socket2/sockaddr.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
use std::hash::Hash;
use std::mem::{self, size_of, MaybeUninit};
use std::net::{SocketAddr, SocketAddrV4, SocketAddrV6};
use std::path::Path;
use std::{fmt, io, ptr};
#[cfg(windows)]
use windows_sys::Win32::Networking::WinSock::SOCKADDR_IN6_0;
use crate::sys::{
c_int, sa_family_t, sockaddr, sockaddr_in, sockaddr_in6, sockaddr_storage, socklen_t, AF_INET,
AF_INET6, AF_UNIX,
};
use crate::Domain;
/// The address of a socket.
///
/// `SockAddr`s may be constructed directly to and from the standard library
/// [`SocketAddr`], [`SocketAddrV4`], and [`SocketAddrV6`] types.
#[derive(Clone)]
pub struct SockAddr {
storage: sockaddr_storage,
len: socklen_t,
}
#[allow(clippy::len_without_is_empty)]
impl SockAddr {
/// Create a `SockAddr` from the underlying storage and its length.
///
/// # Safety
///
/// Caller must ensure that the address family and length match the type of
/// storage address. For example if `storage.ss_family` is set to `AF_INET`
/// the `storage` must be initialised as `sockaddr_in`, setting the content
/// and length appropriately.
///
/// # Examples
///
/// ```
/// # fn main() -> std::io::Result<()> {
/// # #[cfg(unix)] {
/// use std::io;
/// use std::mem;
/// use std::os::unix::io::AsRawFd;
///
/// use socket2::{SockAddr, Socket, Domain, Type};
///
/// let socket = Socket::new(Domain::IPV4, Type::STREAM, None)?;
///
/// // Initialise a `SocketAddr` byte calling `getsockname(2)`.
/// let mut addr_storage: libc::sockaddr_storage = unsafe { mem::zeroed() };
/// let mut len = mem::size_of_val(&addr_storage) as libc::socklen_t;
///
/// // The `getsockname(2)` system call will intiliase `storage` for
/// // us, setting `len` to the correct length.
/// let res = unsafe {
/// libc::getsockname(
/// socket.as_raw_fd(),
/// (&mut addr_storage as *mut libc::sockaddr_storage).cast(),
/// &mut len,
/// )
/// };
/// if res == -1 {
/// return Err(io::Error::last_os_error());
/// }
///
/// let address = unsafe { SockAddr::new(addr_storage, len) };
/// # drop(address);
/// # }
/// # Ok(())
/// # }
/// ```
pub const unsafe fn new(storage: sockaddr_storage, len: socklen_t) -> SockAddr {
SockAddr { storage, len }
}
/// Initialise a `SockAddr` by calling the function `init`.
///
/// The type of the address storage and length passed to the function `init`
/// is OS/architecture specific.
///
/// The address is zeroed before `init` is called and is thus valid to
/// dereference and read from. The length initialised to the maximum length
/// of the storage.
///
/// # Safety
///
/// Caller must ensure that the address family and length match the type of
/// storage address. For example if `storage.ss_family` is set to `AF_INET`
/// the `storage` must be initialised as `sockaddr_in`, setting the content
/// and length appropriately.
///
/// # Examples
///
/// ```
/// # fn main() -> std::io::Result<()> {
/// # #[cfg(unix)] {
/// use std::io;
/// use std::os::unix::io::AsRawFd;
///
/// use socket2::{SockAddr, Socket, Domain, Type};
///
/// let socket = Socket::new(Domain::IPV4, Type::STREAM, None)?;
///
/// // Initialise a `SocketAddr` byte calling `getsockname(2)`.
/// let (_, address) = unsafe {
/// SockAddr::try_init(|addr_storage, len| {
/// // The `getsockname(2)` system call will intiliase `storage` for
/// // us, setting `len` to the correct length.
