rustls/
vecbuf.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
use alloc::collections::VecDeque;
use alloc::vec::Vec;
use core::{cmp, mem};
#[cfg(feature = "std")]
use std::io;
#[cfg(feature = "std")]
use std::io::Read;

#[cfg(feature = "std")]
use crate::msgs::message::OutboundChunks;

/// This is a byte buffer that is built from a deque of byte vectors.
///
/// This avoids extra copies when appending a new byte vector,
/// at the expense of more complexity when reading out.
pub(crate) struct ChunkVecBuffer {
    /// How many bytes have been consumed in the first chunk.
    ///
    /// Invariant: zero if `chunks.is_empty()`
    /// Invariant: 0 <= `prefix_used` < `chunks[0].len()`
    prefix_used: usize,

    chunks: VecDeque<Vec<u8>>,

    /// The total upper limit (in bytes) of this object.
    limit: Option<usize>,
}

impl ChunkVecBuffer {
    pub(crate) fn new(limit: Option<usize>) -> Self {
        Self {
            prefix_used: 0,
            chunks: VecDeque::new(),
            limit,
        }
    }

    /// Sets the upper limit on how many bytes this
    /// object can store.
    ///
    /// Setting a lower limit than the currently stored
    /// data is not an error.
    ///
    /// A [`None`] limit is interpreted as no limit.
    pub(crate) fn set_limit(&mut self, new_limit: Option<usize>) {
        self.limit = new_limit;
    }

    /// If we're empty
    pub(crate) fn is_empty(&self) -> bool {
        self.chunks.is_empty()
    }

    /// How many bytes we're storing
    pub(crate) fn len(&self) -> usize {
        self.chunks
            .iter()
            .fold(0usize, |acc, chunk| acc + chunk.len())
            - self.prefix_used
    }

    /// For a proposed append of `len` bytes, how many
    /// bytes should we actually append to adhere to the
    /// currently set `limit`?
    pub(crate) fn apply_limit(&self, len: usize) -> usize {
        if let Some(limit) = self.limit {
            let space = limit.saturating_sub(self.len());
            cmp::min(len, space)
        } else {
            len
        }
    }

    /// Take and append the given `bytes`.
    pub(crate) fn append(&mut self, bytes: Vec<u8>) -> usize {
        let len = bytes.len();

        if !bytes.is_empty() {
            self.chunks.push_back(bytes);
        }

        len
    }

    /// Take one of the chunks from this object.
    ///
    /// This function returns `None` if the object `is_empty`.
    pub(crate) fn pop(&mut self) -> Option<Vec<u8>> {
        let mut first = self.chunks.pop_front();

        if let Some(first) = &mut first {
            // slice off `prefix_used` if needed (uncommon)
            let prefix = mem::take(&mut self.prefix_used);
            first.drain(0..prefix);
        }

        first
    }

    #[cfg(read_buf)]
    /// Read data out of this object, writing it into `cursor`.
    pub(crate) fn read_buf(&mut self, mut cursor: core::io::BorrowedCursor<'_>) -> io::Result<()> {
        while !self.is_empty() && cursor.capacity() > 0 {
            let chunk = &self.chunks[0][self.prefix_used..];
            let used = cmp::min(chunk.len(), cursor.capacity());
            cursor.append(&chunk[..used]);
            self.consume(used);
        }

        Ok(())
    }
}

#[cfg(feature = "std")]
impl ChunkVecBuffer {
    pub(crate) fn is_full(&self) -> bool {
        self.limit
            .map(|limit| self.len() > limit)
            .unwrap_or_default()
    }

    /// Append a copy of `bytes`, perhaps a prefix if
    /// we're near the limit.
    pub(crate) fn append_limited_copy(&mut self, payload: OutboundChunks<'_>) -> usize {
        let take = self.apply_limit(payload.len());
        self.append(payload.split_at(take).0.to_vec());
        take
    }

    /// Read data out of this object, writing it into `buf`
    /// and returning how many bytes were written there.
    pub(crate) fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
        let mut offs = 0;

        while offs < buf.len() && !self.is_empty() {
            let used = (&self.chunks[0][self.prefix_used..]).read(&mut buf[offs..])?;

            self.consume(used);
            offs += used;
        }

        Ok(offs)
    }

    fn consume(&mut self, used: usize) {
        // first, mark the rightmost extent of the used buffer
        self.prefix_used += used;

        // then reduce `prefix_used` by discarding wholly-covered
        // buffers
        while let Some(buf) = self.chunks.front() {
            if self.prefix_used < buf.len() {
                break;
            } else {
                self.prefix_used -= buf.len();
                self.chunks.pop_front();
            }
        }
    }

    /// Read data out of this object, passing it `wr`
    pub(crate) fn write_to(&mut self, wr: &mut dyn io::Write) -> io::Result<usize> {
        if self.is_empty() {
            return Ok(0);
        }

        let mut prefix = self.prefix_used;
        let mut bufs = [io::IoSlice::new(&[]); 64];
        for (iov, chunk) in bufs.iter_mut().zip(self.chunks.iter()) {
            *iov = io::IoSlice::new(&chunk[prefix..]);
            prefix = 0;
        }
        let len = cmp::min(bufs.len(), self.chunks.len());
        let used = wr.write_vectored(&bufs[..len])?;
        self.consume(used);
        Ok(used)
    }
}

