rustls/tls13/
key_schedule.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
//! Key schedule maintenance for TLS1.3

use alloc::boxed::Box;
use alloc::string::ToString;

use crate::common_state::{CommonState, Side};
use crate::crypto::cipher::{AeadKey, Iv, MessageDecrypter, Tls13AeadAlgorithm};
use crate::crypto::tls13::{expand, Hkdf, HkdfExpander, OkmBlock, OutputLengthError};
use crate::crypto::{hash, hmac, SharedSecret};
use crate::error::Error;
use crate::msgs::message::Message;
use crate::suites::PartiallyExtractedSecrets;
use crate::{quic, KeyLog, Tls13CipherSuite};

/// The kinds of secret we can extract from `KeySchedule`.
#[derive(Debug, Clone, Copy, PartialEq)]
enum SecretKind {
    ResumptionPskBinderKey,
    ClientEarlyTrafficSecret,
    ClientHandshakeTrafficSecret,
    ServerHandshakeTrafficSecret,
    ClientApplicationTrafficSecret,
    ServerApplicationTrafficSecret,
    ExporterMasterSecret,
    ResumptionMasterSecret,
    DerivedSecret,
    ServerEchConfirmationSecret,
    ServerEchHrrConfirmationSecret,
}

impl SecretKind {
    fn to_bytes(self) -> &'static [u8] {
        use self::SecretKind::*;
        match self {
            ResumptionPskBinderKey => b"res binder",
            ClientEarlyTrafficSecret => b"c e traffic",
            ClientHandshakeTrafficSecret => b"c hs traffic",
            ServerHandshakeTrafficSecret => b"s hs traffic",
            ClientApplicationTrafficSecret => b"c ap traffic",
            ServerApplicationTrafficSecret => b"s ap traffic",
            ExporterMasterSecret => b"exp master",
            ResumptionMasterSecret => b"res master",
            DerivedSecret => b"derived",
            // https://datatracker.ietf.org/doc/html/draft-ietf-tls-esni-18#section-7.2
            ServerEchConfirmationSecret => b"ech accept confirmation",
            // https://datatracker.ietf.org/doc/html/draft-ietf-tls-esni-18#section-7.2.1
            ServerEchHrrConfirmationSecret => b"hrr ech accept confirmation",
        }
    }

    fn log_label(self) -> Option<&'static str> {
        use self::SecretKind::*;
        Some(match self {
            ClientEarlyTrafficSecret => "CLIENT_EARLY_TRAFFIC_SECRET",
            ClientHandshakeTrafficSecret => "CLIENT_HANDSHAKE_TRAFFIC_SECRET",
            ServerHandshakeTrafficSecret => "SERVER_HANDSHAKE_TRAFFIC_SECRET",
            ClientApplicationTrafficSecret => "CLIENT_TRAFFIC_SECRET_0",
            ServerApplicationTrafficSecret => "SERVER_TRAFFIC_SECRET_0",
            ExporterMasterSecret => "EXPORTER_SECRET",
            _ => {
                return None;
            }
        })
    }
}

/// This is the TLS1.3 key schedule.  It stores the current secret and
/// the type of hash.  This isn't used directly; but only through the
/// typestates.
struct KeySchedule {
    current: Box<dyn HkdfExpander>,
    suite: &'static Tls13CipherSuite,
}

// We express the state of a contained KeySchedule using these
// typestates.  This means we can write code that cannot accidentally
// (e.g.) encrypt application data using a KeySchedule solely constructed
// with an empty or trivial secret, or extract the wrong kind of secrets
// at a given point.

/// KeySchedule for early data stage.
pub(crate) struct KeyScheduleEarly {
    ks: KeySchedule,
}

impl KeyScheduleEarly {
    pub(crate) fn new(suite: &'static Tls13CipherSuite, secret: &[u8]) -> Self {
        Self {
            ks: KeySchedule::new(suite, secret),
        }
    }

    pub(crate) fn client_early_traffic_secret(
        &self,
        hs_hash: &hash::Output,
        key_log: &dyn KeyLog,
        client_random: &[u8; 32],
        common: &mut CommonState,
    ) {
        let client_early_traffic_secret = self.ks.derive_logged_secret(
            SecretKind::ClientEarlyTrafficSecret,
            hs_hash.as_ref(),
            key_log,
            client_random,
        );

        match common.side {
            Side::Client => self
                .ks
                .set_encrypter(&client_early_traffic_secret, common),
            Side::Server => self
                .ks
                .set_decrypter(&client_early_traffic_secret, common),
        }

        if common.is_quic() {
            // If 0-RTT should be rejected, this will be clobbered by ExtensionProcessing
            // before the application can see.
            common.quic.early_secret = Some(client_early_traffic_secret);
        }
    }

    pub(crate) fn resumption_psk_binder_key_and_sign_verify_data(
        &self,
        hs_hash: &hash::Output,
    ) -> hmac::Tag {
        let resumption_psk_binder_key = self
            .ks
            .derive_for_empty_hash(SecretKind::ResumptionPskBinderKey);
        self.ks
            .sign_verify_data(&resumption_psk_binder_key, hs_hash)
    }
}