/// if libc::getsockname(socket.as_raw_fd(), addr_storage.cast(), len) == -1 {
/// Err(io::Error::last_os_error())
/// } else {
/// Ok(())
/// }
/// })
/// }?;
/// # drop(address);
/// # }
/// # Ok(())
/// # }
/// ```
pub unsafe fn try_init<F, T>(init: F) -> io::Result<(T, SockAddr)>
where
F: FnOnce(*mut sockaddr_storage, *mut socklen_t) -> io::Result<T>,
{
const STORAGE_SIZE: socklen_t = size_of::<sockaddr_storage>() as socklen_t;
// NOTE: `SockAddr::unix` depends on the storage being zeroed before
// calling `init`.
// NOTE: calling `recvfrom` with an empty buffer also depends on the
// storage being zeroed before calling `init` as the OS might not
// initialise it.
let mut storage = MaybeUninit::<sockaddr_storage>::zeroed();
let mut len = STORAGE_SIZE;
init(storage.as_mut_ptr(), &mut len).map(|res| {
debug_assert!(len <= STORAGE_SIZE, "overflown address storage");
let addr = SockAddr {
// Safety: zeroed-out `sockaddr_storage` is valid, caller must
// ensure at least `len` bytes are valid.
storage: storage.assume_init(),
len,
};
(res, addr)
})
}
/// Constructs a `SockAddr` with the family `AF_UNIX` and the provided path.
///
/// Returns an error if the path is longer than `SUN_LEN`.
pub fn unix<P>(path: P) -> io::Result<SockAddr>
where
P: AsRef<Path>,
{
crate::sys::unix_sockaddr(path.as_ref())
}
/// Set the length of the address.
///
/// # Safety
///
/// Caller must ensure that the address up to `length` bytes are properly
/// initialised.
pub unsafe fn set_length(&mut self, length: socklen_t) {
self.len = length;
}
/// Returns this address's family.
pub const fn family(&self) -> sa_family_t {
self.storage.ss_family
}
/// Returns this address's `Domain`.
pub const fn domain(&self) -> Domain {
Domain(self.storage.ss_family as c_int)
}
/// Returns the size of this address in bytes.
pub const fn len(&self) -> socklen_t {
self.len
}
/// Returns a raw pointer to the address.
pub const fn as_ptr(&self) -> *const sockaddr {
ptr::addr_of!(self.storage).cast()
}
/// Retuns the address as the storage.
pub const fn as_storage(self) -> sockaddr_storage {
self.storage
}
/// Returns true if this address is in the `AF_INET` (IPv4) family, false otherwise.
pub const fn is_ipv4(&self) -> bool {
self.storage.ss_family == AF_INET as sa_family_t
}
/// Returns true if this address is in the `AF_INET6` (IPv6) family, false
/// otherwise.
pub const fn is_ipv6(&self) -> bool {
self.storage.ss_family == AF_INET6 as sa_family_t
}
/// Returns true if this address is of a unix socket (for local interprocess communication),
/// i.e. it is from the `AF_UNIX` family, false otherwise.
pub fn is_unix(&self) -> bool {
self.storage.ss_family == AF_UNIX as sa_family_t
}
/// Returns this address as a `SocketAddr` if it is in the `AF_INET` (IPv4)
/// or `AF_INET6` (IPv6) family, otherwise returns `None`.
pub fn as_socket(&self) -> Option<SocketAddr> {
if self.storage.ss_family == AF_INET as sa_family_t {
// SAFETY: if the `ss_family` field is `AF_INET` then storage must
// be a `sockaddr_in`.
let addr = unsafe { &*(ptr::addr_of!(self.storage).cast::<sockaddr_in>()) };
let ip = crate::sys::from_in_addr(addr.sin_addr);
let port = u16::from_be(addr.sin_port);
Some(SocketAddr::V4(SocketAddrV4::new(ip, port)))
} else if self.storage.ss_family == AF_INET6 as sa_family_t {
// SAFETY: if the `ss_family` field is `AF_INET6` then storage must
// be a `sockaddr_in6`.
