servo_arc/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Fork of Arc for Servo. This has the following advantages over std::sync::Arc:
//!
//! * We don't waste storage on the weak reference count.
//! * We don't do extra RMU operations to handle the possibility of weak references.
//! * We can experiment with arena allocation (todo).
//! * We can add methods to support our custom use cases [1].
//! * We have support for dynamically-sized types (see from_header_and_iter).
//! * We have support for thin arcs to unsized types (see ThinArc).
//! * We have support for references to static data, which don't do any
//! refcounting.
//!
//! [1]: https://bugzilla.mozilla.org/show_bug.cgi?id=1360883
// The semantics of `Arc` are already documented in the Rust docs, so we don't
// duplicate those here.
#![allow(missing_docs)]
#[cfg(feature = "servo")]
extern crate serde;
extern crate stable_deref_trait;
#[cfg(feature = "servo")]
use serde::{Deserialize, Serialize};
use stable_deref_trait::{CloneStableDeref, StableDeref};
use std::alloc::{self, Layout};
use std::borrow;
use std::cmp::Ordering;
use std::convert::From;
use std::fmt;
use std::hash::{Hash, Hasher};
use std::iter::{ExactSizeIterator, Iterator};
use std::marker::PhantomData;
use std::mem::{self, align_of, size_of};
use std::ops::{Deref, DerefMut};
use std::os::raw::c_void;
use std::process;
use std::ptr;
use std::slice;
use std::sync::atomic;
use std::sync::atomic::Ordering::{Acquire, Relaxed, Release};
use std::{isize, usize};
/// A soft limit on the amount of references that may be made to an `Arc`.
///
/// Going above this limit will abort your program (although not
/// necessarily) at _exactly_ `MAX_REFCOUNT + 1` references.
const MAX_REFCOUNT: usize = (isize::MAX) as usize;
/// Special refcount value that means the data is not reference counted,
/// and that the `Arc` is really acting as a read-only static reference.
const STATIC_REFCOUNT: usize = usize::MAX;
/// An atomically reference counted shared pointer
///
/// See the documentation for [`Arc`] in the standard library. Unlike the
/// standard library `Arc`, this `Arc` does not support weak reference counting.
///
/// See the discussion in https://github.com/rust-lang/rust/pull/60594 for the
/// usage of PhantomData.
///
/// [`Arc`]: https://doc.rust-lang.org/stable/std/sync/struct.Arc.html
///
/// cbindgen:derive-eq=false
/// cbindgen:derive-neq=false
#[repr(C)]
pub struct Arc<T: ?Sized> {
p: ptr::NonNull<ArcInner<T>>,
phantom: PhantomData<T>,
}
/// An `Arc` that is known to be uniquely owned
///
/// When `Arc`s are constructed, they are known to be
/// uniquely owned. In such a case it is safe to mutate
/// the contents of the `Arc`. Normally, one would just handle
/// this by mutating the data on the stack before allocating the
/// `Arc`, however it's possible the data is large or unsized
/// and you need to heap-allocate it earlier in such a way
/// that it can be freely converted into a regular `Arc` once you're
/// done.
///
/// `UniqueArc` exists for this purpose, when constructed it performs
/// the same allocations necessary for an `Arc`, however it allows mutable access.
/// Once the mutation is finished, you can call `.shareable()` and get a regular `Arc`
/// out of it.
///
/// Ignore the doctest below there's no way to skip building with refcount
/// logging during doc tests (see rust-lang/rust#45599).
///
/// ```rust,ignore
/// # use servo_arc::UniqueArc;
/// let data = [1, 2, 3, 4, 5];
/// let mut x = UniqueArc::new(data);
/// x[4] = 7; // mutate!
/// let y = x.shareable(); // y is an Arc<T>
/// ```
pub struct UniqueArc<T: ?Sized>(Arc<T>);
impl<T> UniqueArc<T> {
#[inline]
/// Construct a new UniqueArc
pub fn new(data: T) -> Self {
UniqueArc(Arc::new(data))
}
/// Construct an uninitialized arc
#[inline]
pub fn new_uninit() -> UniqueArc<mem::MaybeUninit<T>> {
unsafe {
let layout = Layout::new::<ArcInner<mem::MaybeUninit<T>>>();
let ptr = alloc::alloc(layout);
let mut p = ptr::NonNull::new(ptr)
.unwrap_or_else(|| alloc::handle_alloc_error(layout))
.cast::<ArcInner<mem::MaybeUninit<T>>>();
ptr::write(&mut p.as_mut().count, atomic::AtomicUsize::new(1));
#[cfg(feature = "gecko_refcount_logging")]
{
NS_LogCtor(p.as_ptr() as *mut _, b"ServoArc\0".as_ptr() as *const _, 8)
}
UniqueArc(Arc {
p,
phantom: PhantomData,
})
}
}
#[inline]
/// Convert to a shareable Arc<T> once we're done mutating it
pub fn shareable(self) -> Arc<T> {
self.0
}
}
impl<T> UniqueArc<mem::MaybeUninit<T>> {
/// Convert to an initialized Arc.
