/// stack space and heap space proportional to the size of the HIR.
///
/// Since this printer is only using the HIR, the pattern it prints will likely
/// not resemble the original pattern at all. For example, a pattern like
/// `\pL` will have its entire class written out.
///
/// The purpose of this printer is to provide a means to mutate an HIR and then
/// build a regular expression from the result of that mutation. (A regex
/// library could provide a constructor from this HIR explicitly, but that
/// creates an unnecessary public coupling between the regex library and this
/// specific HIR representation.)
#[derive(Debug)]
pub struct Printer {
    _priv: (),
}

impl Printer {
    /// Create a new printer.
    pub fn new() -> Printer {
        PrinterBuilder::new().build()
    }

    /// Print the given `Ast` to the given writer. The writer must implement
    /// `fmt::Write`. Typical implementations of `fmt::Write` that can be used
    /// here are a `fmt::Formatter` (which is available in `fmt::Display`
    /// implementations) or a `&mut String`.
    pub fn print<W: fmt::Write>(&mut self, hir: &Hir, wtr: W) -> fmt::Result {
        visitor::visit(hir, Writer { wtr })
    }
}

#[derive(Debug)]
struct Writer<W> {
    wtr: W,
}

impl<W: fmt::Write> Visitor for Writer<W> {
    type Output = ();
    type Err = fmt::Error;