let addr = unsafe { &*(ptr::addr_of!(self.storage).cast::<sockaddr_in6>()) };
let ip = crate::sys::from_in6_addr(addr.sin6_addr);
let port = u16::from_be(addr.sin6_port);
Some(SocketAddr::V6(SocketAddrV6::new(
ip,
port,
addr.sin6_flowinfo,
#[cfg(unix)]
addr.sin6_scope_id,
#[cfg(windows)]
unsafe {
addr.Anonymous.sin6_scope_id
},
)))
} else {
None
}
}
/// Returns this address as a [`SocketAddrV4`] if it is in the `AF_INET`
/// family.
pub fn as_socket_ipv4(&self) -> Option<SocketAddrV4> {
match self.as_socket() {
Some(SocketAddr::V4(addr)) => Some(addr),
_ => None,
}
}
/// Returns this address as a [`SocketAddrV6`] if it is in the `AF_INET6`
/// family.
pub fn as_socket_ipv6(&self) -> Option<SocketAddrV6> {
match self.as_socket() {
Some(SocketAddr::V6(addr)) => Some(addr),
_ => None,
}
}
/// Returns the initialised storage bytes.
fn as_bytes(&self) -> &[u8] {
// SAFETY: `self.storage` is a C struct which can always be treated a
// slice of bytes. Furthermore, we ensure we don't read any unitialised
// bytes by using `self.len`.
unsafe { std::slice::from_raw_parts(self.as_ptr().cast(), self.len as usize) }
}
}
impl From<SocketAddr> for SockAddr {
fn from(addr: SocketAddr) -> SockAddr {
match addr {
SocketAddr::V4(addr) => addr.into(),
SocketAddr::V6(addr) => addr.into(),
}
}
}
impl From<SocketAddrV4> for SockAddr {
fn from(addr: SocketAddrV4) -> SockAddr {
// SAFETY: a `sockaddr_storage` of all zeros is valid.
let mut storage = unsafe { mem::zeroed::<sockaddr_storage>() };
let len = {
let storage = unsafe { &mut *ptr::addr_of_mut!(storage).cast::<sockaddr_in>() };
storage.sin_family = AF_INET as sa_family_t;
storage.sin_port = addr.port().to_be();
storage.sin_addr = crate::sys::to_in_addr(addr.ip());
storage.sin_zero = Default::default();
mem::size_of::<sockaddr_in>() as socklen_t
};
#[cfg(any(
target_os = "dragonfly",
target_os = "freebsd",
target_os = "haiku",
target_os = "hermit",
target_os = "ios",
target_os = "visionos",
target_os = "macos",
target_os = "netbsd",
target_os = "nto",
target_os = "openbsd",
target_os = "tvos",
target_os = "vxworks",
target_os = "watchos",
))]
{
storage.ss_len = len as u8;
}
SockAddr { storage, len }
}
}
impl From<SocketAddrV6> for SockAddr {
fn from(addr: SocketAddrV6) -> SockAddr {
// SAFETY: a `sockaddr_storage` of all zeros is valid.