#[inline]
pub unsafe fn assume_init(this: Self) -> UniqueArc<T> {
UniqueArc(Arc {
p: mem::ManuallyDrop::new(this).0.p.cast(),
phantom: PhantomData,
})
}
}
impl<T> Deref for UniqueArc<T> {
type Target = T;
fn deref(&self) -> &T {
&*self.0
}
}
impl<T> DerefMut for UniqueArc<T> {
fn deref_mut(&mut self) -> &mut T {
// We know this to be uniquely owned
unsafe { &mut (*self.0.ptr()).data }
}
}
unsafe impl<T: ?Sized + Sync + Send> Send for Arc<T> {}
unsafe impl<T: ?Sized + Sync + Send> Sync for Arc<T> {}
/// The object allocated by an Arc<T>
#[repr(C)]
struct ArcInner<T: ?Sized> {
count: atomic::AtomicUsize,
data: T,
}
unsafe impl<T: ?Sized + Sync + Send> Send for ArcInner<T> {}
unsafe impl<T: ?Sized + Sync + Send> Sync for ArcInner<T> {}
/// Computes the offset of the data field within ArcInner.
fn data_offset<T>() -> usize {
let size = size_of::<ArcInner<()>>();
let align = align_of::<T>();
// https://github.com/rust-lang/rust/blob/1.36.0/src/libcore/alloc.rs#L187-L207
size.wrapping_add(align).wrapping_sub(1) & !align.wrapping_sub(1)
}
impl<T> Arc<T> {
/// Construct an `Arc<T>`
#[inline]
pub fn new(data: T) -> Self {
let ptr = Box::into_raw(Box::new(ArcInner {
count: atomic::AtomicUsize::new(1),
data,
}));
#[cfg(feature = "gecko_refcount_logging")]
unsafe {
// FIXME(emilio): Would be so amazing to have
// std::intrinsics::type_name() around, so that we could also report
// a real size.
NS_LogCtor(ptr as *mut _, b"ServoArc\0".as_ptr() as *const _, 8);
}
unsafe {
Arc {
p: ptr::NonNull::new_unchecked(ptr),
phantom: PhantomData,
}
}
}
/// Construct an intentionally-leaked arc.
#[inline]
pub fn new_leaked(data: T) -> Self {
let arc = Self::new(data);
arc.mark_as_intentionally_leaked();
arc
}
/// Convert the Arc<T> to a raw pointer, suitable for use across FFI
///
/// Note: This returns a pointer to the data T, which is offset in the allocation.
#[inline]
pub fn into_raw(this: Self) -> *const T {
let ptr = unsafe { &((*this.ptr()).data) as *const _ };
mem::forget(this);
ptr
}
/// Reconstruct the Arc<T> from a raw pointer obtained from into_raw()
///
/// Note: This raw pointer will be offset in the allocation and must be preceded
/// by the atomic count.
#[inline]
pub unsafe fn from_raw(ptr: *const T) -> Self {
// To find the corresponding pointer to the `ArcInner` we need
// to subtract the offset of the `data` field from the pointer.
let ptr = (ptr as *const u8).sub(data_offset::<T>());
Arc {
p: ptr::NonNull::new_unchecked(ptr as *mut ArcInner<T>),
phantom: PhantomData,
}
}
/// Like from_raw, but returns an addrefed arc instead.
#[inline]
pub unsafe fn from_raw_addrefed(ptr: *const T) -> Self {
let arc = Self::from_raw(ptr);
mem::forget(arc.clone());
arc
}
/// Create a new static Arc<T> (one that won't reference count the object)
/// and place it in the allocation provided by the specified `alloc`
/// function.
///
/// `alloc` must return a pointer into a static allocation suitable for
/// storing data with the `Layout` passed into it. The pointer returned by
/// `alloc` will not be freed.
#[inline]
pub unsafe fn new_static<F>(alloc: F, data: T) -> Arc<T>
where
F: FnOnce(Layout) -> *mut u8,
{
let ptr = alloc(Layout::new::<ArcInner<T>>()) as *mut ArcInner<T>;
let x = ArcInner {
count: atomic::AtomicUsize::new(STATIC_REFCOUNT),
data,
};
ptr::write(ptr, x);
Arc {
p: ptr::NonNull::new_unchecked(ptr),
phantom: PhantomData,
}
}
/// Produce a pointer to the data that can be converted back
/// to an Arc. This is basically an `&Arc<T>`, without the extra indirection.
/// It has the benefits of an `&T` but also knows about the underlying refcount
/// and can be converted into more `Arc<T>`s if necessary.
#[inline]
pub fn borrow_arc<'a>(&'a self) -> ArcBorrow<'a, T> {
ArcBorrow(&**self)
}
/// Returns the address on the heap of the Arc itself -- not the T within it -- for memory
/// reporting.
///
/// If this is a static reference, this returns null.
pub fn heap_ptr(&self) -> *const c_void {
if self.inner().count.load(Relaxed) == STATIC_REFCOUNT {
ptr::null()
} else {
self.p.as_ptr() as *const ArcInner<T> as *const c_void
}
}
}
impl<T: ?Sized> Arc<T> {
#[inline]
fn inner(&self) -> &ArcInner<T> {
// This unsafety is ok because while this arc is alive we're guaranteed
// that the inner pointer is valid. Furthermore, we know that the
// `ArcInner` structure itself is `Sync` because the inner data is
// `Sync` as well, so we're ok loaning out an immutable pointer to these
// contents.
unsafe { &*self.ptr() }
}
#[inline(always)]
fn record_drop(&self) {
#[cfg(feature = "gecko_refcount_logging")]
unsafe {
NS_LogDtor(self.ptr() as *mut _, b"ServoArc\0".as_ptr() as *const _, 8);
}
}
/// Marks this `Arc` as intentionally leaked for the purposes of refcount
/// logging.
///
/// It's a logic error to call this more than once, but it's not unsafe, as
/// it'd just report negative leaks.
#[inline(always)]
pub fn mark_as_intentionally_leaked(&self) {
self.record_drop();
}
// Non-inlined part of `drop`. Just invokes the destructor and calls the
// refcount logging machinery if enabled.