/// Pre-handshake key schedule
///
/// The inner `KeySchedule` is either constructed without any secrets based on the HKDF algorithm
/// or is extracted from a `KeyScheduleEarly`. This can then be used to derive the `KeyScheduleHandshakeStart`.
pub(crate) struct KeySchedulePreHandshake {
    ks: KeySchedule,
}

impl KeySchedulePreHandshake {
    pub(crate) fn new(suite: &'static Tls13CipherSuite) -> Self {
        Self {
            ks: KeySchedule::new_with_empty_secret(suite),
        }
    }

    pub(crate) fn into_handshake(
        mut self,
        shared_secret: SharedSecret,
    ) -> KeyScheduleHandshakeStart {
        self.ks
            .input_secret(shared_secret.secret_bytes());
        KeyScheduleHandshakeStart { ks: self.ks }
    }
}

impl From<KeyScheduleEarly> for KeySchedulePreHandshake {
    fn from(KeyScheduleEarly { ks }: KeyScheduleEarly) -> Self {
        Self { ks }
    }
}

/// KeySchedule during handshake.
pub(crate) struct KeyScheduleHandshakeStart {
    ks: KeySchedule,
}

impl KeyScheduleHandshakeStart {
    pub(crate) fn derive_client_handshake_secrets(
        mut self,
        early_data_enabled: bool,
        hs_hash: hash::Output,
        suite: &'static Tls13CipherSuite,
        key_log: &dyn KeyLog,
        client_random: &[u8; 32],
        common: &mut CommonState,
    ) -> KeyScheduleHandshake {
        debug_assert_eq!(common.side, Side::Client);
        // Suite might have changed due to resumption
        self.ks.suite = suite;
        let new = self.into_handshake(hs_hash, key_log, client_random, common);

        // Decrypt with the peer's key, encrypt with our own key
        new.ks
            .set_decrypter(&new.server_handshake_traffic_secret, common);

        if !early_data_enabled {
            // Set the client encryption key for handshakes if early data is not used
            new.ks
                .set_encrypter(&new.client_handshake_traffic_secret, common);
        }

        new
    }

    pub(crate) fn derive_server_handshake_secrets(
        self,
        hs_hash: hash::Output,
        key_log: &dyn KeyLog,
        client_random: &[u8; 32],
        common: &mut CommonState,
    ) -> KeyScheduleHandshake {
        debug_assert_eq!(common.side, Side::Server);
        let new = self.into_handshake(hs_hash, key_log, client_random, common);

        // Set up to encrypt with handshake secrets, but decrypt with early_data keys.
        // If not doing early_data after all, this is corrected later to the handshake
        // keys (now stored in key_schedule).
        new.ks
            .set_encrypter(&new.server_handshake_traffic_secret, common);
        new
    }

    pub(crate) fn server_ech_confirmation_secret(
        &mut self,
        client_hello_inner_random: &[u8],
        hs_hash: hash::Output,
    ) -> [u8; 8] {
        /*
        Per ietf-tls-esni-17 section 7.2:
        <https://datatracker.ietf.org/doc/html/draft-ietf-tls-esni-17#section-7.2>
        accept_confirmation = HKDF-Expand-Label(
          HKDF-Extract(0, ClientHelloInner.random),
          "ech accept confirmation",
          transcript_ech_conf,8)
         */
        hkdf_expand_label(
            self.ks
                .suite
                .hkdf_provider
                .extract_from_secret(None, client_hello_inner_random)
                .as_ref(),
            SecretKind::ServerEchConfirmationSecret.to_bytes(),
            hs_hash.as_ref(),
        )
    }

    fn into_handshake(
        self,
        hs_hash: hash::Output,
        key_log: &dyn KeyLog,
        client_random: &[u8; 32],
        common: &mut CommonState,
    ) -> KeyScheduleHandshake {
        // Use an empty handshake hash for the initial handshake.
        let client_secret = self.ks.derive_logged_secret(
            SecretKind::ClientHandshakeTrafficSecret,
            hs_hash.as_ref(),
            key_log,
            client_random,
        );

        let server_secret = self.ks.derive_logged_secret(
            SecretKind::ServerHandshakeTrafficSecret,
            hs_hash.as_ref(),
            key_log,
            client_random,
        );

        if common.is_quic() {
            common.quic.hs_secrets = Some(quic::Secrets::new(
                client_secret.clone(),
                server_secret.clone(),
                self.ks.suite,
                self.ks.suite.quic.unwrap(),
                common.side,
                common.quic.version,
            ));
        }

