tokio/io/
async_fd.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
use crate::io::{Interest, Ready};
use crate::runtime::io::{ReadyEvent, Registration};
use crate::runtime::scheduler;

use mio::unix::SourceFd;
use std::error::Error;
use std::fmt;
use std::io;
use std::os::unix::io::{AsRawFd, RawFd};
use std::task::{ready, Context, Poll};

/// Associates an IO object backed by a Unix file descriptor with the tokio
/// reactor, allowing for readiness to be polled. The file descriptor must be of
/// a type that can be used with the OS polling facilities (ie, `poll`, `epoll`,
/// `kqueue`, etc), such as a network socket or pipe, and the file descriptor
/// must have the nonblocking mode set to true.
///
/// Creating an [`AsyncFd`] registers the file descriptor with the current tokio
/// Reactor, allowing you to directly await the file descriptor being readable
/// or writable. Once registered, the file descriptor remains registered until
/// the [`AsyncFd`] is dropped.
///
/// The [`AsyncFd`] takes ownership of an arbitrary object to represent the IO
/// object. It is intended that the inner object will handle closing the file
/// descriptor when it is dropped, avoiding resource leaks and ensuring that the
/// [`AsyncFd`] can clean up the registration before closing the file descriptor.
/// The [`AsyncFd::into_inner`] function can be used to extract the inner object
/// to retake control from the tokio IO reactor. The [`OwnedFd`] type is often
/// used as the inner object, as it is the simplest type that closes the fd on
/// drop.
///
/// The inner object is required to implement [`AsRawFd`]. This file descriptor
/// must not change while [`AsyncFd`] owns the inner object, i.e. the
/// [`AsRawFd::as_raw_fd`] method on the inner type must always return the same
/// file descriptor when called multiple times. Failure to uphold this results
/// in unspecified behavior in the IO driver, which may include breaking
/// notifications for other sockets/etc.
///
/// Polling for readiness is done by calling the async functions [`readable`]
/// and [`writable`]. These functions complete when the associated readiness
/// condition is observed. Any number of tasks can query the same `AsyncFd` in
/// parallel, on the same or different conditions.
///
/// On some platforms, the readiness detecting mechanism relies on
/// edge-triggered notifications. This means that the OS will only notify Tokio
/// when the file descriptor transitions from not-ready to ready. For this to
/// work you should first try to read or write and only poll for readiness
/// if that fails with an error of [`std::io::ErrorKind::WouldBlock`].
///
/// Tokio internally tracks when it has received a ready notification, and when
/// readiness checking functions like [`readable`] and [`writable`] are called,
/// if the readiness flag is set, these async functions will complete
/// immediately. This however does mean that it is critical to ensure that this
/// ready flag is cleared when (and only when) the file descriptor ceases to be
/// ready. The [`AsyncFdReadyGuard`] returned from readiness checking functions
/// serves this function; after calling a readiness-checking async function,
/// you must use this [`AsyncFdReadyGuard`] to signal to tokio whether the file
/// descriptor is no longer in a ready state.
///
/// ## Use with to a poll-based API
///
/// In some cases it may be desirable to use `AsyncFd` from APIs similar to
/// [`TcpStream::poll_read_ready`]. The [`AsyncFd::poll_read_ready`] and
/// [`AsyncFd::poll_write_ready`] functions are provided for this purpose.
/// Because these functions don't create a future to hold their state, they have
/// the limitation that only one task can wait on each direction (read or write)
/// at a time.
///
/// # Examples
///
/// This example shows how to turn [`std::net::TcpStream`] asynchronous using
/// `AsyncFd`.  It implements the read/write operations both as an `async fn`
/// and using the IO traits [`AsyncRead`] and [`AsyncWrite`].
///
/// ```no_run
/// use std::io::{self, Read, Write};
/// use std::net::TcpStream;
/// use std::pin::Pin;
/// use std::task::{ready, Context, Poll};
/// use tokio::io::{AsyncRead, AsyncWrite, ReadBuf};
/// use tokio::io::unix::AsyncFd;
///
/// pub struct AsyncTcpStream {
///     inner: AsyncFd<TcpStream>,
/// }
///
/// impl AsyncTcpStream {
///     pub fn new(tcp: TcpStream) -> io::Result<Self> {
///         tcp.set_nonblocking(true)?;
///         Ok(Self {
///             inner: AsyncFd::new(tcp)?,
///         })
///     }
///
///     pub async fn read(&self, out: &mut [u8]) -> io::Result<usize> {
///         loop {
///             let mut guard = self.inner.readable().await?;
///
///             match guard.try_io(|inner| inner.get_ref().read(out)) {
///                 Ok(result) => return result,
///                 Err(_would_block) => continue,
///             }
///         }
///     }
///
///     pub async fn write(&self, buf: &[u8]) -> io::Result<usize> {
///         loop {
///             let mut guard = self.inner.writable().await?;
///
///             match guard.try_io(|inner| inner.get_ref().write(buf)) {
///                 Ok(result) => return result,
///                 Err(_would_block) => continue,
///             }
///         }
///     }
/// }
///
/// impl AsyncRead for AsyncTcpStream {
///     fn poll_read(
///         self: Pin<&mut Self>,
///         cx: &mut Context<'_>,
///         buf: &mut ReadBuf<'_>
///     ) -> Poll<io::Result<()>> {
///         loop {
///             let mut guard = ready!(self.inner.poll_read_ready(cx))?;
///
///             let unfilled = buf.initialize_unfilled();
///             match guard.try_io(|inner| inner.get_ref().read(unfilled)) {
///                 Ok(Ok(len)) => {
///                     buf.advance(len);
///                     return Poll::Ready(Ok(()));
///                 },
///                 Ok(Err(err)) => return Poll::Ready(Err(err)),
///                 Err(_would_block) => continue,
///             }
///         }
///     }
/// }
///
/// impl AsyncWrite for AsyncTcpStream {
///     fn poll_write(
///         self: Pin<&mut Self>,
///         cx: &mut Context<'_>,
///         buf: &[u8]
///     ) -> Poll<io::Result<usize>> {
///         loop {
///             let mut guard = ready!(self.inner.poll_write_ready(cx))?;
///
///             match guard.try_io(|inner| inner.get_ref().write(buf)) {
///                 Ok(result) => return Poll::Ready(result),
///                 Err(_would_block) => continue,
///             }
///         }
///     }
///
///     fn poll_flush(
///         self: Pin<&mut Self>,
///         cx: &mut Context<'_>,
///     ) -> Poll<io::Result<()>> {
///         // tcp flush is a no-op
///         Poll::Ready(Ok(()))
///     }
///
///     fn poll_shutdown(
///         self: Pin<&mut Self>,
///         cx: &mut Context<'_>,
///     ) -> Poll<io::Result<()>> {
///         self.inner.get_ref().shutdown(std::net::Shutdown::Write)?;
///         Poll::Ready(Ok(()))
///     }
/// }
/// ```
///
/// [`readable`]: method@Self::readable
/// [`writable`]: method@Self::writable
/// [`AsyncFdReadyGuard`]: struct@self::AsyncFdReadyGuard
/// [`TcpStream::poll_read_ready`]: struct@crate::net::TcpStream
/// [`AsyncRead`]: trait@crate::io::AsyncRead
/// [`AsyncWrite`]: trait@crate::io::AsyncWrite
/// [`OwnedFd`]: struct@std::os::fd::OwnedFd
pub struct AsyncFd<T: AsRawFd> {
    registration: Registration,
    // The inner value is always present. the Option is required for `drop` and `into_inner`.
    // In all other methods `unwrap` is valid, and will never panic.
    inner: Option<T>,
}