#[inline(never)]
unsafe fn drop_slow(&mut self) {
self.record_drop();
let _ = Box::from_raw(self.ptr());
}
/// Test pointer equality between the two Arcs, i.e. they must be the _same_
/// allocation
#[inline]
pub fn ptr_eq(this: &Self, other: &Self) -> bool {
this.ptr() == other.ptr()
}
fn ptr(&self) -> *mut ArcInner<T> {
self.p.as_ptr()
}
}
#[cfg(feature = "gecko_refcount_logging")]
extern "C" {
fn NS_LogCtor(
aPtr: *mut std::os::raw::c_void,
aTypeName: *const std::os::raw::c_char,
aSize: u32,
);
fn NS_LogDtor(
aPtr: *mut std::os::raw::c_void,
aTypeName: *const std::os::raw::c_char,
aSize: u32,
);
}
impl<T: ?Sized> Clone for Arc<T> {
#[inline]
fn clone(&self) -> Self {
// NOTE(emilio): If you change anything here, make sure that the
// implementation in layout/style/ServoStyleConstsInlines.h matches!
//
// Using a relaxed ordering to check for STATIC_REFCOUNT is safe, since
// `count` never changes between STATIC_REFCOUNT and other values.
if self.inner().count.load(Relaxed) != STATIC_REFCOUNT {
// Using a relaxed ordering is alright here, as knowledge of the
// original reference prevents other threads from erroneously deleting
// the object.
//
// As explained in the [Boost documentation][1], Increasing the
// reference counter can always be done with memory_order_relaxed: New
// references to an object can only be formed from an existing
// reference, and passing an existing reference from one thread to
// another must already provide any required synchronization.
//
// [1]: (www.boost.org/doc/libs/1_55_0/doc/html/atomic/usage_examples.html)
let old_size = self.inner().count.fetch_add(1, Relaxed);
// However we need to guard against massive refcounts in case someone
// is `mem::forget`ing Arcs. If we don't do this the count can overflow
// and users will use-after free. We racily saturate to `isize::MAX` on
// the assumption that there aren't ~2 billion threads incrementing
// the reference count at once. This branch will never be taken in
// any realistic program.
//
// We abort because such a program is incredibly degenerate, and we
// don't care to support it.
if old_size > MAX_REFCOUNT {
process::abort();
}
}
unsafe {
Arc {
p: ptr::NonNull::new_unchecked(self.ptr()),
phantom: PhantomData,
}
}
}
}
impl<T: ?Sized> Deref for Arc<T> {
type Target = T;
#[inline]
fn deref(&self) -> &T {
&self.inner().data
}
}
impl<T: Clone> Arc<T> {
/// Makes a mutable reference to the `Arc`, cloning if necessary
///
/// This is functionally equivalent to [`Arc::make_mut`][mm] from the standard library.
///
/// If this `Arc` is uniquely owned, `make_mut()` will provide a mutable
/// reference to the contents. If not, `make_mut()` will create a _new_ `Arc`
/// with a copy of the contents, update `this` to point to it, and provide
/// a mutable reference to its contents.
///
/// This is useful for implementing copy-on-write schemes where you wish to
/// avoid copying things if your `Arc` is not shared.
///
/// [mm]: https://doc.rust-lang.org/stable/std/sync/struct.Arc.html#method.make_mut
#[inline]
pub fn make_mut(this: &mut Self) -> &mut T {
if !this.is_unique() {
// Another pointer exists; clone
*this = Arc::new((**this).clone());
}
unsafe {
// This unsafety is ok because we're guaranteed that the pointer
// returned is the *only* pointer that will ever be returned to T. Our
// reference count is guaranteed to be 1 at this point, and we required
// the Arc itself to be `mut`, so we're returning the only possible
// reference to the inner data.
&mut (*this.ptr()).data
}
}
}
impl<T: ?Sized> Arc<T> {
/// Provides mutable access to the contents _if_ the `Arc` is uniquely owned.
#[inline]
pub fn get_mut(this: &mut Self) -> Option<&mut T> {
if this.is_unique() {
unsafe {
// See make_mut() for documentation of the threadsafety here.
Some(&mut (*this.ptr()).data)
}
} else {
None
}
}
/// Whether or not the `Arc` is a static reference.
#[inline]
pub fn is_static(&self) -> bool {
// Using a relaxed ordering to check for STATIC_REFCOUNT is safe, since
// `count` never changes between STATIC_REFCOUNT and other values.
self.inner().count.load(Relaxed) == STATIC_REFCOUNT
}
/// Whether or not the `Arc` is uniquely owned (is the refcount 1?) and not
/// a static reference.
#[inline]
pub fn is_unique(&self) -> bool {
// See the extensive discussion in [1] for why this needs to be Acquire.
//
// [1] https://github.com/servo/servo/issues/21186
self.inner().count.load(Acquire) == 1
}
}
impl<T: ?Sized> Drop for Arc<T> {
#[inline]
fn drop(&mut self) {
// NOTE(emilio): If you change anything here, make sure that the
// implementation in layout/style/ServoStyleConstsInlines.h matches!
if self.is_static() {
return;
}
// Because `fetch_sub` is already atomic, we do not need to synchronize
// with other threads unless we are going to delete the object.
if self.inner().count.fetch_sub(1, Release) != 1 {
return;
}
// FIXME(bholley): Use the updated comment when [2] is merged.
//
// This load is needed to prevent reordering of use of the data and
// deletion of the data. Because it is marked `Release`, the decreasing
// of the reference count synchronizes with this `Acquire` load. This
// means that use of the data happens before decreasing the reference
// count, which happens before this load, which happens before the
// deletion of the data.
