ring/arithmetic/bigint/modulus.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
// Copyright 2015-2023 Brian Smith.
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY
// SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
// OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
// CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
use super::{BoxedLimbs, Elem, PublicModulus, Unencoded, N0};
use crate::{
bits::BitLength,
cpu, error,
limb::{self, Limb, LimbMask, LIMB_BITS},
polyfill::LeadingZerosStripped,
};
use core::marker::PhantomData;
/// The x86 implementation of `bn_mul_mont`, at least, requires at least 4
/// limbs. For a long time we have required 4 limbs for all targets, though
/// this may be unnecessary. TODO: Replace this with
/// `n.len() < 256 / LIMB_BITS` so that 32-bit and 64-bit platforms behave the
/// same.
pub const MODULUS_MIN_LIMBS: usize = 4;
pub const MODULUS_MAX_LIMBS: usize = super::super::BIGINT_MODULUS_MAX_LIMBS;
/// The modulus *m* for a ring ℤ/mℤ, along with the precomputed values needed
/// for efficient Montgomery multiplication modulo *m*. The value must be odd
/// and larger than 2. The larger-than-1 requirement is imposed, at least, by
/// the modular inversion code.
pub struct OwnedModulus<M> {
limbs: BoxedLimbs<M>, // Also `value >= 3`.
// n0 * N == -1 (mod r).
//
// r == 2**(N0::LIMBS_USED * LIMB_BITS) and LG_LITTLE_R == lg(r). This
// ensures that we can do integer division by |r| by simply ignoring
// `N0::LIMBS_USED` limbs. Similarly, we can calculate values modulo `r` by
// just looking at the lowest `N0::LIMBS_USED` limbs. This is what makes
// Montgomery multiplication efficient.
//
// As shown in Algorithm 1 of "Fast Prime Field Elliptic Curve Cryptography
// with 256 Bit Primes" by Shay Gueron and Vlad Krasnov, in the loop of a
// multi-limb Montgomery multiplication of a * b (mod n), given the
// unreduced product t == a * b, we repeatedly calculate:
//
// t1 := t % r |t1| is |t|'s lowest limb (see previous paragraph).
// t2 := t1*n0*n
// t3 := t + t2
// t := t3 / r copy all limbs of |t3| except the lowest to |t|.
//
// In the last step, it would only make sense to ignore the lowest limb of
// |t3| if it were zero. The middle steps ensure that this is the case:
//
// t3 == 0 (mod r)
// t + t2 == 0 (mod r)
// t + t1*n0*n == 0 (mod r)
// t1*n0*n == -t (mod r)
// t*n0*n == -t (mod r)
// n0*n == -1 (mod r)
// n0 == -1/n (mod r)
//
// Thus, in each iteration of the loop, we multiply by the constant factor
// n0, the negative inverse of n (mod r).
//
// TODO(perf): Not all 32-bit platforms actually make use of n0[1]. For the
// ones that don't, we could use a shorter `R` value and use faster `Limb`
// calculations instead of double-precision `u64` calculations.
n0: N0,
len_bits: BitLength,
}
impl<M: PublicModulus> Clone for OwnedModulus<M> {
fn clone(&self) -> Self {
Self {
limbs: self.limbs.clone(),
n0: self.n0,
len_bits: self.len_bits,
}
}
}
impl<M> OwnedModulus<M> {
pub(crate) fn from_be_bytes(input: untrusted::Input) -> Result<Self, error::KeyRejected> {
let n = BoxedLimbs::positive_minimal_width_from_be_bytes(input)?;
if n.len() > MODULUS_MAX_LIMBS {
return Err(error::KeyRejected::too_large());
}
if n.len() < MODULUS_MIN_LIMBS {
return Err(error::KeyRejected::unexpected_error());
}
if limb::limbs_are_even_constant_time(&n) != LimbMask::False {
return Err(error::KeyRejected::invalid_component());
}
if limb::limbs_less_than_limb_constant_time(&n, 3) != LimbMask::False {
return Err(error::KeyRejected::unexpected_error());
}
// n_mod_r = n % r. As explained in the documentation for `n0`, this is
// done by taking the lowest `N0::LIMBS_USED` limbs of `n`.