        KeyScheduleHandshake {
            ks: self.ks,
            client_handshake_traffic_secret: client_secret,
            server_handshake_traffic_secret: server_secret,
        }
    }
}

pub(crate) struct KeyScheduleHandshake {
    ks: KeySchedule,
    client_handshake_traffic_secret: OkmBlock,
    server_handshake_traffic_secret: OkmBlock,
}

impl KeyScheduleHandshake {
    pub(crate) fn sign_server_finish(&self, hs_hash: &hash::Output) -> hmac::Tag {
        self.ks
            .sign_finish(&self.server_handshake_traffic_secret, hs_hash)
    }

    pub(crate) fn set_handshake_encrypter(&self, common: &mut CommonState) {
        debug_assert_eq!(common.side, Side::Client);
        self.ks
            .set_encrypter(&self.client_handshake_traffic_secret, common);
    }

    pub(crate) fn set_handshake_decrypter(
        &self,
        skip_requested: Option<usize>,
        common: &mut CommonState,
    ) {
        debug_assert_eq!(common.side, Side::Server);
        let secret = &self.client_handshake_traffic_secret;
        match skip_requested {
            None => self.ks.set_decrypter(secret, common),
            Some(max_early_data_size) => common
                .record_layer
                .set_message_decrypter_with_trial_decryption(
                    self.ks
                        .derive_decrypter(&self.client_handshake_traffic_secret),
                    max_early_data_size,
                ),
        }
    }

    pub(crate) fn into_traffic_with_client_finished_pending(
        self,
        hs_hash: hash::Output,
        key_log: &dyn KeyLog,
        client_random: &[u8; 32],
        common: &mut CommonState,
    ) -> KeyScheduleTrafficWithClientFinishedPending {
        debug_assert_eq!(common.side, Side::Server);

        let traffic = KeyScheduleTraffic::new(self.ks, hs_hash, key_log, client_random);
        let (_client_secret, server_secret) = (
            &traffic.current_client_traffic_secret,
            &traffic.current_server_traffic_secret,
        );

        traffic
            .ks
            .set_encrypter(server_secret, common);

        if common.is_quic() {
            common.quic.traffic_secrets = Some(quic::Secrets::new(
                _client_secret.clone(),
                server_secret.clone(),
                traffic.ks.suite,
                traffic.ks.suite.quic.unwrap(),
                common.side,
                common.quic.version,
            ));
        }

        KeyScheduleTrafficWithClientFinishedPending {
            handshake_client_traffic_secret: self.client_handshake_traffic_secret,
            traffic,
        }
    }

    pub(crate) fn into_pre_finished_client_traffic(
        self,
        pre_finished_hash: hash::Output,
        handshake_hash: hash::Output,
        key_log: &dyn KeyLog,
        client_random: &[u8; 32],
    ) -> (KeyScheduleClientBeforeFinished, hmac::Tag) {
        let traffic = KeyScheduleTraffic::new(self.ks, pre_finished_hash, key_log, client_random);
        let tag = traffic
            .ks
            .sign_finish(&self.client_handshake_traffic_secret, &handshake_hash);
        (KeyScheduleClientBeforeFinished { traffic }, tag)
    }
}

pub(crate) struct KeyScheduleClientBeforeFinished {
    traffic: KeyScheduleTraffic,
}

impl KeyScheduleClientBeforeFinished {
    pub(crate) fn into_traffic(self, common: &mut CommonState) -> KeyScheduleTraffic {
        debug_assert_eq!(common.side, Side::Client);
        let (client_secret, server_secret) = (
            &self
                .traffic
                .current_client_traffic_secret,
            &self
                .traffic
                .current_server_traffic_secret,
        );

        self.traffic
            .ks
            .set_decrypter(server_secret, common);
        self.traffic
            .ks
            .set_encrypter(client_secret, common);

        if common.is_quic() {
            common.quic.traffic_secrets = Some(quic::Secrets::new(
                client_secret.clone(),
                server_secret.clone(),
                self.traffic.ks.suite,
                self.traffic.ks.suite.quic.unwrap(),
                common.side,
                common.quic.version,
            ));
        }

        self.traffic
    }
}

/// KeySchedule during traffic stage, retaining the ability to calculate the client's
/// finished verify_data. The traffic stage key schedule can be extracted from it
/// through signing the client finished hash.
pub(crate) struct KeyScheduleTrafficWithClientFinishedPending {
    handshake_client_traffic_secret: OkmBlock,
    traffic: KeyScheduleTraffic,
}

impl KeyScheduleTrafficWithClientFinishedPending {
    pub(crate) fn update_decrypter(&self, common: &mut CommonState) {
        debug_assert_eq!(common.side, Side::Server);
        self.traffic
            .ks
            .set_decrypter(&self.handshake_client_traffic_secret, common);
    }

    pub(crate) fn sign_client_finish(
        self,
        hs_hash: &hash::Output,
        common: &mut CommonState,
    ) -> (KeyScheduleTraffic, hmac::Tag) {
        debug_assert_eq!(common.side, Side::Server);
        let tag = self
            .traffic
            .ks
            .sign_finish(&self.handshake_client_traffic_secret, hs_hash);

        // Install keying to read future messages.
        self.traffic.ks.set_decrypter(
            &self
                .traffic
                .current_client_traffic_secret,
            common,
        );