//
// As explained in the [Boost documentation][1],
//
// > It is important to enforce any possible access to the object in one
// > thread (through an existing reference) to *happen before* deleting
// > the object in a different thread. This is achieved by a "release"
// > operation after dropping a reference (any access to the object
// > through this reference must obviously happened before), and an
// > "acquire" operation before deleting the object.
//
// [1]: (www.boost.org/doc/libs/1_55_0/doc/html/atomic/usage_examples.html)
// [2]: https://github.com/rust-lang/rust/pull/41714
self.inner().count.load(Acquire);
unsafe {
self.drop_slow();
}
}
}
impl<T: ?Sized + PartialEq> PartialEq for Arc<T> {
fn eq(&self, other: &Arc<T>) -> bool {
Self::ptr_eq(self, other) || *(*self) == *(*other)
}
fn ne(&self, other: &Arc<T>) -> bool {
!Self::ptr_eq(self, other) && *(*self) != *(*other)
}
}
impl<T: ?Sized + PartialOrd> PartialOrd for Arc<T> {
fn partial_cmp(&self, other: &Arc<T>) -> Option<Ordering> {
(**self).partial_cmp(&**other)
}
fn lt(&self, other: &Arc<T>) -> bool {
*(*self) < *(*other)
}
fn le(&self, other: &Arc<T>) -> bool {
*(*self) <= *(*other)
}
fn gt(&self, other: &Arc<T>) -> bool {
*(*self) > *(*other)
}
fn ge(&self, other: &Arc<T>) -> bool {
*(*self) >= *(*other)
}
}
impl<T: ?Sized + Ord> Ord for Arc<T> {
fn cmp(&self, other: &Arc<T>) -> Ordering {
(**self).cmp(&**other)
}
}
impl<T: ?Sized + Eq> Eq for Arc<T> {}
impl<T: ?Sized + fmt::Display> fmt::Display for Arc<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Display::fmt(&**self, f)
}
}
impl<T: ?Sized + fmt::Debug> fmt::Debug for Arc<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Debug::fmt(&**self, f)
}
}
impl<T: ?Sized> fmt::Pointer for Arc<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Pointer::fmt(&self.ptr(), f)
}
}
impl<T: Default> Default for Arc<T> {
fn default() -> Arc<T> {
Arc::new(Default::default())
}
}
impl<T: ?Sized + Hash> Hash for Arc<T> {
fn hash<H: Hasher>(&self, state: &mut H) {
(**self).hash(state)
}
}
impl<T> From<T> for Arc<T> {
#[inline]
fn from(t: T) -> Self {
Arc::new(t)
}
}
impl<T: ?Sized> borrow::Borrow<T> for Arc<T> {
#[inline]
fn borrow(&self) -> &T {
&**self
}
}
impl<T: ?Sized> AsRef<T> for Arc<T> {
#[inline]
fn as_ref(&self) -> &T {
&**self
}
}
unsafe impl<T: ?Sized> StableDeref for Arc<T> {}
unsafe impl<T: ?Sized> CloneStableDeref for Arc<T> {}
#[cfg(feature = "servo")]
impl<'de, T: Deserialize<'de>> Deserialize<'de> for Arc<T> {
fn deserialize<D>(deserializer: D) -> Result<Arc<T>, D::Error>
where
D: ::serde::de::Deserializer<'de>,
{
T::deserialize(deserializer).map(Arc::new)
}
}
#[cfg(feature = "servo")]
impl<T: Serialize> Serialize for Arc<T> {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: ::serde::ser::Serializer,
{
(**self).serialize(serializer)
}
}
/// Structure to allow Arc-managing some fixed-sized data and a variably-sized
/// slice in a single allocation.
#[derive(Debug, Eq, PartialEq, PartialOrd)]
#[repr(C)]
pub struct HeaderSlice<H, T: ?Sized> {
/// The fixed-sized data.
pub header: H,
/// The dynamically-sized data.
pub slice: T,
}
#[inline(always)]
fn divide_rounding_up(dividend: usize, divisor: usize) -> usize {
(dividend + divisor - 1) / divisor
}
impl<H, T> Arc<HeaderSlice<H, [T]>> {
/// Creates an Arc for a HeaderSlice using the given header struct and
/// iterator to generate the slice.
///
/// `is_static` indicates whether to create a static Arc.
///
/// `alloc` is used to get a pointer to the memory into which the
/// dynamically sized ArcInner<HeaderSlice<H, T>> value will be
/// written. If `is_static` is true, then `alloc` must return a
/// pointer into some static memory allocation. If it is false,
/// then `alloc` must return an allocation that can be dellocated
/// by calling Box::from_raw::<ArcInner<HeaderSlice<H, T>>> on it.
#[inline]
fn from_header_and_iter_alloc<F, I>(
alloc: F,
header: H,
mut items: I,
num_items: usize,
is_static: bool,
) -> Self
where
F: FnOnce(Layout) -> *mut u8,
I: Iterator<Item = T>,
{
assert_ne!(size_of::<T>(), 0, "Need to think about ZST");
let inner_align = align_of::<ArcInner<HeaderSlice<H, [T; 0]>>>();
debug_assert!(inner_align >= align_of::<T>());
// Compute the required size for the allocation.
let size = {
// Next, synthesize a totally garbage (but properly aligned) pointer
// to a sequence of T.
let fake_slice_ptr = inner_align as *const T;
// Convert that sequence to a fat pointer. The address component of
// the fat pointer will be garbage, but the length will be correct.