/// Represents an IO-ready event detected on a particular file descriptor that
/// has not yet been acknowledged. This is a `must_use` structure to help ensure
/// that you do not forget to explicitly clear (or not clear) the event.
///
/// This type exposes an immutable reference to the underlying IO object.
#[must_use = "You must explicitly choose whether to clear the readiness state by calling a method on ReadyGuard"]
pub struct AsyncFdReadyGuard<'a, T: AsRawFd> {
    async_fd: &'a AsyncFd<T>,
    event: Option<ReadyEvent>,
}

/// Represents an IO-ready event detected on a particular file descriptor that
/// has not yet been acknowledged. This is a `must_use` structure to help ensure
/// that you do not forget to explicitly clear (or not clear) the event.
///
/// This type exposes a mutable reference to the underlying IO object.
#[must_use = "You must explicitly choose whether to clear the readiness state by calling a method on ReadyGuard"]
pub struct AsyncFdReadyMutGuard<'a, T: AsRawFd> {
    async_fd: &'a mut AsyncFd<T>,
    event: Option<ReadyEvent>,
}

impl<T: AsRawFd> AsyncFd<T> {
    /// Creates an [`AsyncFd`] backed by (and taking ownership of) an object
    /// implementing [`AsRawFd`]. The backing file descriptor is cached at the
    /// time of creation.
    ///
    /// Only configures the [`Interest::READABLE`] and [`Interest::WRITABLE`] interests. For more
    /// control, use [`AsyncFd::with_interest`].
    ///
    /// This method must be called in the context of a tokio runtime.
    ///
    /// # Panics
    ///
    /// This function panics if there is no current reactor set, or if the `rt`
    /// feature flag is not enabled.
    #[inline]
    #[track_caller]
    pub fn new(inner: T) -> io::Result<Self>
    where
        T: AsRawFd,
    {
        Self::with_interest(inner, Interest::READABLE | Interest::WRITABLE)
    }

    /// Creates an [`AsyncFd`] backed by (and taking ownership of) an object
    /// implementing [`AsRawFd`], with a specific [`Interest`]. The backing
    /// file descriptor is cached at the time of creation.
    ///
    /// # Panics
    ///
    /// This function panics if there is no current reactor set, or if the `rt`
    /// feature flag is not enabled.
    #[inline]
    #[track_caller]
    pub fn with_interest(inner: T, interest: Interest) -> io::Result<Self>
    where
        T: AsRawFd,
    {
        Self::new_with_handle_and_interest(inner, scheduler::Handle::current(), interest)
    }

    #[track_caller]
    pub(crate) fn new_with_handle_and_interest(
        inner: T,
        handle: scheduler::Handle,
        interest: Interest,
    ) -> io::Result<Self> {
        Self::try_new_with_handle_and_interest(inner, handle, interest).map_err(Into::into)
    }

    /// Creates an [`AsyncFd`] backed by (and taking ownership of) an object
    /// implementing [`AsRawFd`]. The backing file descriptor is cached at the
    /// time of creation.
    ///
    /// Only configures the [`Interest::READABLE`] and [`Interest::WRITABLE`] interests. For more
    /// control, use [`AsyncFd::try_with_interest`].
    ///
    /// This method must be called in the context of a tokio runtime.
    ///
    /// In the case of failure, it returns [`AsyncFdTryNewError`] that contains the original object
    /// passed to this function.
    ///
    /// # Panics
    ///
    /// This function panics if there is no current reactor set, or if the `rt`
    /// feature flag is not enabled.
    #[inline]
    #[track_caller]
    pub fn try_new(inner: T) -> Result<Self, AsyncFdTryNewError<T>>
    where
        T: AsRawFd,
    {
        Self::try_with_interest(inner, Interest::READABLE | Interest::WRITABLE)
    }

    /// Creates an [`AsyncFd`] backed by (and taking ownership of) an object
    /// implementing [`AsRawFd`], with a specific [`Interest`]. The backing
    /// file descriptor is cached at the time of creation.
    ///
    /// In the case of failure, it returns [`AsyncFdTryNewError`] that contains the original object
    /// passed to this function.
    ///
    /// # Panics
    ///
    /// This function panics if there is no current reactor set, or if the `rt`
    /// feature flag is not enabled.
    #[inline]
    #[track_caller]
    pub fn try_with_interest(inner: T, interest: Interest) -> Result<Self, AsyncFdTryNewError<T>>
    where
        T: AsRawFd,
    {
        Self::try_new_with_handle_and_interest(inner, scheduler::Handle::current(), interest)
    }

    #[track_caller]
    pub(crate) fn try_new_with_handle_and_interest(
        inner: T,
        handle: scheduler::Handle,
        interest: Interest,
    ) -> Result<Self, AsyncFdTryNewError<T>> {
        let fd = inner.as_raw_fd();

        match Registration::new_with_interest_and_handle(&mut SourceFd(&fd), interest, handle) {
            Ok(registration) => Ok(AsyncFd {
                registration,
                inner: Some(inner),
            }),
            Err(cause) => Err(AsyncFdTryNewError { inner, cause }),
        }
    }

    /// Returns a shared reference to the backing object of this [`AsyncFd`].
    #[inline]
    pub fn get_ref(&self) -> &T {
        self.inner.as_ref().unwrap()
    }

