1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
// Copyright 2015-2016 Brian Smith.
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY
// SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
// OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
// CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
use crate::{bits, digest, error, rand};
mod pkcs1;
mod pss;
pub use self::{
pkcs1::{RSA_PKCS1_SHA256, RSA_PKCS1_SHA384, RSA_PKCS1_SHA512},
pss::{RSA_PSS_SHA256, RSA_PSS_SHA384, RSA_PSS_SHA512},
};
pub(super) use pkcs1::RSA_PKCS1_SHA1_FOR_LEGACY_USE_ONLY;
/// Common features of both RSA padding encoding and RSA padding verification.
pub trait Padding: 'static + Sync + crate::sealed::Sealed + core::fmt::Debug {
// The digest algorithm used for digesting the message (and maybe for
// other things).
fn digest_alg(&self) -> &'static digest::Algorithm;
}
/// An RSA signature encoding as described in [RFC 3447 Section 8].
///
/// [RFC 3447 Section 8]: https://tools.ietf.org/html/rfc3447#section-8
#[cfg(feature = "alloc")]
pub trait RsaEncoding: Padding {
#[doc(hidden)]
fn encode(
&self,
m_hash: digest::Digest,
m_out: &mut [u8],
mod_bits: bits::BitLength,
rng: &dyn rand::SecureRandom,
) -> Result<(), error::Unspecified>;
}
/// Verification of an RSA signature encoding as described in
/// [RFC 3447 Section 8].
///
/// [RFC 3447 Section 8]: https://tools.ietf.org/html/rfc3447#section-8
pub trait Verification: Padding {
fn verify(
&self,
m_hash: digest::Digest,
m: &mut untrusted::Reader,
mod_bits: bits::BitLength,
) -> Result<(), error::Unspecified>;
}
// Masks `out` with the output of the mask-generating function MGF1 as
// described in https://tools.ietf.org/html/rfc3447#appendix-B.2.1.
fn mgf1(digest_alg: &'static digest::Algorithm, seed: &[u8], out: &mut [u8]) {
let digest_len = digest_alg.output_len();
// Maximum counter value is the value of (mask_len / digest_len) rounded up.
for (i, out) in out.chunks_mut(digest_len).enumerate() {
let mut ctx = digest::Context::new(digest_alg);
ctx.update(seed);
// The counter will always fit in a `u32` because we reject absurdly
// long inputs very early.
ctx.update(&u32::to_be_bytes(i.try_into().unwrap()));
let digest = ctx.finish();
// `zip` does the right thing as the the last chunk may legitimately be
// shorter than `digest`, and `digest` will never be shorter than `out`.
for (m, &d) in out.iter_mut().zip(digest.as_ref().iter()) {
*m ^= d;
}
}
}
#[cfg(test)]
mod test {
use super::*;
use crate::{digest, error, test};
use alloc::vec;
#[test]
fn test_pss_padding_verify() {
test::run(
test_file!("rsa_pss_padding_tests.txt"),
|section, test_case| {
assert_eq!(section, "");
let digest_name = test_case.consume_string("Digest");
let alg = match digest_name.as_ref() {
"SHA256" => &RSA_PSS_SHA256,
"SHA384" => &RSA_PSS_SHA384,
"SHA512" => &RSA_PSS_SHA512,
_ => panic!("Unsupported digest: {}", digest_name),
};
let msg = test_case.consume_bytes("Msg");
let msg = untrusted::Input::from(&msg);
let m_hash = digest::digest(alg.digest_alg(), msg.as_slice_less_safe());
let encoded = test_case.consume_bytes("EM");
let encoded = untrusted::Input::from(&encoded);
// Salt is recomputed in verification algorithm.
let _ = test_case.consume_bytes("Salt");
let bit_len = test_case.consume_usize_bits("Len");
let is_valid = test_case.consume_string("Result") == "P";
let actual_result =
encoded.read_all(error::Unspecified, |m| alg.verify(m_hash, m, bit_len));
assert_eq!(actual_result.is_ok(), is_valid);
Ok(())
},
);
}
// Tests PSS encoding for various public modulus lengths.
#[cfg(feature = "alloc")]
#[test]
fn test_pss_padding_encode() {
test::run(
test_file!("rsa_pss_padding_tests.txt"),
|section, test_case| {
assert_eq!(section, "");
let digest_name = test_case.consume_string("Digest");
let alg = match digest_name.as_ref() {
"SHA256" => &RSA_PSS_SHA256,
"SHA384" => &RSA_PSS_SHA384,
"SHA512" => &RSA_PSS_SHA512,
_ => panic!("Unsupported digest: {}", digest_name),
};
let msg = test_case.consume_bytes("Msg");
let salt = test_case.consume_bytes("Salt");
let encoded = test_case.consume_bytes("EM");
let bit_len = test_case.consume_usize_bits("Len");
let expected_result = test_case.consume_string("Result");
// Only test the valid outputs
if expected_result != "P" {
return Ok(());
}
let rng = test::rand::FixedSliceRandom { bytes: &salt };
let mut m_out = vec![0u8; bit_len.as_usize_bytes_rounded_up()];
let digest = digest::digest(alg.digest_alg(), &msg);
alg.encode(digest, &mut m_out, bit_len, &rng).unwrap();
assert_eq!(m_out, encoded);
Ok(())
},
);
}
}