let fake_slice = unsafe { slice::from_raw_parts(fake_slice_ptr, num_items) };
// Pretend the garbage address points to our allocation target (with
// a trailing sequence of T), rather than just a sequence of T.
let fake_ptr = fake_slice as *const [T] as *const ArcInner<HeaderSlice<H, [T]>>;
let fake_ref: &ArcInner<HeaderSlice<H, [T]>> = unsafe { &*fake_ptr };
// Use size_of_val, which will combine static information about the
// type with the length from the fat pointer. The garbage address
// will not be used.
mem::size_of_val(fake_ref)
};
let ptr: *mut ArcInner<HeaderSlice<H, [T]>>;
unsafe {
// Allocate the buffer.
let layout = if inner_align <= align_of::<usize>() {
Layout::from_size_align_unchecked(size, align_of::<usize>())
} else if inner_align <= align_of::<u64>() {
// On 32-bit platforms <T> may have 8 byte alignment while usize
// has 4 byte aligment. Use u64 to avoid over-alignment.
// This branch will compile away in optimized builds.
Layout::from_size_align_unchecked(size, align_of::<u64>())
} else {
panic!("Over-aligned type not handled");
};
let buffer = alloc(layout);
// Synthesize the fat pointer. We do this by claiming we have a direct
// pointer to a [T], and then changing the type of the borrow. The key
// point here is that the length portion of the fat pointer applies
// only to the number of elements in the dynamically-sized portion of
// the type, so the value will be the same whether it points to a [T]
// or something else with a [T] as its last member.
let fake_slice: &mut [T] = slice::from_raw_parts_mut(buffer as *mut T, num_items);
ptr = fake_slice as *mut [T] as *mut ArcInner<HeaderSlice<H, [T]>>;
// Write the data.
//
// Note that any panics here (i.e. from the iterator) are safe, since
// we'll just leak the uninitialized memory.
let count = if is_static {
atomic::AtomicUsize::new(STATIC_REFCOUNT)
} else {
atomic::AtomicUsize::new(1)
};
ptr::write(&mut ((*ptr).count), count);
ptr::write(&mut ((*ptr).data.header), header);
if num_items != 0 {
let mut current: *mut T = &mut (*ptr).data.slice[0];
for _ in 0..num_items {
ptr::write(
current,
items
.next()
.expect("ExactSizeIterator over-reported length"),
);
current = current.offset(1);
}
// We should have consumed the buffer exactly, maybe accounting
// for some padding from the alignment.
debug_assert!(
(buffer.add(size) as usize - current as *mut u8 as usize) < inner_align
);
}
assert!(
items.next().is_none(),
"ExactSizeIterator under-reported length"
);
}
#[cfg(feature = "gecko_refcount_logging")]
unsafe {
if !is_static {
// FIXME(emilio): Would be so amazing to have
// std::intrinsics::type_name() around.
NS_LogCtor(ptr as *mut _, b"ServoArc\0".as_ptr() as *const _, 8)
}
}
// Return the fat Arc.
assert_eq!(
size_of::<Self>(),
size_of::<usize>() * 2,
"The Arc will be fat"
);
unsafe {
Arc {
p: ptr::NonNull::new_unchecked(ptr),
phantom: PhantomData,
}
}
}
/// Creates an Arc for a HeaderSlice using the given header struct and iterator to generate the
/// slice. Panics if num_items doesn't match the number of items.
#[inline]
pub fn from_header_and_iter_with_size<I>(header: H, items: I, num_items: usize) -> Self
where
I: Iterator<Item = T>,
{
Arc::from_header_and_iter_alloc(
|layout| {
// align will only ever be align_of::<usize>() or align_of::<u64>()
let align = layout.align();
unsafe {
if align == mem::align_of::<usize>() {
Self::allocate_buffer::<usize>(layout.size())
} else {
assert_eq!(align, mem::align_of::<u64>());
Self::allocate_buffer::<u64>(layout.size())
}
}
},
header,
items,
num_items,
/* is_static = */ false,
)
}
/// Creates an Arc for a HeaderSlice using the given header struct and
/// iterator to generate the slice. The resulting Arc will be fat.
#[inline]
pub fn from_header_and_iter<I>(header: H, items: I) -> Self
where
I: Iterator<Item = T> + ExactSizeIterator,
{
let len = items.len();
Self::from_header_and_iter_with_size(header, items, len)
}
#[inline]
unsafe fn allocate_buffer<W>(size: usize) -> *mut u8 {
// We use Vec because the underlying allocation machinery isn't
// available in stable Rust. To avoid alignment issues, we allocate
// words rather than bytes, rounding up to the nearest word size.
let words_to_allocate = divide_rounding_up(size, mem::size_of::<W>());
let mut vec = Vec::<W>::with_capacity(words_to_allocate);
vec.set_len(words_to_allocate);
Box::into_raw(vec.into_boxed_slice()) as *mut W as *mut u8
}
}
/// Header data with an inline length. Consumers that use HeaderWithLength as the
/// Header type in HeaderSlice can take advantage of ThinArc.
#[derive(Debug, Eq, PartialEq, PartialOrd)]
#[repr(C)]
pub struct HeaderWithLength<H> {
/// The fixed-sized data.
pub header: H,
/// The slice length.
length: usize,
}
impl<H> HeaderWithLength<H> {
/// Creates a new HeaderWithLength.
pub fn new(header: H, length: usize) -> Self {
HeaderWithLength { header, length }
}
}
type HeaderSliceWithLength<H, T> = HeaderSlice<HeaderWithLength<H>, T>;
/// A "thin" `Arc` containing dynamically sized data
///
/// This is functionally equivalent to Arc<(H, [T])>
///
/// When you create an `Arc` containing a dynamically sized type
/// like `HeaderSlice<H, [T]>`, the `Arc` is represented on the stack
/// as a "fat pointer", where the length of the slice is stored
/// alongside the `Arc`'s pointer. In some situations you may wish to
/// have a thin pointer instead, perhaps for FFI compatibility
/// or space efficiency.