    fn finish(self) -> fmt::Result {
        Ok(())
    }

    fn visit_pre(&mut self, hir: &Hir) -> fmt::Result {
        match *hir.kind() {
            HirKind::Empty => {
                // Technically an empty sub-expression could be "printed" by
                // just ignoring it, but in practice, you could have a
                // repetition operator attached to an empty expression, and you
                // really need something in the concrete syntax to make that
                // work as you'd expect.
                self.wtr.write_str(r"(?:)")?;
            }
            // Repetition operators are strictly suffix oriented.
            HirKind::Repetition(_) => {}
            HirKind::Literal(hir::Literal(ref bytes)) => {
                // See the comment on the 'Concat' and 'Alternation' case below
                // for why we put parens here. Literals are, conceptually,
                // a special case of concatenation where each element is a
                // character. The HIR flattens this into a Box<[u8]>, but we
                // still need to treat it like a concatenation for correct
                // printing. As a special case, we don't write parens if there
                // is only one character. One character means there is no
                // concat so we don't need parens. Adding parens would still be
                // correct, but we drop them here because it tends to create
                // rather noisy regexes even in simple cases.
                let result = core::str::from_utf8(bytes);
                let len = result.map_or(bytes.len(), |s| s.chars().count());
                if len > 1 {
                    self.wtr.write_str(r"(?:")?;
                }
                match result {
                    Ok(string) => {
                        for c in string.chars() {
                            self.write_literal_char(c)?;
                        }
                    }
                    Err(_) => {
                        for &b in bytes.iter() {
                            self.write_literal_byte(b)?;
                        }
                    }
                }
                if len > 1 {
                    self.wtr.write_str(r")")?;
                }
            }
            HirKind::Class(hir::Class::Unicode(ref cls)) => {
                if cls.ranges().is_empty() {
                    return self.wtr.write_str("[a&&b]");
                }
                self.wtr.write_str("[")?;
                for range in cls.iter() {
                    if range.start() == range.end() {
                        self.write_literal_char(range.start())?;
                    } else if u32::from(range.start()) + 1
                        == u32::from(range.end())
                    {
                        self.write_literal_char(range.start())?;
                        self.write_literal_char(range.end())?;
                    } else {
                        self.write_literal_char(range.start())?;
                        self.wtr.write_str("-")?;
                        self.write_literal_char(range.end())?;
                    }
                }
                self.wtr.write_str("]")?;
            }
            HirKind::Class(hir::Class::Bytes(ref cls)) => {
                if cls.ranges().is_empty() {
                    return self.wtr.write_str("[a&&b]");
                }
                self.wtr.write_str("(?-u:[")?;
                for range in cls.iter() {
                    if range.start() == range.end() {
                        self.write_literal_class_byte(range.start())?;
                    } else if range.start() + 1 == range.end() {
                        self.write_literal_class_byte(range.start())?;
                        self.write_literal_class_byte(range.end())?;
                    } else {
                        self.write_literal_class_byte(range.start())?;
                        self.wtr.write_str("-")?;
                        self.write_literal_class_byte(range.end())?;
                    }
                }
                self.wtr.write_str("])")?;
            }
            HirKind::Look(ref look) => match *look {
                hir::Look::Start => {
                    self.wtr.write_str(r"\A")?;
                }
                hir::Look::End => {
                    self.wtr.write_str(r"\z")?;
                }
                hir::Look::StartLF => {
                    self.wtr.write_str("(?m:^)")?;
                }
                hir::Look::EndLF => {
                    self.wtr.write_str("(?m:$)")?;
                }
                hir::Look::StartCRLF => {
                    self.wtr.write_str("(?mR:^)")?;
                }
                hir::Look::EndCRLF => {
                    self.wtr.write_str("(?mR:$)")?;
                }
                hir::Look::WordAscii => {
                    self.wtr.write_str(r"(?-u:\b)")?;
                }
                hir::Look::WordAsciiNegate => {
                    self.wtr.write_str(r"(?-u:\B)")?;
                }
                hir::Look::WordUnicode => {
                    self.wtr.write_str(r"\b")?;
                }
                hir::Look::WordUnicodeNegate => {
                    self.wtr.write_str(r"\B")?;
                }
                hir::Look::WordStartAscii => {
                    self.wtr.write_str(r"(?-u:\b{start})")?;
                }
                hir::Look::WordEndAscii => {
                    self.wtr.write_str(r"(?-u:\b{end})")?;
                }
                hir::Look::WordStartUnicode => {
                    self.wtr.write_str(r"\b{start}")?;
                }
                hir::Look::WordEndUnicode => {
                    self.wtr.write_str(r"\b{end}")?;
                }
                hir::Look::WordStartHalfAscii => {
                    self.wtr.write_str(r"(?-u:\b{start-half})")?;
                }
                hir::Look::WordEndHalfAscii => {
                    self.wtr.write_str(r"(?-u:\b{end-half})")?;
                }
                hir::Look::WordStartHalfUnicode => {
                    self.wtr.write_str(r"\b{start-half}")?;
                }
                hir::Look::WordEndHalfUnicode => {
                    self.wtr.write_str(r"\b{end-half}")?;
                }
            },
            HirKind::Capture(hir::Capture { ref name, .. }) => {
                self.wtr.write_str("(")?;
                if let Some(ref name) = *name {
                    write!(self.wtr, "?P<{}>", name)?;
                }
            }
            // Why do this? Wrapping concats and alts in non-capturing groups
            // is not *always* necessary, but is sometimes necessary. For
            // example, 'concat(a, alt(b, c))' should be written as 'a(?:b|c)'
            // and not 'ab|c'. The former is clearly the intended meaning, but
            // the latter is actually 'alt(concat(a, b), c)'.
            //
            // It would be possible to only group these things in cases where
            // it's strictly necessary, but it requires knowing the parent
            // expression. And since this technique is simpler and always
            // correct, we take this route. More to the point, it is a non-goal
            // of an HIR printer to show a nice easy-to-read regex. Indeed,
            // its construction forbids it from doing so. Therefore, inserting
            // extra groups where they aren't necessary is perfectly okay.
            HirKind::Concat(_) | HirKind::Alternation(_) => {
                self.wtr.write_str(r"(?:")?;
            }
        }
        Ok(())
    }

