1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
// Copyright 2015-2021 Brian Smith.
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY
// SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
// OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
// CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
//! Authenticated Encryption with Associated Data (AEAD).
//!
//! See [Authenticated encryption: relations among notions and analysis of the
//! generic composition paradigm][AEAD] for an introduction to the concept of
//! AEADs.
//!
//! [AEAD]: https://eprint.iacr.org/2000/025.pdf
//! [`crypto.cipher.AEAD`]: https://golang.org/pkg/crypto/cipher/#AEAD
use super::{Aad, Algorithm, BoundKey, LessSafeKey, NonceSequence, UnboundKey};
use crate::error;
use core::ops::RangeFrom;
/// An AEAD key for authenticating and decrypting ("opening"), bound to a nonce
/// sequence.
///
/// Intentionally not `Clone` or `Copy` since cloning would allow duplication
/// of the nonce sequence.
pub struct OpeningKey<N: NonceSequence> {
key: LessSafeKey,
nonce_sequence: N,
}
impl<N: NonceSequence> BoundKey<N> for OpeningKey<N> {
fn new(key: UnboundKey, nonce_sequence: N) -> Self {
Self {
key: key.into_inner(),
nonce_sequence,
}
}
#[inline]
fn algorithm(&self) -> &'static Algorithm {
self.key.algorithm()
}
}
impl<N: NonceSequence> core::fmt::Debug for OpeningKey<N> {
fn fmt(&self, f: &mut core::fmt::Formatter) -> Result<(), core::fmt::Error> {
self.key.fmt_debug("OpeningKey", f)
}
}
impl<N: NonceSequence> OpeningKey<N> {
/// Authenticates and decrypts (“opens”) data in place.
///
/// `aad` is the additional authenticated data (AAD), if any.
///
/// On input, `in_out` must be the ciphertext followed by the tag. When
/// `open_in_place()` returns `Ok(plaintext)`, the input ciphertext
/// has been overwritten by the plaintext; `plaintext` will refer to the
/// plaintext without the tag.
///
/// When `open_in_place()` returns `Err(..)`, `in_out` may have been
/// overwritten in an unspecified way.
#[inline]
pub fn open_in_place<'in_out, A>(
&mut self,
aad: Aad<A>,
in_out: &'in_out mut [u8],
) -> Result<&'in_out mut [u8], error::Unspecified>
where
A: AsRef<[u8]>,
{
self.key
.open_in_place(self.nonce_sequence.advance()?, aad, in_out)
}
/// Authenticates and decrypts (“opens”) data in place, with a shift.
///
/// `aad` is the additional authenticated data (AAD), if any.
///
/// On input, `in_out[ciphertext_and_tag]` must be the ciphertext followed
/// by the tag. When `open_within()` returns `Ok(plaintext)`, the plaintext
/// will be at `in_out[0..plaintext.len()]`. In other words, the following
/// two code fragments are equivalent for valid values of
/// `ciphertext_and_tag`, except `open_within` will often be more efficient:
///
///
/// ```skip
/// let plaintext = key.open_within(aad, in_out, cipertext_and_tag)?;
/// ```
///
/// ```skip
/// let ciphertext_and_tag_len = in_out[ciphertext_and_tag].len();
/// in_out.copy_within(ciphertext_and_tag, 0);
/// let plaintext = key.open_in_place(aad, &mut in_out[..ciphertext_and_tag_len])?;
/// ```
///
/// Similarly, `key.open_within(aad, in_out, 0..)` is equivalent to
/// `key.open_in_place(aad, in_out)`.
///
/// When `open_in_place()` returns `Err(..)`, `in_out` may have been
/// overwritten in an unspecified way.
///
/// The shifting feature is useful in the case where multiple packets are
/// being reassembled in place. Consider this example where the peer has
/// sent the message “Split stream reassembled in place” split into
/// three sealed packets:
///
/// ```ascii-art
/// Packet 1 Packet 2 Packet 3
/// Input: [Header][Ciphertext][Tag][Header][Ciphertext][Tag][Header][Ciphertext][Tag]
/// | +--------------+ |
/// +------+ +-----+ +----------------------------------+
/// v v v
/// Output: [Plaintext][Plaintext][Plaintext]
/// “Split stream reassembled in place”
/// ```
///
/// This reassembly can be accomplished with three calls to `open_within()`.
#[inline]
pub fn open_within<'in_out, A>(
&mut self,
aad: Aad<A>,
in_out: &'in_out mut [u8],
ciphertext_and_tag: RangeFrom<usize>,
) -> Result<&'in_out mut [u8], error::Unspecified>
where
A: AsRef<[u8]>,
{
self.key.open_within(
self.nonce_sequence.advance()?,
aad,
in_out,
ciphertext_and_tag,
)
}
}