        (self.traffic, tag)
    }
}

/// KeySchedule during traffic stage.  All traffic & exporter keys are guaranteed
/// to be available.
pub(crate) struct KeyScheduleTraffic {
    ks: KeySchedule,
    current_client_traffic_secret: OkmBlock,
    current_server_traffic_secret: OkmBlock,
    current_exporter_secret: OkmBlock,
}

impl KeyScheduleTraffic {
    fn new(
        mut ks: KeySchedule,
        hs_hash: hash::Output,
        key_log: &dyn KeyLog,
        client_random: &[u8; 32],
    ) -> Self {
        ks.input_empty();

        let current_client_traffic_secret = ks.derive_logged_secret(
            SecretKind::ClientApplicationTrafficSecret,
            hs_hash.as_ref(),
            key_log,
            client_random,
        );

        let current_server_traffic_secret = ks.derive_logged_secret(
            SecretKind::ServerApplicationTrafficSecret,
            hs_hash.as_ref(),
            key_log,
            client_random,
        );

        let current_exporter_secret = ks.derive_logged_secret(
            SecretKind::ExporterMasterSecret,
            hs_hash.as_ref(),
            key_log,
            client_random,
        );

        Self {
            ks,
            current_client_traffic_secret,
            current_server_traffic_secret,
            current_exporter_secret,
        }
    }

    pub(crate) fn update_encrypter_and_notify(&mut self, common: &mut CommonState) {
        let secret = self.next_application_traffic_secret(common.side);
        common.enqueue_key_update_notification();
        self.ks.set_encrypter(&secret, common);
    }

    pub(crate) fn request_key_update_and_update_encrypter(
        &mut self,
        common: &mut CommonState,
    ) -> Result<(), Error> {
        common.check_aligned_handshake()?;
        common.send_msg_encrypt(Message::build_key_update_request().into());
        let secret = self.next_application_traffic_secret(common.side);
        self.ks.set_encrypter(&secret, common);
        Ok(())
    }

    pub(crate) fn update_decrypter(&mut self, common: &mut CommonState) {
        let secret = self.next_application_traffic_secret(common.side.peer());
        self.ks.set_decrypter(&secret, common);
    }

    pub(crate) fn next_application_traffic_secret(&mut self, side: Side) -> OkmBlock {
        let current = match side {
            Side::Client => &mut self.current_client_traffic_secret,
            Side::Server => &mut self.current_server_traffic_secret,
        };

        let secret = self.ks.derive_next(current);
        *current = secret.clone();
        secret
    }

    pub(crate) fn export_keying_material(
        &self,
        out: &mut [u8],
        label: &[u8],
        context: Option<&[u8]>,
    ) -> Result<(), Error> {
        self.ks
            .export_keying_material(&self.current_exporter_secret, out, label, context)
    }

    pub(crate) fn extract_secrets(&self, side: Side) -> Result<PartiallyExtractedSecrets, Error> {
        fn expand(
            secret: &OkmBlock,
            hkdf: &'static dyn Hkdf,
            aead_key_len: usize,
        ) -> (AeadKey, Iv) {
            let expander = hkdf.expander_for_okm(secret);

            (
                hkdf_expand_label_aead_key(expander.as_ref(), aead_key_len, b"key", &[]),
                hkdf_expand_label(expander.as_ref(), b"iv", &[]),
            )
        }

        let (client_key, client_iv) = expand(
            &self.current_client_traffic_secret,
            self.ks.suite.hkdf_provider,
            self.ks.suite.aead_alg.key_len(),
        );
        let (server_key, server_iv) = expand(
            &self.current_server_traffic_secret,
            self.ks.suite.hkdf_provider,
            self.ks.suite.aead_alg.key_len(),
        );
        let client_secrets = self
            .ks
            .suite
            .aead_alg
            .extract_keys(client_key, client_iv)?;
        let server_secrets = self
            .ks
            .suite
            .aead_alg
            .extract_keys(server_key, server_iv)?;

        let (tx, rx) = match side {
            Side::Client => (client_secrets, server_secrets),
            Side::Server => (server_secrets, client_secrets),
        };
        Ok(PartiallyExtractedSecrets { tx, rx })
    }
}

pub(crate) struct ResumptionSecret<'a> {
    kst: &'a KeyScheduleTraffic,
    resumption_master_secret: OkmBlock,
}

impl<'a> ResumptionSecret<'a> {
    pub(crate) fn new(kst: &'a KeyScheduleTraffic, hs_hash: &hash::Output) -> Self {
        ResumptionSecret {
            kst,
            resumption_master_secret: kst
                .ks
                .derive(SecretKind::ResumptionMasterSecret, hs_hash.as_ref()),
        }
    }

    pub(crate) fn derive_ticket_psk(&self, nonce: &[u8]) -> OkmBlock {
        self.kst
            .ks
            .derive_ticket_psk(&self.resumption_master_secret, nonce)
    }
}

impl KeySchedule {
    fn new(suite: &'static Tls13CipherSuite, secret: &[u8]) -> Self {
        Self {
            current: suite
                .hkdf_provider
                .extract_from_secret(None, secret),
            suite,
        }
    }

    fn set_encrypter(&self, secret: &OkmBlock, common: &mut CommonState) {
        let expander = self
            .suite
            .hkdf_provider
            .expander_for_okm(secret);
        let key = derive_traffic_key(expander.as_ref(), self.suite.aead_alg);
        let iv = derive_traffic_iv(expander.as_ref());