    fn visit_post(&mut self, hir: &Hir) -> fmt::Result {
        match *hir.kind() {
            // Handled during visit_pre
            HirKind::Empty
            | HirKind::Literal(_)
            | HirKind::Class(_)
            | HirKind::Look(_) => {}
            HirKind::Repetition(ref x) => {
                match (x.min, x.max) {
                    (0, Some(1)) => {
                        self.wtr.write_str("?")?;
                    }
                    (0, None) => {
                        self.wtr.write_str("*")?;
                    }
                    (1, None) => {
                        self.wtr.write_str("+")?;
                    }
                    (1, Some(1)) => {
                        // 'a{1}' and 'a{1}?' are exactly equivalent to 'a'.
                        return Ok(());
                    }
                    (m, None) => {
                        write!(self.wtr, "{{{},}}", m)?;
                    }
                    (m, Some(n)) if m == n => {
                        write!(self.wtr, "{{{}}}", m)?;
                        // a{m} and a{m}? are always exactly equivalent.
                        return Ok(());
                    }
                    (m, Some(n)) => {
                        write!(self.wtr, "{{{},{}}}", m, n)?;
                    }
                }
                if !x.greedy {
                    self.wtr.write_str("?")?;
                }
            }
            HirKind::Capture(_)
            | HirKind::Concat(_)
            | HirKind::Alternation(_) => {
                self.wtr.write_str(r")")?;
            }
        }
        Ok(())
    }

    fn visit_alternation_in(&mut self) -> fmt::Result {
        self.wtr.write_str("|")
    }
}

impl<W: fmt::Write> Writer<W> {
    fn write_literal_char(&mut self, c: char) -> fmt::Result {
        if is_meta_character(c) {
            self.wtr.write_str("\\")?;
        }
        self.wtr.write_char(c)
    }

    fn write_literal_byte(&mut self, b: u8) -> fmt::Result {
        if b <= 0x7F && !b.is_ascii_control() && !b.is_ascii_whitespace() {
            self.write_literal_char(char::try_from(b).unwrap())
        } else {
            write!(self.wtr, "(?-u:\\x{:02X})", b)
        }
    }

    fn write_literal_class_byte(&mut self, b: u8) -> fmt::Result {
        if b <= 0x7F && !b.is_ascii_control() && !b.is_ascii_whitespace() {
            self.write_literal_char(char::try_from(b).unwrap())
        } else {
            write!(self.wtr, "\\x{:02X}", b)
        }
    }
}

#[cfg(test)]
mod tests {
    use alloc::{
        boxed::Box,
        string::{String, ToString},
    };

    use crate::ParserBuilder;

    use super::*;

    fn roundtrip(given: &str, expected: &str) {
        roundtrip_with(|b| b, given, expected);
    }

    fn roundtrip_bytes(given: &str, expected: &str) {
        roundtrip_with(|b| b.utf8(false), given, expected);
    }

    fn roundtrip_with<F>(mut f: F, given: &str, expected: &str)
    where
        F: FnMut(&mut ParserBuilder) -> &mut ParserBuilder,
    {
        let mut builder = ParserBuilder::new();
        f(&mut builder);
        let hir = builder.build().parse(given).unwrap();

        let mut printer = Printer::new();
        let mut dst = String::new();
        printer.print(&hir, &mut dst).unwrap();

        // Check that the result is actually valid.
        builder.build().parse(&dst).unwrap();

        assert_eq!(expected, dst);
    }

    #[test]
    fn print_literal() {
        roundtrip("a", "a");
        roundtrip(r"\xff", "\u{FF}");
        roundtrip_bytes(r"\xff", "\u{FF}");
        roundtrip_bytes(r"(?-u)\xff", r"(?-u:\xFF)");
        roundtrip("☃", "☃");
    }

    #[test]
    fn print_class() {
        roundtrip(r"[a]", r"a");
        roundtrip(r"[ab]", r"[ab]");
        roundtrip(r"[a-z]", r"[a-z]");
        roundtrip(r"[a-z--b-c--x-y]", r"[ad-wz]");
        roundtrip(r"[^\x01-\u{10FFFF}]", "\u{0}");
        roundtrip(r"[-]", r"\-");
        roundtrip(r"[☃-⛄]", r"[☃-⛄]");

        roundtrip(r"(?-u)[a]", r"a");
        roundtrip(r"(?-u)[ab]", r"(?-u:[ab])");
        roundtrip(r"(?-u)[a-z]", r"(?-u:[a-z])");
        roundtrip_bytes(r"(?-u)[a-\xFF]", r"(?-u:[a-\xFF])");

        // The following test that the printer escapes meta characters
        // in character classes.
        roundtrip(r"[\[]", r"\[");
        roundtrip(r"[Z-_]", r"[Z-_]");
        roundtrip(r"[Z-_--Z]", r"[\[-_]");