let mut storage = unsafe { mem::zeroed::<sockaddr_storage>() };
let len = {
let storage = unsafe { &mut *ptr::addr_of_mut!(storage).cast::<sockaddr_in6>() };
storage.sin6_family = AF_INET6 as sa_family_t;
storage.sin6_port = addr.port().to_be();
storage.sin6_addr = crate::sys::to_in6_addr(addr.ip());
storage.sin6_flowinfo = addr.flowinfo();
#[cfg(unix)]
{
storage.sin6_scope_id = addr.scope_id();
}
#[cfg(windows)]
{
storage.Anonymous = SOCKADDR_IN6_0 {
sin6_scope_id: addr.scope_id(),
};
}
mem::size_of::<sockaddr_in6>() as socklen_t
};
#[cfg(any(
target_os = "dragonfly",
target_os = "freebsd",
target_os = "haiku",
target_os = "hermit",
target_os = "ios",
target_os = "visionos",
target_os = "macos",
target_os = "netbsd",
target_os = "nto",
target_os = "openbsd",
target_os = "tvos",
target_os = "vxworks",
target_os = "watchos",
))]
{
storage.ss_len = len as u8;
}
SockAddr { storage, len }
}
}
impl fmt::Debug for SockAddr {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
let mut f = fmt.debug_struct("SockAddr");
#[cfg(any(
target_os = "dragonfly",
target_os = "freebsd",
target_os = "haiku",
target_os = "hermit",
target_os = "ios",
target_os = "visionos",
target_os = "macos",
target_os = "netbsd",
target_os = "nto",
target_os = "openbsd",
target_os = "tvos",
target_os = "vxworks",
target_os = "watchos",
))]
f.field("ss_len", &self.storage.ss_len);
f.field("ss_family", &self.storage.ss_family)
.field("len", &self.len)
.finish()
}
}
impl PartialEq for SockAddr {
fn eq(&self, other: &Self) -> bool {
self.as_bytes() == other.as_bytes()
}
}
impl Eq for SockAddr {}
impl Hash for SockAddr {
fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
self.as_bytes().hash(state);
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn ipv4() {
use std::net::Ipv4Addr;
let std = SocketAddrV4::new(Ipv4Addr::new(1, 2, 3, 4), 9876);
let addr = SockAddr::from(std);
assert!(addr.is_ipv4());
assert!(!addr.is_ipv6());
assert!(!addr.is_unix());
assert_eq!(addr.family(), AF_INET as sa_family_t);
assert_eq!(addr.domain(), Domain::IPV4);
assert_eq!(addr.len(), size_of::<sockaddr_in>() as socklen_t);
assert_eq!(addr.as_socket(), Some(SocketAddr::V4(std)));
assert_eq!(addr.as_socket_ipv4(), Some(std));
assert!(addr.as_socket_ipv6().is_none());
let addr = SockAddr::from(SocketAddr::from(std));
assert_eq!(addr.family(), AF_INET as sa_family_t);
assert_eq!(addr.len(), size_of::<sockaddr_in>() as socklen_t);
assert_eq!(addr.as_socket(), Some(SocketAddr::V4(std)));
assert_eq!(addr.as_socket_ipv4(), Some(std));
assert!(addr.as_socket_ipv6().is_none());
#[cfg(unix)]
{
assert!(addr.as_pathname().is_none());
assert!(addr.as_abstract_namespace().is_none());
}
}
#[test]
fn ipv6() {
use std::net::Ipv6Addr;
let std = SocketAddrV6::new(Ipv6Addr::new(1, 2, 3, 4, 5, 6, 7, 8), 9876, 11, 12);
let addr = SockAddr::from(std);
assert!(addr.is_ipv6());
assert!(!addr.is_ipv4());
assert!(!addr.is_unix());
assert_eq!(addr.family(), AF_INET6 as sa_family_t);
assert_eq!(addr.domain(), Domain::IPV6);
assert_eq!(addr.len(), size_of::<sockaddr_in6>() as socklen_t);
assert_eq!(addr.as_socket(), Some(SocketAddr::V6(std)));