    /// Returns a mutable reference to the backing object of this [`AsyncFd`].
    #[inline]
    pub fn get_mut(&mut self) -> &mut T {
        self.inner.as_mut().unwrap()
    }

    fn take_inner(&mut self) -> Option<T> {
        let inner = self.inner.take()?;
        let fd = inner.as_raw_fd();

        let _ = self.registration.deregister(&mut SourceFd(&fd));

        Some(inner)
    }

    /// Deregisters this file descriptor and returns ownership of the backing
    /// object.
    pub fn into_inner(mut self) -> T {
        self.take_inner().unwrap()
    }

    /// Polls for read readiness.
    ///
    /// If the file descriptor is not currently ready for reading, this method
    /// will store a clone of the [`Waker`] from the provided [`Context`]. When the
    /// file descriptor becomes ready for reading, [`Waker::wake`] will be called.
    ///
    /// Note that on multiple calls to [`poll_read_ready`] or
    /// [`poll_read_ready_mut`], only the `Waker` from the `Context` passed to the
    /// most recent call is scheduled to receive a wakeup. (However,
    /// [`poll_write_ready`] retains a second, independent waker).
    ///
    /// This method is intended for cases where creating and pinning a future
    /// via [`readable`] is not feasible. Where possible, using [`readable`] is
    /// preferred, as this supports polling from multiple tasks at once.
    ///
    /// This method takes `&self`, so it is possible to call this method
    /// concurrently with other methods on this struct. This method only
    /// provides shared access to the inner IO resource when handling the
    /// [`AsyncFdReadyGuard`].
    ///
    /// [`poll_read_ready`]: method@Self::poll_read_ready
    /// [`poll_read_ready_mut`]: method@Self::poll_read_ready_mut
    /// [`poll_write_ready`]: method@Self::poll_write_ready
    /// [`readable`]: method@Self::readable
    /// [`Context`]: struct@std::task::Context
    /// [`Waker`]: struct@std::task::Waker
    /// [`Waker::wake`]: method@std::task::Waker::wake
    pub fn poll_read_ready<'a>(
        &'a self,
        cx: &mut Context<'_>,
    ) -> Poll<io::Result<AsyncFdReadyGuard<'a, T>>> {
        let event = ready!(self.registration.poll_read_ready(cx))?;

        Poll::Ready(Ok(AsyncFdReadyGuard {
            async_fd: self,
            event: Some(event),
        }))
    }

    /// Polls for read readiness.
    ///
    /// If the file descriptor is not currently ready for reading, this method
    /// will store a clone of the [`Waker`] from the provided [`Context`]. When the
    /// file descriptor becomes ready for reading, [`Waker::wake`] will be called.
    ///
    /// Note that on multiple calls to [`poll_read_ready`] or
    /// [`poll_read_ready_mut`], only the `Waker` from the `Context` passed to the
    /// most recent call is scheduled to receive a wakeup. (However,
    /// [`poll_write_ready`] retains a second, independent waker).
    ///
    /// This method is intended for cases where creating and pinning a future
    /// via [`readable`] is not feasible. Where possible, using [`readable`] is
    /// preferred, as this supports polling from multiple tasks at once.
    ///
    /// This method takes `&mut self`, so it is possible to access the inner IO
    /// resource mutably when handling the [`AsyncFdReadyMutGuard`].
    ///
    /// [`poll_read_ready`]: method@Self::poll_read_ready
    /// [`poll_read_ready_mut`]: method@Self::poll_read_ready_mut
    /// [`poll_write_ready`]: method@Self::poll_write_ready
    /// [`readable`]: method@Self::readable
    /// [`Context`]: struct@std::task::Context
    /// [`Waker`]: struct@std::task::Waker
    /// [`Waker::wake`]: method@std::task::Waker::wake
    pub fn poll_read_ready_mut<'a>(
        &'a mut self,
        cx: &mut Context<'_>,
    ) -> Poll<io::Result<AsyncFdReadyMutGuard<'a, T>>> {
        let event = ready!(self.registration.poll_read_ready(cx))?;

        Poll::Ready(Ok(AsyncFdReadyMutGuard {
            async_fd: self,
            event: Some(event),
        }))
    }

    /// Polls for write readiness.
    ///
    /// If the file descriptor is not currently ready for writing, this method
    /// will store a clone of the [`Waker`] from the provided [`Context`]. When the
    /// file descriptor becomes ready for writing, [`Waker::wake`] will be called.
    ///
    /// Note that on multiple calls to [`poll_write_ready`] or
    /// [`poll_write_ready_mut`], only the `Waker` from the `Context` passed to the
    /// most recent call is scheduled to receive a wakeup. (However,
    /// [`poll_read_ready`] retains a second, independent waker).
    ///
    /// This method is intended for cases where creating and pinning a future
    /// via [`writable`] is not feasible. Where possible, using [`writable`] is
    /// preferred, as this supports polling from multiple tasks at once.
    ///
    /// This method takes `&self`, so it is possible to call this method
    /// concurrently with other methods on this struct. This method only
    /// provides shared access to the inner IO resource when handling the
    /// [`AsyncFdReadyGuard`].
    ///
    /// [`poll_read_ready`]: method@Self::poll_read_ready
    /// [`poll_write_ready`]: method@Self::poll_write_ready
    /// [`poll_write_ready_mut`]: method@Self::poll_write_ready_mut
    /// [`writable`]: method@Self::readable
    /// [`Context`]: struct@std::task::Context
    /// [`Waker`]: struct@std::task::Waker
    /// [`Waker::wake`]: method@std::task::Waker::wake
    pub fn poll_write_ready<'a>(
        &'a self,
        cx: &mut Context<'_>,
    ) -> Poll<io::Result<AsyncFdReadyGuard<'a, T>>> {
        let event = ready!(self.registration.poll_write_ready(cx))?;

        Poll::Ready(Ok(AsyncFdReadyGuard {
            async_fd: self,
            event: Some(event),
        }))
    }