        // The following test that the printer escapes meta characters
        // in byte oriented character classes.
        roundtrip_bytes(r"(?-u)[\[]", r"\[");
        roundtrip_bytes(r"(?-u)[Z-_]", r"(?-u:[Z-_])");
        roundtrip_bytes(r"(?-u)[Z-_--Z]", r"(?-u:[\[-_])");

        // This tests that an empty character class is correctly roundtripped.
        #[cfg(feature = "unicode-gencat")]
        roundtrip(r"\P{any}", r"[a&&b]");
        roundtrip_bytes(r"(?-u)[^\x00-\xFF]", r"[a&&b]");
    }

    #[test]
    fn print_anchor() {
        roundtrip(r"^", r"\A");
        roundtrip(r"$", r"\z");
        roundtrip(r"(?m)^", r"(?m:^)");
        roundtrip(r"(?m)$", r"(?m:$)");
    }

    #[test]
    fn print_word_boundary() {
        roundtrip(r"\b", r"\b");
        roundtrip(r"\B", r"\B");
        roundtrip(r"(?-u)\b", r"(?-u:\b)");
        roundtrip_bytes(r"(?-u)\B", r"(?-u:\B)");
    }

    #[test]
    fn print_repetition() {
        roundtrip("a?", "a?");
        roundtrip("a??", "a??");
        roundtrip("(?U)a?", "a??");

        roundtrip("a*", "a*");
        roundtrip("a*?", "a*?");
        roundtrip("(?U)a*", "a*?");

        roundtrip("a+", "a+");
        roundtrip("a+?", "a+?");
        roundtrip("(?U)a+", "a+?");

        roundtrip("a{1}", "a");
        roundtrip("a{2}", "a{2}");
        roundtrip("a{1,}", "a+");
        roundtrip("a{1,5}", "a{1,5}");
        roundtrip("a{1}?", "a");
        roundtrip("a{2}?", "a{2}");
        roundtrip("a{1,}?", "a+?");
        roundtrip("a{1,5}?", "a{1,5}?");
        roundtrip("(?U)a{1}", "a");
        roundtrip("(?U)a{2}", "a{2}");
        roundtrip("(?U)a{1,}", "a+?");
        roundtrip("(?U)a{1,5}", "a{1,5}?");

        // Test that various zero-length repetitions always translate to an
        // empty regex. This is more a property of HIR's smart constructors
        // than the printer though.
        roundtrip("a{0}", "(?:)");
        roundtrip("(?:ab){0}", "(?:)");
        #[cfg(feature = "unicode-gencat")]
        {
            roundtrip(r"\p{any}{0}", "(?:)");
            roundtrip(r"\P{any}{0}", "(?:)");
        }
    }

    #[test]
    fn print_group() {
        roundtrip("()", "((?:))");
        roundtrip("(?P<foo>)", "(?P<foo>(?:))");
        roundtrip("(?:)", "(?:)");

        roundtrip("(a)", "(a)");
        roundtrip("(?P<foo>a)", "(?P<foo>a)");
        roundtrip("(?:a)", "a");

        roundtrip("((((a))))", "((((a))))");
    }

    #[test]
    fn print_alternation() {
        roundtrip("|", "(?:(?:)|(?:))");
        roundtrip("||", "(?:(?:)|(?:)|(?:))");

        roundtrip("a|b", "[ab]");
        roundtrip("ab|cd", "(?:(?:ab)|(?:cd))");
        roundtrip("a|b|c", "[a-c]");
        roundtrip("ab|cd|ef", "(?:(?:ab)|(?:cd)|(?:ef))");
        roundtrip("foo|bar|quux", "(?:(?:foo)|(?:bar)|(?:quux))");
    }