///
/// Note that we use `[T; 0]` in order to have the right alignment for `T`.
///
/// `ThinArc` solves this by storing the length in the allocation itself,
/// via `HeaderSliceWithLength`.
#[repr(C)]
pub struct ThinArc<H, T> {
ptr: ptr::NonNull<ArcInner<HeaderSliceWithLength<H, [T; 0]>>>,
phantom: PhantomData<(H, T)>,
}
impl<H: fmt::Debug, T: fmt::Debug> fmt::Debug for ThinArc<H, T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Debug::fmt(self.deref(), f)
}
}
unsafe impl<H: Sync + Send, T: Sync + Send> Send for ThinArc<H, T> {}
unsafe impl<H: Sync + Send, T: Sync + Send> Sync for ThinArc<H, T> {}
// Synthesize a fat pointer from a thin pointer.
//
// See the comment around the analogous operation in from_header_and_iter.
fn thin_to_thick<H, T>(
thin: *mut ArcInner<HeaderSliceWithLength<H, [T; 0]>>,
) -> *mut ArcInner<HeaderSliceWithLength<H, [T]>> {
let len = unsafe { (*thin).data.header.length };
let fake_slice: *mut [T] = unsafe { slice::from_raw_parts_mut(thin as *mut T, len) };
fake_slice as *mut ArcInner<HeaderSliceWithLength<H, [T]>>
}
impl<H, T> ThinArc<H, T> {
/// Temporarily converts |self| into a bonafide Arc and exposes it to the
/// provided callback. The refcount is not modified.
#[inline]
pub fn with_arc<F, U>(&self, f: F) -> U
where
F: FnOnce(&Arc<HeaderSliceWithLength<H, [T]>>) -> U,
{
// Synthesize transient Arc, which never touches the refcount of the ArcInner.
let transient = unsafe {
mem::ManuallyDrop::new(Arc {
p: ptr::NonNull::new_unchecked(thin_to_thick(self.ptr.as_ptr())),
phantom: PhantomData,
})
};
// Expose the transient Arc to the callback, which may clone it if it wants.
let result = f(&transient);
// Forward the result.
result
}
/// Creates a `ThinArc` for a HeaderSlice using the given header struct and
/// iterator to generate the slice.
pub fn from_header_and_iter<I>(header: H, items: I) -> Self
where
I: Iterator<Item = T> + ExactSizeIterator,
{
let header = HeaderWithLength::new(header, items.len());
Arc::into_thin(Arc::from_header_and_iter(header, items))
}
/// Create a static `ThinArc` for a HeaderSlice using the given header
/// struct and iterator to generate the slice, placing it in the allocation
/// provided by the specified `alloc` function.
///
/// `alloc` must return a pointer into a static allocation suitable for
/// storing data with the `Layout` passed into it. The pointer returned by
/// `alloc` will not be freed.
pub unsafe fn static_from_header_and_iter<F, I>(alloc: F, header: H, items: I) -> Self
where
F: FnOnce(Layout) -> *mut u8,
I: Iterator<Item = T> + ExactSizeIterator,
{
let len = items.len();
let header = HeaderWithLength::new(header, len);
Arc::into_thin(Arc::from_header_and_iter_alloc(
alloc, header, items, len, /* is_static = */ true,
))
}
/// Returns the address on the heap of the ThinArc itself -- not the T
/// within it -- for memory reporting, and bindings.
#[inline]
pub fn ptr(&self) -> *const c_void {
self.ptr.as_ptr() as *const ArcInner<T> as *const c_void
}
/// If this is a static ThinArc, this returns null.
#[inline]
pub fn heap_ptr(&self) -> *const c_void {
let is_static =
ThinArc::with_arc(self, |a| a.inner().count.load(Relaxed) == STATIC_REFCOUNT);
if is_static {
ptr::null()
} else {
self.ptr()
}
}
}
impl<H, T> Deref for ThinArc<H, T> {
type Target = HeaderSliceWithLength<H, [T]>;
#[inline]
fn deref(&self) -> &Self::Target {
unsafe { &(*thin_to_thick(self.ptr.as_ptr())).data }
}
}
impl<H, T> Clone for ThinArc<H, T> {
#[inline]
fn clone(&self) -> Self {
ThinArc::with_arc(self, |a| Arc::into_thin(a.clone()))
}
}
impl<H, T> Drop for ThinArc<H, T> {
#[inline]
fn drop(&mut self) {
let _ = Arc::from_thin(ThinArc {
ptr: self.ptr,
phantom: PhantomData,
});
}
}
impl<H, T> Arc<HeaderSliceWithLength<H, [T]>> {
/// Converts an `Arc` into a `ThinArc`. This consumes the `Arc`, so the refcount
/// is not modified.
#[inline]
pub fn into_thin(a: Self) -> ThinArc<H, T> {
assert_eq!(
a.header.length,
a.slice.len(),
"Length needs to be correct for ThinArc to work"
);
let fat_ptr: *mut ArcInner<HeaderSliceWithLength<H, [T]>> = a.ptr();
mem::forget(a);
let thin_ptr = fat_ptr as *mut [usize] as *mut usize;
ThinArc {
ptr: unsafe {
ptr::NonNull::new_unchecked(
thin_ptr as *mut ArcInner<HeaderSliceWithLength<H, [T; 0]>>,
)
},
phantom: PhantomData,
}
}
/// Converts a `ThinArc` into an `Arc`. This consumes the `ThinArc`, so the refcount
/// is not modified.