        common
            .record_layer
            .set_message_encrypter(
                self.suite.aead_alg.encrypter(key, iv),
                self.suite.common.confidentiality_limit,
            );
    }

    fn set_decrypter(&self, secret: &OkmBlock, common: &mut CommonState) {
        common
            .record_layer
            .set_message_decrypter(self.derive_decrypter(secret));
    }

    fn derive_decrypter(&self, secret: &OkmBlock) -> Box<dyn MessageDecrypter> {
        let expander = self
            .suite
            .hkdf_provider
            .expander_for_okm(secret);
        let key = derive_traffic_key(expander.as_ref(), self.suite.aead_alg);
        let iv = derive_traffic_iv(expander.as_ref());
        self.suite.aead_alg.decrypter(key, iv)
    }

    fn new_with_empty_secret(suite: &'static Tls13CipherSuite) -> Self {
        Self {
            current: suite
                .hkdf_provider
                .extract_from_zero_ikm(None),
            suite,
        }
    }

    /// Input the empty secret.
    fn input_empty(&mut self) {
        let salt = self.derive_for_empty_hash(SecretKind::DerivedSecret);
        self.current = self
            .suite
            .hkdf_provider
            .extract_from_zero_ikm(Some(salt.as_ref()));
    }

    /// Input the given secret.
    fn input_secret(&mut self, secret: &[u8]) {
        let salt = self.derive_for_empty_hash(SecretKind::DerivedSecret);
        self.current = self
            .suite
            .hkdf_provider
            .extract_from_secret(Some(salt.as_ref()), secret);
    }

    /// Derive a secret of given `kind`, using current handshake hash `hs_hash`.
    fn derive(&self, kind: SecretKind, hs_hash: &[u8]) -> OkmBlock {
        hkdf_expand_label_block(self.current.as_ref(), kind.to_bytes(), hs_hash)
    }

    fn derive_logged_secret(
        &self,
        kind: SecretKind,
        hs_hash: &[u8],
        key_log: &dyn KeyLog,
        client_random: &[u8; 32],
    ) -> OkmBlock {
        let output = self.derive(kind, hs_hash);

        let log_label = kind
            .log_label()
            .expect("not a loggable secret");
        if key_log.will_log(log_label) {
            key_log.log(log_label, client_random, output.as_ref());
        }
        output
    }

    /// Derive a secret of given `kind` using the hash of the empty string
    /// for the handshake hash.  Useful only for
    /// `SecretKind::ResumptionPSKBinderKey` and
    /// `SecretKind::DerivedSecret`.
    fn derive_for_empty_hash(&self, kind: SecretKind) -> OkmBlock {
        let empty_hash = self
            .suite
            .common
            .hash_provider
            .start()
            .finish();
        self.derive(kind, empty_hash.as_ref())
    }

    /// Sign the finished message consisting of `hs_hash` using a current
    /// traffic secret.
    fn sign_finish(&self, base_key: &OkmBlock, hs_hash: &hash::Output) -> hmac::Tag {
        self.sign_verify_data(base_key, hs_hash)
    }

    /// Sign the finished message consisting of `hs_hash` using the key material
    /// `base_key`.
    fn sign_verify_data(&self, base_key: &OkmBlock, hs_hash: &hash::Output) -> hmac::Tag {
        let expander = self
            .suite
            .hkdf_provider
            .expander_for_okm(base_key);
        let hmac_key = hkdf_expand_label_block(expander.as_ref(), b"finished", &[]);

        self.suite
            .hkdf_provider
            .hmac_sign(&hmac_key, hs_hash.as_ref())
    }

    /// Derive the next application traffic secret, returning it.
    fn derive_next(&self, base_key: &OkmBlock) -> OkmBlock {
        let expander = self
            .suite
            .hkdf_provider
            .expander_for_okm(base_key);
        hkdf_expand_label_block(expander.as_ref(), b"traffic upd", &[])
    }

    /// Derive the PSK to use given a resumption_master_secret and
    /// ticket_nonce.
    fn derive_ticket_psk(&self, rms: &OkmBlock, nonce: &[u8]) -> OkmBlock {
        let expander = self
            .suite
            .hkdf_provider
            .expander_for_okm(rms);
        hkdf_expand_label_block(expander.as_ref(), b"resumption", nonce)
    }

    fn export_keying_material(
        &self,
        current_exporter_secret: &OkmBlock,
        out: &mut [u8],
        label: &[u8],
        context: Option<&[u8]>,
    ) -> Result<(), Error> {
        let secret = {
            let h_empty = self
                .suite
                .common
                .hash_provider
                .hash(&[]);

            let expander = self
                .suite
                .hkdf_provider
                .expander_for_okm(current_exporter_secret);
            hkdf_expand_label_block(expander.as_ref(), label, h_empty.as_ref())
        };

        let h_context = self
            .suite
            .common
            .hash_provider
            .hash(context.unwrap_or(&[]));

        let expander = self
            .suite
            .hkdf_provider
            .expander_for_okm(&secret);
        hkdf_expand_label_slice(expander.as_ref(), b"exporter", h_context.as_ref(), out)
            .map_err(|_| Error::General("exporting too much".to_string()))
    }
}