    // This is a regression test that stresses a peculiarity of how the HIR
    // is both constructed and printed. Namely, it is legal for a repetition
    // to directly contain a concatenation. This particular construct isn't
    // really possible to build from the concrete syntax directly, since you'd
    // be forced to put the concatenation into (at least) a non-capturing
    // group. Concurrently, the printer doesn't consider this case and just
    // kind of naively prints the child expression and tacks on the repetition
    // operator.
    //
    // As a result, if you attached '+' to a 'concat(a, b)', the printer gives
    // you 'ab+', but clearly it really should be '(?:ab)+'.
    //
    // This bug isn't easy to surface because most ways of building an HIR
    // come directly from the concrete syntax, and as mentioned above, it just
    // isn't possible to build this kind of HIR from the concrete syntax.
    // Nevertheless, this is definitely a bug.
    //
    // See: https://github.com/rust-lang/regex/issues/731
    #[test]
    fn regression_repetition_concat() {
        let expr = Hir::concat(alloc::vec![
            Hir::literal("x".as_bytes()),
            Hir::repetition(hir::Repetition {
                min: 1,
                max: None,
                greedy: true,
                sub: Box::new(Hir::literal("ab".as_bytes())),
            }),
            Hir::literal("y".as_bytes()),
        ]);
        assert_eq!(r"(?:x(?:ab)+y)", expr.to_string());

        let expr = Hir::concat(alloc::vec![
            Hir::look(hir::Look::Start),
            Hir::repetition(hir::Repetition {
                min: 1,
                max: None,
                greedy: true,
                sub: Box::new(Hir::concat(alloc::vec![
                    Hir::look(hir::Look::Start),
                    Hir::look(hir::Look::End),
                ])),
            }),
            Hir::look(hir::Look::End),
        ]);
        assert_eq!(r"(?:\A\A\z\z)", expr.to_string());
    }

    // Just like regression_repetition_concat, but with the repetition using
    // an alternation as a child expression instead.
    //
    // See: https://github.com/rust-lang/regex/issues/731
    #[test]
    fn regression_repetition_alternation() {
        let expr = Hir::concat(alloc::vec![
            Hir::literal("ab".as_bytes()),
            Hir::repetition(hir::Repetition {
                min: 1,
                max: None,
                greedy: true,
                sub: Box::new(Hir::alternation(alloc::vec![
                    Hir::literal("cd".as_bytes()),
                    Hir::literal("ef".as_bytes()),
                ])),
            }),
            Hir::literal("gh".as_bytes()),
        ]);
        assert_eq!(r"(?:(?:ab)(?:(?:cd)|(?:ef))+(?:gh))", expr.to_string());

        let expr = Hir::concat(alloc::vec![
            Hir::look(hir::Look::Start),
            Hir::repetition(hir::Repetition {
                min: 1,
                max: None,
                greedy: true,
                sub: Box::new(Hir::alternation(alloc::vec![
                    Hir::look(hir::Look::Start),
                    Hir::look(hir::Look::End),
                ])),
            }),
            Hir::look(hir::Look::End),
        ]);
        assert_eq!(r"(?:\A(?:\A|\z)\z)", expr.to_string());
    }

    // This regression test is very similar in flavor to
    // regression_repetition_concat in that the root of the issue lies in a
    // peculiarity of how the HIR is represented and how the printer writes it
    // out. Like the other regression, this one is also rooted in the fact that
    // you can't produce the peculiar HIR from the concrete syntax. Namely, you
    // just can't have a 'concat(a, alt(b, c))' because the 'alt' will normally
    // be in (at least) a non-capturing group. Why? Because the '|' has very
    // low precedence (lower that concatenation), and so something like 'ab|c'
    // is actually 'alt(ab, c)'.
    //
    // See: https://github.com/rust-lang/regex/issues/516
    #[test]
    fn regression_alternation_concat() {
        let expr = Hir::concat(alloc::vec![
            Hir::literal("ab".as_bytes()),
            Hir::alternation(alloc::vec![
                Hir::literal("mn".as_bytes()),
                Hir::literal("xy".as_bytes()),
            ]),
        ]);
        assert_eq!(r"(?:(?:ab)(?:(?:mn)|(?:xy)))", expr.to_string());

        let expr = Hir::concat(alloc::vec![
            Hir::look(hir::Look::Start),
            Hir::alternation(alloc::vec![
                Hir::look(hir::Look::Start),
                Hir::look(hir::Look::End),
            ]),
        ]);
        assert_eq!(r"(?:\A(?:\A|\z))", expr.to_string());
    }
}