#[allow(clippy::useless_conversion)]
let n0 = {
prefixed_extern! {
fn bn_neg_inv_mod_r_u64(n: u64) -> u64;
}
// XXX: u64::from isn't guaranteed to be constant time.
let mut n_mod_r: u64 = u64::from(n[0]);
if N0::LIMBS_USED == 2 {
// XXX: If we use `<< LIMB_BITS` here then 64-bit builds
// fail to compile because of `deny(exceeding_bitshifts)`.
debug_assert_eq!(LIMB_BITS, 32);
n_mod_r |= u64::from(n[1]) << 32;
}
N0::precalculated(unsafe { bn_neg_inv_mod_r_u64(n_mod_r) })
};
let len_bits = limb::limbs_minimal_bits(&n);
Ok(Self {
limbs: n,
n0,
len_bits,
})
}
pub fn verify_less_than<L>(&self, l: &Modulus<L>) -> Result<(), error::Unspecified> {
if self.len_bits() > l.len_bits()
|| (self.limbs.len() == l.limbs().len()
&& limb::limbs_less_than_limbs_consttime(&self.limbs, l.limbs()) != LimbMask::True)
{
return Err(error::Unspecified);
}
Ok(())
}
pub fn to_elem<L>(&self, l: &Modulus<L>) -> Result<Elem<L, Unencoded>, error::Unspecified> {
self.verify_less_than(l)?;
let mut limbs = BoxedLimbs::zero(l.limbs.len());
limbs[..self.limbs.len()].copy_from_slice(&self.limbs);
Ok(Elem {
limbs,
encoding: PhantomData,
})
}
pub(crate) fn modulus(&self, cpu_features: cpu::Features) -> Modulus<M> {
Modulus {
limbs: &self.limbs,
n0: self.n0,
len_bits: self.len_bits,
m: PhantomData,
cpu_features,
}
}
pub fn len_bits(&self) -> BitLength {
self.len_bits
}
}
impl<M: PublicModulus> OwnedModulus<M> {
pub fn be_bytes(&self) -> LeadingZerosStripped<impl ExactSizeIterator<Item = u8> + Clone + '_> {
LeadingZerosStripped::new(limb::unstripped_be_bytes(&self.limbs))
}
}
pub struct Modulus<'a, M> {
limbs: &'a [Limb],
n0: N0,
len_bits: BitLength,
m: PhantomData<M>,
cpu_features: cpu::Features,
}
impl<M> Modulus<'_, M> {
pub(super) fn oneR(&self, out: &mut [Limb]) {
assert_eq!(self.limbs.len(), out.len());
let r = self.limbs.len() * LIMB_BITS;
// out = 2**r - m where m = self.
limb::limbs_negative_odd(out, self.limbs);
let lg_m = self.len_bits().as_bits();
let leading_zero_bits_in_m = r - lg_m;
// When m's length is a multiple of LIMB_BITS, which is the case we
// most want to optimize for, then we already have
// out == 2**r - m == 2**r (mod m).
if leading_zero_bits_in_m != 0 {
debug_assert!(leading_zero_bits_in_m < LIMB_BITS);
// Correct out to 2**(lg m) (mod m). `limbs_negative_odd` flipped
// all the leading zero bits to ones. Flip them back.
*out.last_mut().unwrap() &= (!0) >> leading_zero_bits_in_m;
// Now we have out == 2**(lg m) (mod m). Keep doubling until we get
// to 2**r (mod m).
for _ in 0..leading_zero_bits_in_m {
limb::limbs_double_mod(out, self.limbs)
}
}
// Now out == 2**r (mod m) == 1*R.
}
// TODO: XXX Avoid duplication with `Modulus`.
pub(super) fn zero<E>(&self) -> Elem<M, E> {
Elem {
limbs: BoxedLimbs::zero(self.limbs.len()),
encoding: PhantomData,
}
}
#[inline]
pub(super) fn limbs(&self) -> &[Limb] {
self.limbs
}
#[inline]
pub(super) fn n0(&self) -> &N0 {
&self.n0
}
pub fn len_bits(&self) -> BitLength {
self.len_bits
}
#[inline]
pub(crate) fn cpu_features(&self) -> cpu::Features {
self.cpu_features
}
}