    /// Polls for write readiness.
    ///
    /// If the file descriptor is not currently ready for writing, this method
    /// will store a clone of the [`Waker`] from the provided [`Context`]. When the
    /// file descriptor becomes ready for writing, [`Waker::wake`] will be called.
    ///
    /// Note that on multiple calls to [`poll_write_ready`] or
    /// [`poll_write_ready_mut`], only the `Waker` from the `Context` passed to the
    /// most recent call is scheduled to receive a wakeup. (However,
    /// [`poll_read_ready`] retains a second, independent waker).
    ///
    /// This method is intended for cases where creating and pinning a future
    /// via [`writable`] is not feasible. Where possible, using [`writable`] is
    /// preferred, as this supports polling from multiple tasks at once.
    ///
    /// This method takes `&mut self`, so it is possible to access the inner IO
    /// resource mutably when handling the [`AsyncFdReadyMutGuard`].
    ///
    /// [`poll_read_ready`]: method@Self::poll_read_ready
    /// [`poll_write_ready`]: method@Self::poll_write_ready
    /// [`poll_write_ready_mut`]: method@Self::poll_write_ready_mut
    /// [`writable`]: method@Self::readable
    /// [`Context`]: struct@std::task::Context
    /// [`Waker`]: struct@std::task::Waker
    /// [`Waker::wake`]: method@std::task::Waker::wake
    pub fn poll_write_ready_mut<'a>(
        &'a mut self,
        cx: &mut Context<'_>,
    ) -> Poll<io::Result<AsyncFdReadyMutGuard<'a, T>>> {
        let event = ready!(self.registration.poll_write_ready(cx))?;

        Poll::Ready(Ok(AsyncFdReadyMutGuard {
            async_fd: self,
            event: Some(event),
        }))
    }

    /// Waits for any of the requested ready states, returning a
    /// [`AsyncFdReadyGuard`] that must be dropped to resume
    /// polling for the requested ready states.
    ///
    /// The function may complete without the file descriptor being ready. This is a
    /// false-positive and attempting an operation will return with
    /// `io::ErrorKind::WouldBlock`. The function can also return with an empty
    /// [`Ready`] set, so you should always check the returned value and possibly
    /// wait again if the requested states are not set.
    ///
    /// When an IO operation does return `io::ErrorKind::WouldBlock`, the readiness must be cleared.
    /// When a combined interest is used, it is important to clear only the readiness
    /// that is actually observed to block. For instance when the combined
    /// interest `Interest::READABLE | Interest::WRITABLE` is used, and a read blocks, only
    /// read readiness should be cleared using the [`AsyncFdReadyGuard::clear_ready_matching`] method:
    /// `guard.clear_ready_matching(Ready::READABLE)`.
    /// Also clearing the write readiness in this case would be incorrect. The [`AsyncFdReadyGuard::clear_ready`]
    /// method clears all readiness flags.
    ///
    /// This method takes `&self`, so it is possible to call this method
    /// concurrently with other methods on this struct. This method only
    /// provides shared access to the inner IO resource when handling the
    /// [`AsyncFdReadyGuard`].
    ///
    /// # Examples
    ///
    /// Concurrently read and write to a [`std::net::TcpStream`] on the same task without
    /// splitting.
    ///
    /// ```no_run
    /// use std::error::Error;
    /// use std::io;
    /// use std::io::{Read, Write};
    /// use std::net::TcpStream;
    /// use tokio::io::unix::AsyncFd;
    /// use tokio::io::{Interest, Ready};
    ///
    /// #[tokio::main]
    /// async fn main() -> Result<(), Box<dyn Error>> {
    ///     let stream = TcpStream::connect("127.0.0.1:8080")?;
    ///     stream.set_nonblocking(true)?;
    ///     let stream = AsyncFd::new(stream)?;
    ///
    ///     loop {
    ///         let mut guard = stream
    ///             .ready(Interest::READABLE | Interest::WRITABLE)
    ///             .await?;
    ///
    ///         if guard.ready().is_readable() {
    ///             let mut data = vec![0; 1024];
    ///             // Try to read data, this may still fail with `WouldBlock`
    ///             // if the readiness event is a false positive.
    ///             match stream.get_ref().read(&mut data) {
    ///                 Ok(n) => {
    ///                     println!("read {} bytes", n);
    ///                 }
    ///                 Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {
    ///                     // a read has blocked, but a write might still succeed.
    ///                     // clear only the read readiness.
    ///                     guard.clear_ready_matching(Ready::READABLE);
    ///                     continue;
    ///                 }
    ///                 Err(e) => {
    ///                     return Err(e.into());
    ///                 }
    ///             }
    ///         }
    ///
    ///         if guard.ready().is_writable() {
    ///             // Try to write data, this may still fail with `WouldBlock`
    ///             // if the readiness event is a false positive.
    ///             match stream.get_ref().write(b"hello world") {
    ///                 Ok(n) => {
    ///                     println!("write {} bytes", n);
    ///                 }
    ///                 Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {
    ///                     // a write has blocked, but a read might still succeed.
    ///                     // clear only the write readiness.
    ///                     guard.clear_ready_matching(Ready::WRITABLE);
    ///                     continue;
    ///                 }
    ///                 Err(e) => {
    ///                     return Err(e.into());
    ///                 }
    ///             }
    ///         }
    ///     }
    /// }
    /// ```
    pub async fn ready(&self, interest: Interest) -> io::Result<AsyncFdReadyGuard<'_, T>> {
        let event = self.registration.readiness(interest).await?;

        Ok(AsyncFdReadyGuard {
            async_fd: self,
            event: Some(event),
        })
    }