assert!(addr.as_socket_ipv4().is_none());
assert_eq!(addr.as_socket_ipv6(), Some(std));
let addr = SockAddr::from(SocketAddr::from(std));
assert_eq!(addr.family(), AF_INET6 as sa_family_t);
assert_eq!(addr.len(), size_of::<sockaddr_in6>() as socklen_t);
assert_eq!(addr.as_socket(), Some(SocketAddr::V6(std)));
assert!(addr.as_socket_ipv4().is_none());
assert_eq!(addr.as_socket_ipv6(), Some(std));
#[cfg(unix)]
{
assert!(addr.as_pathname().is_none());
assert!(addr.as_abstract_namespace().is_none());
}
}
#[test]
fn ipv4_eq() {
use std::net::Ipv4Addr;
let std1 = SocketAddrV4::new(Ipv4Addr::new(1, 2, 3, 4), 9876);
let std2 = SocketAddrV4::new(Ipv4Addr::new(5, 6, 7, 8), 8765);
test_eq(
SockAddr::from(std1),
SockAddr::from(std1),
SockAddr::from(std2),
);
}
#[test]
fn ipv4_hash() {
use std::net::Ipv4Addr;
let std1 = SocketAddrV4::new(Ipv4Addr::new(1, 2, 3, 4), 9876);
let std2 = SocketAddrV4::new(Ipv4Addr::new(5, 6, 7, 8), 8765);
test_hash(
SockAddr::from(std1),
SockAddr::from(std1),
SockAddr::from(std2),
);
}
#[test]
fn ipv6_eq() {
use std::net::Ipv6Addr;
let std1 = SocketAddrV6::new(Ipv6Addr::new(1, 2, 3, 4, 5, 6, 7, 8), 9876, 11, 12);
let std2 = SocketAddrV6::new(Ipv6Addr::new(3, 4, 5, 6, 7, 8, 9, 0), 7654, 13, 14);
test_eq(
SockAddr::from(std1),
SockAddr::from(std1),
SockAddr::from(std2),
);
}
#[test]
fn ipv6_hash() {
use std::net::Ipv6Addr;
let std1 = SocketAddrV6::new(Ipv6Addr::new(1, 2, 3, 4, 5, 6, 7, 8), 9876, 11, 12);
let std2 = SocketAddrV6::new(Ipv6Addr::new(3, 4, 5, 6, 7, 8, 9, 0), 7654, 13, 14);
test_hash(
SockAddr::from(std1),
SockAddr::from(std1),
SockAddr::from(std2),
);
}
#[test]
fn ipv4_ipv6_eq() {
use std::net::Ipv4Addr;
use std::net::Ipv6Addr;
let std1 = SocketAddrV4::new(Ipv4Addr::new(1, 2, 3, 4), 9876);
let std2 = SocketAddrV6::new(Ipv6Addr::new(1, 2, 3, 4, 5, 6, 7, 8), 9876, 11, 12);
test_eq(
SockAddr::from(std1),
SockAddr::from(std1),
SockAddr::from(std2),
);
test_eq(
SockAddr::from(std2),
SockAddr::from(std2),
SockAddr::from(std1),
);
}
#[test]
fn ipv4_ipv6_hash() {
use std::net::Ipv4Addr;
use std::net::Ipv6Addr;
let std1 = SocketAddrV4::new(Ipv4Addr::new(1, 2, 3, 4), 9876);
let std2 = SocketAddrV6::new(Ipv6Addr::new(1, 2, 3, 4, 5, 6, 7, 8), 9876, 11, 12);
test_hash(
SockAddr::from(std1),
SockAddr::from(std1),
SockAddr::from(std2),
);
test_hash(
SockAddr::from(std2),
SockAddr::from(std2),
SockAddr::from(std1),
);
}
#[allow(clippy::eq_op)] // allow a0 == a0 check
fn test_eq(a0: SockAddr, a1: SockAddr, b: SockAddr) {
assert!(a0 == a0);
assert!(a0 == a1);
assert!(a1 == a0);
assert!(a0 != b);
assert!(b != a0);
}
fn test_hash(a0: SockAddr, a1: SockAddr, b: SockAddr) {
assert!(calculate_hash(&a0) == calculate_hash(&a0));
assert!(calculate_hash(&a0) == calculate_hash(&a1));
// technically unequal values can have the same hash, in this case x != z and both have different hashes
assert!(calculate_hash(&a0) != calculate_hash(&b));
}
fn calculate_hash(x: &SockAddr) -> u64 {
use std::collections::hash_map::DefaultHasher;
use std::hash::Hasher;
let mut hasher = DefaultHasher::new();
x.hash(&mut hasher);
hasher.finish()
}
}