/// [HKDF-Expand-Label] where the output is an AEAD key.
///
/// [HKDF-Expand-Label]: <https://www.rfc-editor.org/rfc/rfc8446#section-7.1>
pub fn derive_traffic_key(
    expander: &dyn HkdfExpander,
    aead_alg: &dyn Tls13AeadAlgorithm,
) -> AeadKey {
    hkdf_expand_label_aead_key(expander, aead_alg.key_len(), b"key", &[])
}

/// [HKDF-Expand-Label] where the output is an IV.
///
/// [HKDF-Expand-Label]: <https://www.rfc-editor.org/rfc/rfc8446#section-7.1>
pub fn derive_traffic_iv(expander: &dyn HkdfExpander) -> Iv {
    hkdf_expand_label(expander, b"iv", &[])
}

/// [HKDF-Expand-Label] where the output length is a compile-time constant, and therefore
/// it is infallible.
///
/// [HKDF-Expand-Label]: <https://www.rfc-editor.org/rfc/rfc8446#section-7.1>
pub(crate) fn hkdf_expand_label<T: From<[u8; N]>, const N: usize>(
    expander: &dyn HkdfExpander,
    label: &[u8],
    context: &[u8],
) -> T {
    hkdf_expand_label_inner(expander, label, context, N, |e, info| expand(e, info))
}

/// [HKDF-Expand-Label] where the output is one block in size.
pub(crate) fn hkdf_expand_label_block(
    expander: &dyn HkdfExpander,
    label: &[u8],
    context: &[u8],
) -> OkmBlock {
    hkdf_expand_label_inner(expander, label, context, expander.hash_len(), |e, info| {
        e.expand_block(info)
    })
}

/// [HKDF-Expand-Label] where the output is an AEAD key.
pub(crate) fn hkdf_expand_label_aead_key(
    expander: &dyn HkdfExpander,
    key_len: usize,
    label: &[u8],
    context: &[u8],
) -> AeadKey {
    hkdf_expand_label_inner(expander, label, context, key_len, |e, info| {
        let key: AeadKey = expand(e, info);
        key.with_length(key_len)
    })
}

/// [HKDF-Expand-Label] where the output is a slice.
///
/// This can fail because HKDF-Expand is limited in its maximum output length.
fn hkdf_expand_label_slice(
    expander: &dyn HkdfExpander,
    label: &[u8],
    context: &[u8],
    output: &mut [u8],
) -> Result<(), OutputLengthError> {
    hkdf_expand_label_inner(expander, label, context, output.len(), |e, info| {
        e.expand_slice(info, output)
    })
}

pub(crate) fn server_ech_hrr_confirmation_secret(
    hkdf_provider: &'static dyn Hkdf,
    client_hello_inner_random: &[u8],
    hs_hash: hash::Output,
) -> [u8; 8] {
    /*
    Per ietf-tls-esni-17 section 7.2.1:
    <https://datatracker.ietf.org/doc/html/draft-ietf-tls-esni-17#section-7.2.1>
    hrr_accept_confirmation = HKDF-Expand-Label(
      HKDF-Extract(0, ClientHelloInner1.random),
      "hrr ech accept confirmation",
      transcript_hrr_ech_conf,
      8)
     */
    hkdf_expand_label(
        hkdf_provider
            .extract_from_secret(None, client_hello_inner_random)
            .as_ref(),
        SecretKind::ServerEchHrrConfirmationSecret.to_bytes(),
        hs_hash.as_ref(),
    )
}

fn hkdf_expand_label_inner<F, T>(
    expander: &dyn HkdfExpander,
    label: &[u8],
    context: &[u8],
    n: usize,
    f: F,
) -> T
where
    F: FnOnce(&dyn HkdfExpander, &[&[u8]]) -> T,
{
    const LABEL_PREFIX: &[u8] = b"tls13 ";

    let output_len = u16::to_be_bytes(n as u16);
    let label_len = u8::to_be_bytes((LABEL_PREFIX.len() + label.len()) as u8);
    let context_len = u8::to_be_bytes(context.len() as u8);

    let info = &[
        &output_len[..],
        &label_len[..],
        LABEL_PREFIX,
        label,
        &context_len[..],
        context,
    ];

    f(expander, info)
}

test_for_each_provider! {
    use core::fmt::Debug;
    use std::prelude::v1::*;
    use std::vec;

    use provider::ring_like::aead;
    use provider::tls13::{
        TLS13_AES_128_GCM_SHA256_INTERNAL, TLS13_CHACHA20_POLY1305_SHA256_INTERNAL,
    };

    use super::{derive_traffic_iv, derive_traffic_key, KeySchedule, SecretKind};
    use crate::KeyLog;

