ring/arithmetic/bigint/
modulus.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
// Copyright 2015-2023 Brian Smith.
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY
// SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
// OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
// CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

use super::{BoxedLimbs, Elem, PublicModulus, Unencoded, N0};
use crate::{
    bits::BitLength,
    cpu, error,
    limb::{self, Limb, LimbMask, LIMB_BITS},
    polyfill::LeadingZerosStripped,
};
use core::marker::PhantomData;

/// The x86 implementation of `bn_mul_mont`, at least, requires at least 4
/// limbs. For a long time we have required 4 limbs for all targets, though
/// this may be unnecessary. TODO: Replace this with
/// `n.len() < 256 / LIMB_BITS` so that 32-bit and 64-bit platforms behave the
/// same.
pub const MODULUS_MIN_LIMBS: usize = 4;

pub const MODULUS_MAX_LIMBS: usize = super::super::BIGINT_MODULUS_MAX_LIMBS;

/// The modulus *m* for a ring ℤ/mℤ, along with the precomputed values needed
/// for efficient Montgomery multiplication modulo *m*. The value must be odd
/// and larger than 2. The larger-than-1 requirement is imposed, at least, by
/// the modular inversion code.
pub struct OwnedModulus<M> {
    limbs: BoxedLimbs<M>, // Also `value >= 3`.

    // n0 * N == -1 (mod r).
    //
    // r == 2**(N0::LIMBS_USED * LIMB_BITS) and LG_LITTLE_R == lg(r). This
    // ensures that we can do integer division by |r| by simply ignoring
    // `N0::LIMBS_USED` limbs. Similarly, we can calculate values modulo `r` by
    // just looking at the lowest `N0::LIMBS_USED` limbs. This is what makes
    // Montgomery multiplication efficient.
    //
    // As shown in Algorithm 1 of "Fast Prime Field Elliptic Curve Cryptography
    // with 256 Bit Primes" by Shay Gueron and Vlad Krasnov, in the loop of a
    // multi-limb Montgomery multiplication of a * b (mod n), given the
    // unreduced product t == a * b, we repeatedly calculate:
    //
    //    t1 := t % r         |t1| is |t|'s lowest limb (see previous paragraph).
    //    t2 := t1*n0*n
    //    t3 := t + t2
    //    t := t3 / r         copy all limbs of |t3| except the lowest to |t|.
    //
    // In the last step, it would only make sense to ignore the lowest limb of
    // |t3| if it were zero. The middle steps ensure that this is the case:
    //
    //                            t3 ==  0 (mod r)
    //                        t + t2 ==  0 (mod r)
    //                   t + t1*n0*n ==  0 (mod r)
    //                       t1*n0*n == -t (mod r)
    //                        t*n0*n == -t (mod r)
    //                          n0*n == -1 (mod r)
    //                            n0 == -1/n (mod r)
    //
    // Thus, in each iteration of the loop, we multiply by the constant factor
    // n0, the negative inverse of n (mod r).
    //
    // TODO(perf): Not all 32-bit platforms actually make use of n0[1]. For the
    // ones that don't, we could use a shorter `R` value and use faster `Limb`
    // calculations instead of double-precision `u64` calculations.
    n0: N0,

    len_bits: BitLength,
}

impl<M: PublicModulus> Clone for OwnedModulus<M> {
    fn clone(&self) -> Self {
        Self {
            limbs: self.limbs.clone(),
            n0: self.n0,
            len_bits: self.len_bits,
        }
    }
}

impl<M> OwnedModulus<M> {
    pub(crate) fn from_be_bytes(input: untrusted::Input) -> Result<Self, error::KeyRejected> {
        let n = BoxedLimbs::positive_minimal_width_from_be_bytes(input)?;
        if n.len() > MODULUS_MAX_LIMBS {
            return Err(error::KeyRejected::too_large());
        }
        if n.len() < MODULUS_MIN_LIMBS {
            return Err(error::KeyRejected::unexpected_error());
        }
        if limb::limbs_are_even_constant_time(&n) != LimbMask::False {
            return Err(error::KeyRejected::invalid_component());
        }
        if limb::limbs_less_than_limb_constant_time(&n, 3) != LimbMask::False {
            return Err(error::KeyRejected::unexpected_error());
        }

        // n_mod_r = n % r. As explained in the documentation for `n0`, this is
        // done by taking the lowest `N0::LIMBS_USED` limbs of `n`.
        #[allow(clippy::useless_conversion)]
        let n0 = {
            prefixed_extern! {
                fn bn_neg_inv_mod_r_u64(n: u64) -> u64;
            }