    /// Waits for any of the requested ready states, returning a
    /// [`AsyncFdReadyMutGuard`] that must be dropped to resume
    /// polling for the requested ready states.
    ///
    /// The function may complete without the file descriptor being ready. This is a
    /// false-positive and attempting an operation will return with
    /// `io::ErrorKind::WouldBlock`. The function can also return with an empty
    /// [`Ready`] set, so you should always check the returned value and possibly
    /// wait again if the requested states are not set.
    ///
    /// When an IO operation does return `io::ErrorKind::WouldBlock`, the readiness must be cleared.
    /// When a combined interest is used, it is important to clear only the readiness
    /// that is actually observed to block. For instance when the combined
    /// interest `Interest::READABLE | Interest::WRITABLE` is used, and a read blocks, only
    /// read readiness should be cleared using the [`AsyncFdReadyMutGuard::clear_ready_matching`] method:
    /// `guard.clear_ready_matching(Ready::READABLE)`.
    /// Also clearing the write readiness in this case would be incorrect.
    /// The [`AsyncFdReadyMutGuard::clear_ready`] method clears all readiness flags.
    ///
    /// This method takes `&mut self`, so it is possible to access the inner IO
    /// resource mutably when handling the [`AsyncFdReadyMutGuard`].
    ///
    /// # Examples
    ///
    /// Concurrently read and write to a [`std::net::TcpStream`] on the same task without
    /// splitting.
    ///
    /// ```no_run
    /// use std::error::Error;
    /// use std::io;
    /// use std::io::{Read, Write};
    /// use std::net::TcpStream;
    /// use tokio::io::unix::AsyncFd;
    /// use tokio::io::{Interest, Ready};
    ///
    /// #[tokio::main]
    /// async fn main() -> Result<(), Box<dyn Error>> {
    ///     let stream = TcpStream::connect("127.0.0.1:8080")?;
    ///     stream.set_nonblocking(true)?;
    ///     let mut stream = AsyncFd::new(stream)?;
    ///
    ///     loop {
    ///         let mut guard = stream
    ///             .ready_mut(Interest::READABLE | Interest::WRITABLE)
    ///             .await?;
    ///
    ///         if guard.ready().is_readable() {
    ///             let mut data = vec![0; 1024];
    ///             // Try to read data, this may still fail with `WouldBlock`
    ///             // if the readiness event is a false positive.
    ///             match guard.get_inner_mut().read(&mut data) {
    ///                 Ok(n) => {
    ///                     println!("read {} bytes", n);
    ///                 }
    ///                 Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {
    ///                     // a read has blocked, but a write might still succeed.
    ///                     // clear only the read readiness.
    ///                     guard.clear_ready_matching(Ready::READABLE);
    ///                     continue;
    ///                 }
    ///                 Err(e) => {
    ///                     return Err(e.into());
    ///                 }
    ///             }
    ///         }
    ///
    ///         if guard.ready().is_writable() {
    ///             // Try to write data, this may still fail with `WouldBlock`
    ///             // if the readiness event is a false positive.
    ///             match guard.get_inner_mut().write(b"hello world") {
    ///                 Ok(n) => {
    ///                     println!("write {} bytes", n);
    ///                 }
    ///                 Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {
    ///                     // a write has blocked, but a read might still succeed.
    ///                     // clear only the write readiness.
    ///                     guard.clear_ready_matching(Ready::WRITABLE);
    ///                     continue;
    ///                 }
    ///                 Err(e) => {
    ///                     return Err(e.into());
    ///                 }
    ///             }
    ///         }
    ///     }
    /// }
    /// ```
    pub async fn ready_mut(
        &mut self,
        interest: Interest,
    ) -> io::Result<AsyncFdReadyMutGuard<'_, T>> {
        let event = self.registration.readiness(interest).await?;

        Ok(AsyncFdReadyMutGuard {
            async_fd: self,
            event: Some(event),
        })
    }

    /// Waits for the file descriptor to become readable, returning a
    /// [`AsyncFdReadyGuard`] that must be dropped to resume read-readiness
    /// polling.
    ///
    /// This method takes `&self`, so it is possible to call this method
    /// concurrently with other methods on this struct. This method only
    /// provides shared access to the inner IO resource when handling the
    /// [`AsyncFdReadyGuard`].
    ///
    /// # Cancel safety
    ///
    /// This method is cancel safe. Once a readiness event occurs, the method
    /// will continue to return immediately until the readiness event is
    /// consumed by an attempt to read or write that fails with `WouldBlock` or
    /// `Poll::Pending`.
    #[allow(clippy::needless_lifetimes)] // The lifetime improves rustdoc rendering.
    pub async fn readable<'a>(&'a self) -> io::Result<AsyncFdReadyGuard<'a, T>> {
        self.ready(Interest::READABLE).await
    }

    /// Waits for the file descriptor to become readable, returning a
    /// [`AsyncFdReadyMutGuard`] that must be dropped to resume read-readiness
    /// polling.
    ///
    /// This method takes `&mut self`, so it is possible to access the inner IO
    /// resource mutably when handling the [`AsyncFdReadyMutGuard`].
    ///
    /// # Cancel safety
    ///
    /// This method is cancel safe. Once a readiness event occurs, the method
    /// will continue to return immediately until the readiness event is
    /// consumed by an attempt to read or write that fails with `WouldBlock` or
    /// `Poll::Pending`.
    #[allow(clippy::needless_lifetimes)] // The lifetime improves rustdoc rendering.
    pub async fn readable_mut<'a>(&'a mut self) -> io::Result<AsyncFdReadyMutGuard<'a, T>> {
        self.ready_mut(Interest::READABLE).await
    }

    /// Waits for the file descriptor to become writable, returning a
    /// [`AsyncFdReadyGuard`] that must be dropped to resume write-readiness
    /// polling.
    ///
    /// This method takes `&self`, so it is possible to call this method
    /// concurrently with other methods on this struct. This method only
    /// provides shared access to the inner IO resource when handling the
    /// [`AsyncFdReadyGuard`].
    ///
    /// # Cancel safety
    ///
    /// This method is cancel safe. Once a readiness event occurs, the method
    /// will continue to return immediately until the readiness event is
    /// consumed by an attempt to read or write that fails with `WouldBlock` or
    /// `Poll::Pending`.
    #[allow(clippy::needless_lifetimes)] // The lifetime improves rustdoc rendering.
    pub async fn writable<'a>(&'a self) -> io::Result<AsyncFdReadyGuard<'a, T>> {
        self.ready(Interest::WRITABLE).await
    }

    /// Waits for the file descriptor to become writable, returning a
    /// [`AsyncFdReadyMutGuard`] that must be dropped to resume write-readiness
    /// polling.
    ///
    /// This method takes `&mut self`, so it is possible to access the inner IO
    /// resource mutably when handling the [`AsyncFdReadyMutGuard`].
    ///
    /// # Cancel safety
    ///
    /// This method is cancel safe. Once a readiness event occurs, the method
    /// will continue to return immediately until the readiness event is
    /// consumed by an attempt to read or write that fails with `WouldBlock` or
    /// `Poll::Pending`.
    #[allow(clippy::needless_lifetimes)] // The lifetime improves rustdoc rendering.
    pub async fn writable_mut<'a>(&'a mut self) -> io::Result<AsyncFdReadyMutGuard<'a, T>> {
        self.ready_mut(Interest::WRITABLE).await
    }