    #[test]
    fn test_vectors() {
        /* These test vectors generated with OpenSSL. */
        let hs_start_hash = [
            0xec, 0x14, 0x7a, 0x06, 0xde, 0xa3, 0xc8, 0x84, 0x6c, 0x02, 0xb2, 0x23, 0x8e, 0x41,
            0xbd, 0xdc, 0x9d, 0x89, 0xf9, 0xae, 0xa1, 0x7b, 0x5e, 0xfd, 0x4d, 0x74, 0x82, 0xaf,
            0x75, 0x88, 0x1c, 0x0a,
        ];

        let hs_full_hash = [
            0x75, 0x1a, 0x3d, 0x4a, 0x14, 0xdf, 0xab, 0xeb, 0x68, 0xe9, 0x2c, 0xa5, 0x91, 0x8e,
            0x24, 0x08, 0xb9, 0xbc, 0xb0, 0x74, 0x89, 0x82, 0xec, 0x9c, 0x32, 0x30, 0xac, 0x30,
            0xbb, 0xeb, 0x23, 0xe2,
        ];

        let ecdhe_secret = [
            0xe7, 0xb8, 0xfe, 0xf8, 0x90, 0x3b, 0x52, 0x0c, 0xb9, 0xa1, 0x89, 0x71, 0xb6, 0x9d,
            0xd4, 0x5d, 0xca, 0x53, 0xce, 0x2f, 0x12, 0xbf, 0x3b, 0xef, 0x93, 0x15, 0xe3, 0x12,
            0x71, 0xdf, 0x4b, 0x40,
        ];

        let client_hts = [
            0x61, 0x7b, 0x35, 0x07, 0x6b, 0x9d, 0x0e, 0x08, 0xcf, 0x73, 0x1d, 0x94, 0xa8, 0x66,
            0x14, 0x78, 0x41, 0x09, 0xef, 0x25, 0x55, 0x51, 0x92, 0x1d, 0xd4, 0x6e, 0x04, 0x01,
            0x35, 0xcf, 0x46, 0xab,
        ];

        let client_hts_key = [
            0x62, 0xd0, 0xdd, 0x00, 0xf6, 0x96, 0x19, 0xd3, 0xb8, 0x19, 0x3a, 0xb4, 0xa0, 0x95,
            0x85, 0xa7,
        ];

        let client_hts_iv = [
            0xff, 0xf7, 0x5d, 0xf5, 0xad, 0x35, 0xd5, 0xcb, 0x3c, 0x53, 0xf3, 0xa9,
        ];

        let server_hts = [
            0xfc, 0xf7, 0xdf, 0xe6, 0x4f, 0xa2, 0xc0, 0x4f, 0x62, 0x35, 0x38, 0x7f, 0x43, 0x4e,
            0x01, 0x42, 0x23, 0x36, 0xd9, 0xc0, 0x39, 0xde, 0x68, 0x47, 0xa0, 0xb9, 0xdd, 0xcf,
            0x29, 0xa8, 0x87, 0x59,
        ];

        let server_hts_key = [
            0x04, 0x67, 0xf3, 0x16, 0xa8, 0x05, 0xb8, 0xc4, 0x97, 0xee, 0x67, 0x04, 0x7b, 0xbc,
            0xbc, 0x54,
        ];

        let server_hts_iv = [
            0xde, 0x83, 0xa7, 0x3e, 0x9d, 0x81, 0x4b, 0x04, 0xc4, 0x8b, 0x78, 0x09,
        ];

        let client_ats = [
            0xc1, 0x4a, 0x6d, 0x79, 0x76, 0xd8, 0x10, 0x2b, 0x5a, 0x0c, 0x99, 0x51, 0x49, 0x3f,
            0xee, 0x87, 0xdc, 0xaf, 0xf8, 0x2c, 0x24, 0xca, 0xb2, 0x14, 0xe8, 0xbe, 0x71, 0xa8,
            0x20, 0x6d, 0xbd, 0xa5,
        ];

        let client_ats_key = [
            0xcc, 0x9f, 0x5f, 0x98, 0x0b, 0x5f, 0x10, 0x30, 0x6c, 0xba, 0xd7, 0xbe, 0x98, 0xd7,
            0x57, 0x2e,
        ];

        let client_ats_iv = [
            0xb8, 0x09, 0x29, 0xe8, 0xd0, 0x2c, 0x70, 0xf6, 0x11, 0x62, 0xed, 0x6b,
        ];

        let server_ats = [
            0x2c, 0x90, 0x77, 0x38, 0xd3, 0xf8, 0x37, 0x02, 0xd1, 0xe4, 0x59, 0x8f, 0x48, 0x48,
            0x53, 0x1d, 0x9f, 0x93, 0x65, 0x49, 0x1b, 0x9f, 0x7f, 0x52, 0xc8, 0x22, 0x29, 0x0d,
            0x4c, 0x23, 0x21, 0x92,
        ];

        let server_ats_key = [
            0x0c, 0xb2, 0x95, 0x62, 0xd8, 0xd8, 0x8f, 0x48, 0xb0, 0x2c, 0xbf, 0xbe, 0xd7, 0xe6,
            0x2b, 0xb3,
        ];

        let server_ats_iv = [
            0x0d, 0xb2, 0x8f, 0x98, 0x85, 0x86, 0xa1, 0xb7, 0xe4, 0xd5, 0xc6, 0x9c,
        ];