#[cfg(all(test, feature = "std"))]
mod tests {
    use alloc::vec;
    use alloc::vec::Vec;

    use super::ChunkVecBuffer;

    #[test]
    fn short_append_copy_with_limit() {
        let mut cvb = ChunkVecBuffer::new(Some(12));
        assert_eq!(cvb.append_limited_copy(b"hello"[..].into()), 5);
        assert_eq!(cvb.append_limited_copy(b"world"[..].into()), 5);
        assert_eq!(cvb.append_limited_copy(b"hello"[..].into()), 2);
        assert_eq!(cvb.append_limited_copy(b"world"[..].into()), 0);

        let mut buf = [0u8; 12];
        assert_eq!(cvb.read(&mut buf).unwrap(), 12);
        assert_eq!(buf.to_vec(), b"helloworldhe".to_vec());
    }

    #[test]
    fn read_byte_by_byte() {
        let mut cvb = ChunkVecBuffer::new(None);
        cvb.append(b"test fixture data".to_vec());
        assert!(!cvb.is_empty());
        for expect in b"test fixture data" {
            let mut byte = [0];
            assert_eq!(cvb.read(&mut byte).unwrap(), 1);
            assert_eq!(byte[0], *expect);
        }

        assert_eq!(cvb.read(&mut [0]).unwrap(), 0);
    }

    #[test]
    fn every_possible_chunk_interleaving() {
        let input = (0..=0xffu8)
            .cycle()
            .take(4096)
            .collect::<Vec<u8>>();

        for input_chunk_len in 1..64usize {
            for output_chunk_len in 1..65usize {
                std::println!("check input={input_chunk_len} output={output_chunk_len}");
                let mut cvb = ChunkVecBuffer::new(None);
                for chunk in input.chunks(input_chunk_len) {
                    cvb.append(chunk.to_vec());
                }

                assert_eq!(cvb.len(), input.len());
                let mut buf = vec![0u8; output_chunk_len];

                for expect in input.chunks(output_chunk_len) {
                    assert_eq!(expect.len(), cvb.read(&mut buf).unwrap());
                    assert_eq!(expect, &buf[..expect.len()]);
                }

                assert_eq!(cvb.read(&mut [0]).unwrap(), 0);
            }
        }
    }

    #[cfg(read_buf)]
    #[test]
    fn read_buf() {
        use core::io::BorrowedBuf;
        use core::mem::MaybeUninit;

        {
            let mut cvb = ChunkVecBuffer::new(None);
            cvb.append(b"test ".to_vec());
            cvb.append(b"fixture ".to_vec());
            cvb.append(b"data".to_vec());

            let mut buf = [MaybeUninit::<u8>::uninit(); 8];
            let mut buf: BorrowedBuf<'_> = buf.as_mut_slice().into();
            cvb.read_buf(buf.unfilled()).unwrap();
            assert_eq!(buf.filled(), b"test fix");
            buf.clear();
            cvb.read_buf(buf.unfilled()).unwrap();
            assert_eq!(buf.filled(), b"ture dat");
            buf.clear();
            cvb.read_buf(buf.unfilled()).unwrap();
            assert_eq!(buf.filled(), b"a");
        }

        {
            let mut cvb = ChunkVecBuffer::new(None);
            cvb.append(b"short message".to_vec());

            let mut buf = [MaybeUninit::<u8>::uninit(); 1024];
            let mut buf: BorrowedBuf<'_> = buf.as_mut_slice().into();
            cvb.read_buf(buf.unfilled()).unwrap();
            assert_eq!(buf.filled(), b"short message");
        }
    }
}

#[cfg(bench)]
mod benchmarks {
    use alloc::vec;

    use super::ChunkVecBuffer;

    #[bench]
    fn read_one_byte_from_large_message(b: &mut test::Bencher) {
        b.iter(|| {
            let mut cvb = ChunkVecBuffer::new(None);
            cvb.append(vec![0u8; 16_384]);
            assert_eq!(1, cvb.read(&mut [0u8]).unwrap());
        });
    }

    #[bench]
    fn read_all_individual_from_large_message(b: &mut test::Bencher) {
        b.iter(|| {
            let mut cvb = ChunkVecBuffer::new(None);
            cvb.append(vec![0u8; 16_384]);
            loop {
                if let Ok(0) = cvb.read(&mut [0u8]) {
                    break;
                }
            }
        });
    }

    #[bench]
    fn read_half_bytes_from_large_message(b: &mut test::Bencher) {
        b.iter(|| {
            let mut cvb = ChunkVecBuffer::new(None);
            cvb.append(vec![0u8; 16_384]);
            assert_eq!(8192, cvb.read(&mut [0u8; 8192]).unwrap());
            assert_eq!(8192, cvb.read(&mut [0u8; 8192]).unwrap());
        });
    }

    #[bench]
    fn read_entire_large_message(b: &mut test::Bencher) {
        b.iter(|| {
            let mut cvb = ChunkVecBuffer::new(None);
            cvb.append(vec![0u8; 16_384]);
            assert_eq!(16_384, cvb.read(&mut [0u8; 16_384]).unwrap());
        });
    }
}