            // XXX: u64::from isn't guaranteed to be constant time.
            let mut n_mod_r: u64 = u64::from(n[0]);

            if N0::LIMBS_USED == 2 {
                // XXX: If we use `<< LIMB_BITS` here then 64-bit builds
                // fail to compile because of `deny(exceeding_bitshifts)`.
                debug_assert_eq!(LIMB_BITS, 32);
                n_mod_r |= u64::from(n[1]) << 32;
            }
            N0::precalculated(unsafe { bn_neg_inv_mod_r_u64(n_mod_r) })
        };

        let len_bits = limb::limbs_minimal_bits(&n);

        Ok(Self {
            limbs: n,
            n0,
            len_bits,
        })
    }

    pub fn verify_less_than<L>(&self, l: &Modulus<L>) -> Result<(), error::Unspecified> {
        if self.len_bits() > l.len_bits()
            || (self.limbs.len() == l.limbs().len()
                && limb::limbs_less_than_limbs_consttime(&self.limbs, l.limbs()) != LimbMask::True)
        {
            return Err(error::Unspecified);
        }
        Ok(())
    }

    pub fn to_elem<L>(&self, l: &Modulus<L>) -> Result<Elem<L, Unencoded>, error::Unspecified> {
        self.verify_less_than(l)?;
        let mut limbs = BoxedLimbs::zero(l.limbs.len());
        limbs[..self.limbs.len()].copy_from_slice(&self.limbs);
        Ok(Elem {
            limbs,
            encoding: PhantomData,
        })
    }
    pub(crate) fn modulus(&self, cpu_features: cpu::Features) -> Modulus<M> {
        Modulus {
            limbs: &self.limbs,
            n0: self.n0,
            len_bits: self.len_bits,
            m: PhantomData,
            cpu_features,
        }
    }

    pub fn len_bits(&self) -> BitLength {
        self.len_bits
    }
}

impl<M: PublicModulus> OwnedModulus<M> {
    pub fn be_bytes(&self) -> LeadingZerosStripped<impl ExactSizeIterator<Item = u8> + Clone + '_> {
        LeadingZerosStripped::new(limb::unstripped_be_bytes(&self.limbs))
    }
}

pub struct Modulus<'a, M> {
    limbs: &'a [Limb],
    n0: N0,
    len_bits: BitLength,
    m: PhantomData<M>,
    cpu_features: cpu::Features,
}

impl<M> Modulus<'_, M> {
    pub(super) fn oneR(&self, out: &mut [Limb]) {
        assert_eq!(self.limbs.len(), out.len());

        let r = self.limbs.len() * LIMB_BITS;

        // out = 2**r - m where m = self.
        limb::limbs_negative_odd(out, self.limbs);

        let lg_m = self.len_bits().as_bits();
        let leading_zero_bits_in_m = r - lg_m;

        // When m's length is a multiple of LIMB_BITS, which is the case we
        // most want to optimize for, then we already have
        // out == 2**r - m == 2**r (mod m).
        if leading_zero_bits_in_m != 0 {
            debug_assert!(leading_zero_bits_in_m < LIMB_BITS);
            // Correct out to 2**(lg m) (mod m). `limbs_negative_odd` flipped
            // all the leading zero bits to ones. Flip them back.
            *out.last_mut().unwrap() &= (!0) >> leading_zero_bits_in_m;

            // Now we have out == 2**(lg m) (mod m). Keep doubling until we get
            // to 2**r (mod m).
            for _ in 0..leading_zero_bits_in_m {
                limb::limbs_double_mod(out, self.limbs)
            }
        }

        // Now out == 2**r (mod m) == 1*R.
    }

    // TODO: XXX Avoid duplication with `Modulus`.
    pub(super) fn zero<E>(&self) -> Elem<M, E> {
        Elem {
            limbs: BoxedLimbs::zero(self.limbs.len()),
            encoding: PhantomData,
        }
    }

    #[inline]
    pub(super) fn limbs(&self) -> &[Limb] {
        self.limbs
    }

    #[inline]
    pub(super) fn n0(&self) -> &N0 {
        &self.n0
    }

    pub fn len_bits(&self) -> BitLength {
        self.len_bits
    }

    #[inline]
    pub(crate) fn cpu_features(&self) -> cpu::Features {
        self.cpu_features
    }
}