        let mut ks = KeySchedule::new_with_empty_secret(TLS13_CHACHA20_POLY1305_SHA256_INTERNAL);
        ks.input_secret(&ecdhe_secret);

        assert_traffic_secret(
            &ks,
            SecretKind::ClientHandshakeTrafficSecret,
            &hs_start_hash,
            &client_hts,
            &client_hts_key,
            &client_hts_iv,
        );

        assert_traffic_secret(
            &ks,
            SecretKind::ServerHandshakeTrafficSecret,
            &hs_start_hash,
            &server_hts,
            &server_hts_key,
            &server_hts_iv,
        );

        ks.input_empty();

        assert_traffic_secret(
            &ks,
            SecretKind::ClientApplicationTrafficSecret,
            &hs_full_hash,
            &client_ats,
            &client_ats_key,
            &client_ats_iv,
        );

        assert_traffic_secret(
            &ks,
            SecretKind::ServerApplicationTrafficSecret,
            &hs_full_hash,
            &server_ats,
            &server_ats_key,
            &server_ats_iv,
        );
    }

    fn assert_traffic_secret(
        ks: &KeySchedule,
        kind: SecretKind,
        hash: &[u8],
        expected_traffic_secret: &[u8],
        expected_key: &[u8],
        expected_iv: &[u8],
    ) {
        #[derive(Debug)]
        struct Log<'a>(&'a [u8]);
        impl KeyLog for Log<'_> {
            fn log(&self, _label: &str, _client_random: &[u8], secret: &[u8]) {
                assert_eq!(self.0, secret);
            }
        }
        let log = Log(expected_traffic_secret);
        let traffic_secret = ks.derive_logged_secret(kind, hash, &log, &[0; 32]);

        // Since we can't test key equality, we test the output of sealing with the key instead.
        let aead_alg = &aead::AES_128_GCM;
        let expander = TLS13_AES_128_GCM_SHA256_INTERNAL
            .hkdf_provider
            .expander_for_okm(&traffic_secret);
        let key = derive_traffic_key(
            expander.as_ref(),
            TLS13_AES_128_GCM_SHA256_INTERNAL.aead_alg,
        );
        let key = aead::UnboundKey::new(aead_alg, key.as_ref()).unwrap();
        let seal_output = seal_zeroes(key);
        let expected_key = aead::UnboundKey::new(aead_alg, expected_key).unwrap();
        let expected_seal_output = seal_zeroes(expected_key);
        assert_eq!(seal_output, expected_seal_output);
        assert!(seal_output.len() >= 48); // Sanity check.

        let iv = derive_traffic_iv(expander.as_ref());
        assert_eq!(iv.as_ref(), expected_iv);
    }

    fn seal_zeroes(key: aead::UnboundKey) -> Vec<u8> {
        let key = aead::LessSafeKey::new(key);
        let mut seal_output = vec![0; 32];
        key.seal_in_place_append_tag(
            aead::Nonce::assume_unique_for_key([0; aead::NONCE_LEN]),
            aead::Aad::empty(),
            &mut seal_output,
        )
        .unwrap();
        seal_output
    }
}

bench_for_each_provider! {
    #[bench]
    fn bench_sha256(b: &mut test::Bencher) {
        use core::fmt::Debug;

        use super::{derive_traffic_iv, derive_traffic_key, KeySchedule, SecretKind};
        use provider::tls13::TLS13_CHACHA20_POLY1305_SHA256_INTERNAL;
        use crate::KeyLog;

        fn extract_traffic_secret(ks: &KeySchedule, kind: SecretKind) {
            #[derive(Debug)]
            struct Log;

            impl KeyLog for Log {
                fn log(&self, _label: &str, _client_random: &[u8], _secret: &[u8]) {}
            }

            let hash = [0u8; 32];
            let traffic_secret = ks.derive_logged_secret(kind, &hash, &Log, &[0u8; 32]);
            let traffic_secret_expander = TLS13_CHACHA20_POLY1305_SHA256_INTERNAL
                .hkdf_provider
                .expander_for_okm(&traffic_secret);
            test::black_box(derive_traffic_key(
                traffic_secret_expander.as_ref(),
                TLS13_CHACHA20_POLY1305_SHA256_INTERNAL
                    .aead_alg,
            ));
            test::black_box(derive_traffic_iv(traffic_secret_expander.as_ref()));
        }

        b.iter(|| {
            let mut ks =
                KeySchedule::new_with_empty_secret(TLS13_CHACHA20_POLY1305_SHA256_INTERNAL);
            ks.input_secret(&[0u8; 32]);

            extract_traffic_secret(&ks, SecretKind::ClientHandshakeTrafficSecret);
            extract_traffic_secret(&ks, SecretKind::ServerHandshakeTrafficSecret);

            ks.input_empty();

            extract_traffic_secret(&ks, SecretKind::ClientApplicationTrafficSecret);
            extract_traffic_secret(&ks, SecretKind::ServerApplicationTrafficSecret);
        });
    }
}