    /// Reads or writes from the file descriptor using a user-provided IO operation.
    ///
    /// The `async_io` method is a convenience utility that waits for the file
    /// descriptor to become ready, and then executes the provided IO operation.
    /// Since file descriptors may be marked ready spuriously, the closure will
    /// be called repeatedly until it returns something other than a
    /// [`WouldBlock`] error. This is done using the following loop:
    ///
    /// ```no_run
    /// # use std::io::{self, Result};
    /// # struct Dox<T> { inner: T }
    /// # impl<T> Dox<T> {
    /// #     async fn writable(&self) -> Result<&Self> {
    /// #         Ok(self)
    /// #     }
    /// #     fn try_io<R>(&self, _: impl FnMut(&T) -> Result<R>) -> Result<Result<R>> {
    /// #         panic!()
    /// #     }
    /// async fn async_io<R>(&self, mut f: impl FnMut(&T) -> io::Result<R>) -> io::Result<R> {
    ///     loop {
    ///         // or `readable` if called with the read interest.
    ///         let guard = self.writable().await?;
    ///
    ///         match guard.try_io(&mut f) {
    ///             Ok(result) => return result,
    ///             Err(_would_block) => continue,
    ///         }
    ///     }
    /// }
    /// # }
    /// ```
    ///
    /// The closure should only return a [`WouldBlock`] error if it has performed
    /// an IO operation on the file descriptor that failed due to the file descriptor not being
    /// ready. Returning a [`WouldBlock`] error in any other situation will
    /// incorrectly clear the readiness flag, which can cause the file descriptor to
    /// behave incorrectly.
    ///
    /// The closure should not perform the IO operation using any of the methods
    /// defined on the Tokio [`AsyncFd`] type, as this will mess with the
    /// readiness flag and can cause the file descriptor to behave incorrectly.
    ///
    /// This method is not intended to be used with combined interests.
    /// The closure should perform only one type of IO operation, so it should not
    /// require more than one ready state. This method may panic or sleep forever
    /// if it is called with a combined interest.
    ///
    /// # Examples
    ///
    /// This example sends some bytes on the inner [`std::net::UdpSocket`]. The `async_io`
    /// method waits for readiness, and retries if the send operation does block. This example
    /// is equivalent to the one given for [`try_io`].
    ///
    /// ```no_run
    /// use tokio::io::{Interest, unix::AsyncFd};
    ///
    /// use std::io;
    /// use std::net::UdpSocket;
    ///
    /// #[tokio::main]
    /// async fn main() -> io::Result<()> {
    ///     let socket = UdpSocket::bind("0.0.0.0:8080")?;
    ///     socket.set_nonblocking(true)?;
    ///     let async_fd = AsyncFd::new(socket)?;
    ///
    ///     let written = async_fd
    ///         .async_io(Interest::WRITABLE, |inner| inner.send(&[1, 2]))
    ///         .await?;
    ///
    ///     println!("wrote {written} bytes");
    ///
    ///     Ok(())
    /// }
    /// ```
    ///
    /// [`try_io`]: AsyncFdReadyGuard::try_io
    /// [`WouldBlock`]: std::io::ErrorKind::WouldBlock
    pub async fn async_io<R>(
        &self,
        interest: Interest,
        mut f: impl FnMut(&T) -> io::Result<R>,
    ) -> io::Result<R> {
        self.registration
            .async_io(interest, || f(self.get_ref()))
            .await
    }

    /// Reads or writes from the file descriptor using a user-provided IO operation.
    ///
    /// The behavior is the same as [`async_io`], except that the closure can mutate the inner
    /// value of the [`AsyncFd`].
    ///
    /// [`async_io`]: AsyncFd::async_io
    pub async fn async_io_mut<R>(
        &mut self,
        interest: Interest,
        mut f: impl FnMut(&mut T) -> io::Result<R>,
    ) -> io::Result<R> {
        self.registration
            .async_io(interest, || f(self.inner.as_mut().unwrap()))
            .await
    }

    /// Tries to read or write from the file descriptor using a user-provided IO operation.
    ///
    /// If the file descriptor is ready, the provided closure is called. The closure
    /// should attempt to perform IO operation on the file descriptor by manually
    /// calling the appropriate syscall. If the operation fails because the
    /// file descriptor is not actually ready, then the closure should return a
    /// `WouldBlock` error and the readiness flag is cleared. The return value
    /// of the closure is then returned by `try_io`.
    ///
    /// If the file descriptor is not ready, then the closure is not called
    /// and a `WouldBlock` error is returned.
    ///
    /// The closure should only return a `WouldBlock` error if it has performed
    /// an IO operation on the file descriptor that failed due to the file descriptor not being
    /// ready. Returning a `WouldBlock` error in any other situation will
    /// incorrectly clear the readiness flag, which can cause the file descriptor to
    /// behave incorrectly.
    ///
    /// The closure should not perform the IO operation using any of the methods
    /// defined on the Tokio `AsyncFd` type, as this will mess with the
    /// readiness flag and can cause the file descriptor to behave incorrectly.
    ///
    /// This method is not intended to be used with combined interests.
    /// The closure should perform only one type of IO operation, so it should not
    /// require more than one ready state. This method may panic or sleep forever
    /// if it is called with a combined interest.
    pub fn try_io<R>(
        &self,
        interest: Interest,
        f: impl FnOnce(&T) -> io::Result<R>,
    ) -> io::Result<R> {
        self.registration
            .try_io(interest, || f(self.inner.as_ref().unwrap()))
    }

    /// Tries to read or write from the file descriptor using a user-provided IO operation.
    ///
    /// The behavior is the same as [`try_io`], except that the closure can mutate the inner
    /// value of the [`AsyncFd`].
    ///
    /// [`try_io`]: AsyncFd::try_io
    pub fn try_io_mut<R>(
        &mut self,
        interest: Interest,
        f: impl FnOnce(&mut T) -> io::Result<R>,
    ) -> io::Result<R> {
        self.registration
            .try_io(interest, || f(self.inner.as_mut().unwrap()))
    }
}

impl<T: AsRawFd> AsRawFd for AsyncFd<T> {
    fn as_raw_fd(&self) -> RawFd {
        self.inner.as_ref().unwrap().as_raw_fd()
    }
}

impl<T: AsRawFd> std::os::unix::io::AsFd for AsyncFd<T> {
    fn as_fd(&self) -> std::os::unix::io::BorrowedFd<'_> {
        unsafe { std::os::unix::io::BorrowedFd::borrow_raw(self.as_raw_fd()) }
    }
}

impl<T: std::fmt::Debug + AsRawFd> std::fmt::Debug for AsyncFd<T> {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        f.debug_struct("AsyncFd")
            .field("inner", &self.inner)
            .finish()
    }
}

impl<T: AsRawFd> Drop for AsyncFd<T> {
    fn drop(&mut self) {
        let _ = self.take_inner();
    }
}

impl<'a, Inner: AsRawFd> AsyncFdReadyGuard<'a, Inner> {
    /// Indicates to tokio that the file descriptor is no longer ready. All
    /// internal readiness flags will be cleared, and tokio will wait for the
    /// next edge-triggered readiness notification from the OS.
    ///
    /// This function is commonly used with guards returned by [`AsyncFd::readable`] and
    /// [`AsyncFd::writable`].
    ///
    /// It is critical that this function not be called unless your code
    /// _actually observes_ that the file descriptor is _not_ ready. Do not call
    /// it simply because, for example, a read succeeded; it should be called
    /// when a read is observed to block.
    ///
    /// This method only clears readiness events that happened before the creation of this guard.
    /// In other words, if the IO resource becomes ready between the creation of the guard and
    /// this call to `clear_ready`, then the readiness is not actually cleared.
    pub fn clear_ready(&mut self) {
        if let Some(event) = self.event.take() {
            self.async_fd.registration.clear_readiness(event);
        }
    }