#[inline]
pub fn from_thin(a: ThinArc<H, T>) -> Self {
let ptr = thin_to_thick(a.ptr.as_ptr());
mem::forget(a);
unsafe {
Arc {
p: ptr::NonNull::new_unchecked(ptr),
phantom: PhantomData,
}
}
}
}
impl<H, T> UniqueArc<HeaderSliceWithLength<H, [T]>> {
#[inline]
pub fn from_header_and_iter<I>(header: HeaderWithLength<H>, items: I) -> Self
where
I: Iterator<Item = T> + ExactSizeIterator,
{
Self(Arc::from_header_and_iter(header, items))
}
#[inline]
pub fn from_header_and_iter_with_size<I>(
header: HeaderWithLength<H>,
items: I,
num_items: usize,
) -> Self
where
I: Iterator<Item = T>,
{
Self(Arc::from_header_and_iter_with_size(
header, items, num_items,
))
}
/// Returns a mutable reference to the header.
pub fn header_mut(&mut self) -> &mut H {
// We know this to be uniquely owned
unsafe { &mut (*self.0.ptr()).data.header.header }
}
/// Returns a mutable reference to the slice.
pub fn data_mut(&mut self) -> &mut [T] {
// We know this to be uniquely owned
unsafe { &mut (*self.0.ptr()).data.slice }
}
pub fn shareable_thin(self) -> ThinArc<H, T> {
Arc::into_thin(self.0)
}
}
impl<H: PartialEq, T: PartialEq> PartialEq for ThinArc<H, T> {
#[inline]
fn eq(&self, other: &ThinArc<H, T>) -> bool {
ThinArc::with_arc(self, |a| ThinArc::with_arc(other, |b| *a == *b))
}
}
impl<H: Eq, T: Eq> Eq for ThinArc<H, T> {}
/// A "borrowed `Arc`". This is a pointer to
/// a T that is known to have been allocated within an
/// `Arc`.
///
/// This is equivalent in guarantees to `&Arc<T>`, however it is
/// a bit more flexible. To obtain an `&Arc<T>` you must have
/// an `Arc<T>` instance somewhere pinned down until we're done with it.
/// It's also a direct pointer to `T`, so using this involves less pointer-chasing
///
/// However, C++ code may hand us refcounted things as pointers to T directly,
/// so we have to conjure up a temporary `Arc` on the stack each time.
///
/// `ArcBorrow` lets us deal with borrows of known-refcounted objects
/// without needing to worry about where the `Arc<T>` is.
#[derive(Debug, Eq, PartialEq)]
pub struct ArcBorrow<'a, T: 'a>(&'a T);
impl<'a, T> Copy for ArcBorrow<'a, T> {}
impl<'a, T> Clone for ArcBorrow<'a, T> {
#[inline]
fn clone(&self) -> Self {
*self
}
}
impl<'a, T> ArcBorrow<'a, T> {
/// Clone this as an `Arc<T>`. This bumps the refcount.
#[inline]
pub fn clone_arc(&self) -> Arc<T> {
let arc = unsafe { Arc::from_raw(self.0) };
// addref it!
mem::forget(arc.clone());
arc
}
/// For constructing from a reference known to be Arc-backed,
/// e.g. if we obtain such a reference over FFI
#[inline]
pub unsafe fn from_ref(r: &'a T) -> Self {
ArcBorrow(r)
}
/// Compare two `ArcBorrow`s via pointer equality. Will only return
/// true if they come from the same allocation
pub fn ptr_eq(this: &Self, other: &Self) -> bool {
this.0 as *const T == other.0 as *const T
}
/// Temporarily converts |self| into a bonafide Arc and exposes it to the
/// provided callback. The refcount is not modified.
#[inline]
pub fn with_arc<F, U>(&self, f: F) -> U
where
F: FnOnce(&Arc<T>) -> U,
T: 'static,
{
// Synthesize transient Arc, which never touches the refcount.
let transient = unsafe { mem::ManuallyDrop::new(Arc::from_raw(self.0)) };
// Expose the transient Arc to the callback, which may clone it if it wants.
let result = f(&transient);
// Forward the result.
result
}
/// Similar to deref, but uses the lifetime |a| rather than the lifetime of
/// self, which is incompatible with the signature of the Deref trait.
#[inline]
pub fn get(&self) -> &'a T {
self.0
}
}
impl<'a, T> Deref for ArcBorrow<'a, T> {
type Target = T;
#[inline]
fn deref(&self) -> &T {
self.0
}
}
/// A tagged union that can represent `Arc<A>` or `Arc<B>` while only consuming a
/// single word. The type is also `NonNull`, and thus can be stored in an Option
/// without increasing size.
///
/// This is functionally equivalent to
/// `enum ArcUnion<A, B> { First(Arc<A>), Second(Arc<B>)` but only takes up
/// up a single word of stack space.
///
/// This could probably be extended to support four types if necessary.
pub struct ArcUnion<A, B> {
p: ptr::NonNull<()>,
phantom_a: PhantomData<A>,
phantom_b: PhantomData<B>,
}
unsafe impl<A: Sync + Send, B: Send + Sync> Send for ArcUnion<A, B> {}
unsafe impl<A: Sync + Send, B: Send + Sync> Sync for ArcUnion<A, B> {}
impl<A: PartialEq, B: PartialEq> PartialEq for ArcUnion<A, B> {
fn eq(&self, other: &Self) -> bool {
use crate::ArcUnionBorrow::*;
match (self.borrow(), other.borrow()) {
(First(x), First(y)) => x == y,
(Second(x), Second(y)) => x == y,
(_, _) => false,
}
}
}
/// This represents a borrow of an `ArcUnion`.