    /// Indicates to tokio that the file descriptor no longer has a specific readiness.
    /// The internal readiness flag will be cleared, and tokio will wait for the
    /// next edge-triggered readiness notification from the OS.
    ///
    /// This function is useful in combination with the [`AsyncFd::ready`] method when a
    /// combined interest like `Interest::READABLE | Interest::WRITABLE` is used.
    ///
    /// It is critical that this function not be called unless your code
    /// _actually observes_ that the file descriptor is _not_ ready for the provided `Ready`.
    /// Do not call it simply because, for example, a read succeeded; it should be called
    /// when a read is observed to block. Only clear the specific readiness that is observed to
    /// block. For example when a read blocks when using a combined interest,
    /// only clear `Ready::READABLE`.
    ///
    /// This method only clears readiness events that happened before the creation of this guard.
    /// In other words, if the IO resource becomes ready between the creation of the guard and
    /// this call to `clear_ready`, then the readiness is not actually cleared.
    ///
    /// # Examples
    ///
    /// Concurrently read and write to a [`std::net::TcpStream`] on the same task without
    /// splitting.
    ///
    /// ```no_run
    /// use std::error::Error;
    /// use std::io;
    /// use std::io::{Read, Write};
    /// use std::net::TcpStream;
    /// use tokio::io::unix::AsyncFd;
    /// use tokio::io::{Interest, Ready};
    ///
    /// #[tokio::main]
    /// async fn main() -> Result<(), Box<dyn Error>> {
    ///     let stream = TcpStream::connect("127.0.0.1:8080")?;
    ///     stream.set_nonblocking(true)?;
    ///     let stream = AsyncFd::new(stream)?;
    ///
    ///     loop {
    ///         let mut guard = stream
    ///             .ready(Interest::READABLE | Interest::WRITABLE)
    ///             .await?;
    ///
    ///         if guard.ready().is_readable() {
    ///             let mut data = vec![0; 1024];
    ///             // Try to read data, this may still fail with `WouldBlock`
    ///             // if the readiness event is a false positive.
    ///             match stream.get_ref().read(&mut data) {
    ///                 Ok(n) => {
    ///                     println!("read {} bytes", n);
    ///                 }
    ///                 Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {
    ///                     // a read has blocked, but a write might still succeed.
    ///                     // clear only the read readiness.
    ///                     guard.clear_ready_matching(Ready::READABLE);
    ///                     continue;
    ///                 }
    ///                 Err(e) => {
    ///                     return Err(e.into());
    ///                 }
    ///             }
    ///         }
    ///
    ///         if guard.ready().is_writable() {
    ///             // Try to write data, this may still fail with `WouldBlock`
    ///             // if the readiness event is a false positive.
    ///             match stream.get_ref().write(b"hello world") {
    ///                 Ok(n) => {
    ///                     println!("write {} bytes", n);
    ///                 }
    ///                 Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {
    ///                     // a write has blocked, but a read might still succeed.
    ///                     // clear only the write readiness.
    ///                     guard.clear_ready_matching(Ready::WRITABLE);
    ///                     continue;
    ///                 }
    ///                 Err(e) => {
    ///                     return Err(e.into());
    ///                 }
    ///             }
    ///         }
    ///     }
    /// }
    /// ```
    pub fn clear_ready_matching(&mut self, ready: Ready) {
        if let Some(mut event) = self.event.take() {
            self.async_fd
                .registration
                .clear_readiness(event.with_ready(ready));

            // the event is no longer ready for the readiness that was just cleared
            event.ready = event.ready - ready;

            if !event.ready.is_empty() {
                self.event = Some(event);
            }
        }
    }

    /// This method should be invoked when you intentionally want to keep the
    /// ready flag asserted.
    ///
    /// While this function is itself a no-op, it satisfies the `#[must_use]`
    /// constraint on the [`AsyncFdReadyGuard`] type.
    pub fn retain_ready(&mut self) {
        // no-op
    }

    /// Get the [`Ready`] value associated with this guard.
    ///
    /// This method will return the empty readiness state if
    /// [`AsyncFdReadyGuard::clear_ready`] has been called on
    /// the guard.
    ///
    /// [`Ready`]: crate::io::Ready
    pub fn ready(&self) -> Ready {
        match &self.event {
            Some(event) => event.ready,
            None => Ready::EMPTY,
        }
    }

    /// Performs the provided IO operation.
    ///
    /// If `f` returns a [`WouldBlock`] error, the readiness state associated
    /// with this file descriptor is cleared, and the method returns
    /// `Err(TryIoError::WouldBlock)`. You will typically need to poll the
    /// `AsyncFd` again when this happens.
    ///
    /// This method helps ensure that the readiness state of the underlying file
    /// descriptor remains in sync with the tokio-side readiness state, by
    /// clearing the tokio-side state only when a [`WouldBlock`] condition
    /// occurs. It is the responsibility of the caller to ensure that `f`
    /// returns [`WouldBlock`] only if the file descriptor that originated this
    /// `AsyncFdReadyGuard` no longer expresses the readiness state that was queried to
    /// create this `AsyncFdReadyGuard`.
    ///
    /// # Examples
    ///
    /// This example sends some bytes to the inner [`std::net::UdpSocket`]. Waiting
    /// for write-readiness and retrying when the send operation does block are explicit.
    /// This example can be written more succinctly using [`AsyncFd::async_io`].
    ///
    /// ```no_run
    /// use tokio::io::unix::AsyncFd;
    ///
    /// use std::io;
    /// use std::net::UdpSocket;
    ///
    /// #[tokio::main]
    /// async fn main() -> io::Result<()> {
    ///     let socket = UdpSocket::bind("0.0.0.0:8080")?;
    ///     socket.set_nonblocking(true)?;
    ///     let async_fd = AsyncFd::new(socket)?;
    ///
    ///     let written = loop {
    ///         let mut guard = async_fd.writable().await?;
    ///         match guard.try_io(|inner| inner.get_ref().send(&[1, 2])) {
    ///             Ok(result) => {
    ///                 break result?;
    ///             }
    ///             Err(_would_block) => {
    ///                 // try_io already cleared the file descriptor's readiness state
    ///                 continue;
    ///             }
    ///         }
    ///     };
    ///
    ///     println!("wrote {written} bytes");
    ///
    ///     Ok(())
    /// }
    /// ```
    ///
    /// [`WouldBlock`]: std::io::ErrorKind::WouldBlock
    // Alias for old name in 0.x
    #[cfg_attr(docsrs, doc(alias = "with_io"))]
    pub fn try_io<R>(
        &mut self,
        f: impl FnOnce(&'a AsyncFd<Inner>) -> io::Result<R>,
    ) -> Result<io::Result<R>, TryIoError> {
        let result = f(self.async_fd);