#[derive(Debug)]
pub enum ArcUnionBorrow<'a, A: 'a, B: 'a> {
First(ArcBorrow<'a, A>),
Second(ArcBorrow<'a, B>),
}
impl<A, B> ArcUnion<A, B> {
unsafe fn new(ptr: *mut ()) -> Self {
ArcUnion {
p: ptr::NonNull::new_unchecked(ptr),
phantom_a: PhantomData,
phantom_b: PhantomData,
}
}
/// Returns true if the two values are pointer-equal.
#[inline]
pub fn ptr_eq(this: &Self, other: &Self) -> bool {
this.p == other.p
}
#[inline]
pub fn ptr(&self) -> ptr::NonNull<()> {
self.p
}
/// Returns an enum representing a borrow of either A or B.
#[inline]
pub fn borrow(&self) -> ArcUnionBorrow<A, B> {
if self.is_first() {
let ptr = self.p.as_ptr() as *const A;
let borrow = unsafe { ArcBorrow::from_ref(&*ptr) };
ArcUnionBorrow::First(borrow)
} else {
let ptr = ((self.p.as_ptr() as usize) & !0x1) as *const B;
let borrow = unsafe { ArcBorrow::from_ref(&*ptr) };
ArcUnionBorrow::Second(borrow)
}
}
/// Creates an `ArcUnion` from an instance of the first type.
pub fn from_first(other: Arc<A>) -> Self {
unsafe { Self::new(Arc::into_raw(other) as *mut _) }
}
/// Creates an `ArcUnion` from an instance of the second type.
pub fn from_second(other: Arc<B>) -> Self {
unsafe { Self::new(((Arc::into_raw(other) as usize) | 0x1) as *mut _) }
}
/// Returns true if this `ArcUnion` contains the first type.
pub fn is_first(&self) -> bool {
self.p.as_ptr() as usize & 0x1 == 0
}
/// Returns true if this `ArcUnion` contains the second type.
pub fn is_second(&self) -> bool {
!self.is_first()
}
/// Returns a borrow of the first type if applicable, otherwise `None`.
pub fn as_first(&self) -> Option<ArcBorrow<A>> {
match self.borrow() {
ArcUnionBorrow::First(x) => Some(x),
ArcUnionBorrow::Second(_) => None,
}
}
/// Returns a borrow of the second type if applicable, otherwise None.
pub fn as_second(&self) -> Option<ArcBorrow<B>> {
match self.borrow() {
ArcUnionBorrow::First(_) => None,
ArcUnionBorrow::Second(x) => Some(x),
}
}
}
impl<A, B> Clone for ArcUnion<A, B> {
fn clone(&self) -> Self {
match self.borrow() {
ArcUnionBorrow::First(x) => ArcUnion::from_first(x.clone_arc()),
ArcUnionBorrow::Second(x) => ArcUnion::from_second(x.clone_arc()),
}
}
}
impl<A, B> Drop for ArcUnion<A, B> {
fn drop(&mut self) {
match self.borrow() {
ArcUnionBorrow::First(x) => unsafe {
let _ = Arc::from_raw(&*x);
},
ArcUnionBorrow::Second(x) => unsafe {
let _ = Arc::from_raw(&*x);
},
}
}
}
impl<A: fmt::Debug, B: fmt::Debug> fmt::Debug for ArcUnion<A, B> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Debug::fmt(&self.borrow(), f)
}
}
#[cfg(test)]
mod tests {
use super::{Arc, HeaderWithLength, ThinArc};
use std::clone::Clone;
use std::ops::Drop;
use std::sync::atomic;
use std::sync::atomic::Ordering::{Acquire, SeqCst};
#[derive(PartialEq)]
struct Canary(*mut atomic::AtomicUsize);
impl Drop for Canary {
fn drop(&mut self) {
unsafe {
(*self.0).fetch_add(1, SeqCst);
}
}
}
#[test]
fn empty_thin() {
let header = HeaderWithLength::new(100u32, 0);
let x = Arc::from_header_and_iter(header, std::iter::empty::<i32>());
let y = Arc::into_thin(x.clone());
assert_eq!(y.header.header, 100);
assert!(y.slice.is_empty());
assert_eq!(x.header.header, 100);
assert!(x.slice.is_empty());
}
#[test]
fn thin_assert_padding() {
#[derive(Clone, Default)]
#[repr(C)]
struct Padded {
i: u16,
}
// The header will have more alignment than `Padded`
let header = HeaderWithLength::new(0i32, 2);
let items = vec![Padded { i: 0xdead }, Padded { i: 0xbeef }];
let a = ThinArc::from_header_and_iter(header, items.into_iter());
assert_eq!(a.slice.len(), 2);
assert_eq!(a.slice[0].i, 0xdead);
assert_eq!(a.slice[1].i, 0xbeef);
}
#[test]
fn slices_and_thin() {
let mut canary = atomic::AtomicUsize::new(0);
let c = Canary(&mut canary as *mut atomic::AtomicUsize);
let v = vec![5, 6];
let header = HeaderWithLength::new(c, v.len());
{
let x = Arc::into_thin(Arc::from_header_and_iter(header, v.into_iter()));
let y = ThinArc::with_arc(&x, |q| q.clone());
let _ = y.clone();
let _ = x == x;
Arc::from_thin(x.clone());
}
assert_eq!(canary.load(Acquire), 1);
}
}