        match result {
            Err(err) if err.kind() == io::ErrorKind::WouldBlock => {
                self.clear_ready();
                Err(TryIoError(()))
            }
            result => Ok(result),
        }
    }

    /// Returns a shared reference to the inner [`AsyncFd`].
    pub fn get_ref(&self) -> &'a AsyncFd<Inner> {
        self.async_fd
    }

    /// Returns a shared reference to the backing object of the inner [`AsyncFd`].
    pub fn get_inner(&self) -> &'a Inner {
        self.get_ref().get_ref()
    }
}

impl<'a, Inner: AsRawFd> AsyncFdReadyMutGuard<'a, Inner> {
    /// Indicates to tokio that the file descriptor is no longer ready. All
    /// internal readiness flags will be cleared, and tokio will wait for the
    /// next edge-triggered readiness notification from the OS.
    ///
    /// This function is commonly used with guards returned by [`AsyncFd::readable_mut`] and
    /// [`AsyncFd::writable_mut`].
    ///
    /// It is critical that this function not be called unless your code
    /// _actually observes_ that the file descriptor is _not_ ready. Do not call
    /// it simply because, for example, a read succeeded; it should be called
    /// when a read is observed to block.
    ///
    /// This method only clears readiness events that happened before the creation of this guard.
    /// In other words, if the IO resource becomes ready between the creation of the guard and
    /// this call to `clear_ready`, then the readiness is not actually cleared.
    pub fn clear_ready(&mut self) {
        if let Some(event) = self.event.take() {
            self.async_fd.registration.clear_readiness(event);
        }
    }

    /// Indicates to tokio that the file descriptor no longer has a specific readiness.
    /// The internal readiness flag will be cleared, and tokio will wait for the
    /// next edge-triggered readiness notification from the OS.
    ///
    /// This function is useful in combination with the [`AsyncFd::ready_mut`] method when a
    /// combined interest like `Interest::READABLE | Interest::WRITABLE` is used.
    ///
    /// It is critical that this function not be called unless your code
    /// _actually observes_ that the file descriptor is _not_ ready for the provided `Ready`.
    /// Do not call it simply because, for example, a read succeeded; it should be called
    /// when a read is observed to block. Only clear the specific readiness that is observed to
    /// block. For example when a read blocks when using a combined interest,
    /// only clear `Ready::READABLE`.
    ///
    /// This method only clears readiness events that happened before the creation of this guard.
    /// In other words, if the IO resource becomes ready between the creation of the guard and
    /// this call to `clear_ready`, then the readiness is not actually cleared.
    ///
    /// # Examples
    ///
    /// Concurrently read and write to a [`std::net::TcpStream`] on the same task without
    /// splitting.
    ///
    /// ```no_run
    /// use std::error::Error;
    /// use std::io;
    /// use std::io::{Read, Write};
    /// use std::net::TcpStream;
    /// use tokio::io::unix::AsyncFd;
    /// use tokio::io::{Interest, Ready};
    ///
    /// #[tokio::main]
    /// async fn main() -> Result<(), Box<dyn Error>> {
    ///     let stream = TcpStream::connect("127.0.0.1:8080")?;
    ///     stream.set_nonblocking(true)?;
    ///     let mut stream = AsyncFd::new(stream)?;
    ///
    ///     loop {
    ///         let mut guard = stream
    ///             .ready_mut(Interest::READABLE | Interest::WRITABLE)
    ///             .await?;
    ///
    ///         if guard.ready().is_readable() {
    ///             let mut data = vec![0; 1024];
    ///             // Try to read data, this may still fail with `WouldBlock`
    ///             // if the readiness event is a false positive.
    ///             match guard.get_inner_mut().read(&mut data) {
    ///                 Ok(n) => {
    ///                     println!("read {} bytes", n);
    ///                 }
    ///                 Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {
    ///                     // a read has blocked, but a write might still succeed.
    ///                     // clear only the read readiness.
    ///                     guard.clear_ready_matching(Ready::READABLE);
    ///                     continue;
    ///                 }
    ///                 Err(e) => {
    ///                     return Err(e.into());
    ///                 }
    ///             }
    ///         }
    ///
    ///         if guard.ready().is_writable() {
    ///             // Try to write data, this may still fail with `WouldBlock`
    ///             // if the readiness event is a false positive.
    ///             match guard.get_inner_mut().write(b"hello world") {
    ///                 Ok(n) => {
    ///                     println!("write {} bytes", n);
    ///                 }
    ///                 Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {
    ///                     // a write has blocked, but a read might still succeed.
    ///                     // clear only the write readiness.
    ///                     guard.clear_ready_matching(Ready::WRITABLE);
    ///                     continue;
    ///                 }
    ///                 Err(e) => {
    ///                     return Err(e.into());
    ///                 }
    ///             }
    ///         }
    ///     }
    /// }
    /// ```
    pub fn clear_ready_matching(&mut self, ready: Ready) {
        if let Some(mut event) = self.event.take() {
            self.async_fd
                .registration
                .clear_readiness(event.with_ready(ready));

            // the event is no longer ready for the readiness that was just cleared
            event.ready = event.ready - ready;

            if !event.ready.is_empty() {
                self.event = Some(event);
            }
        }
    }

    /// This method should be invoked when you intentionally want to keep the
    /// ready flag asserted.
    ///
    /// While this function is itself a no-op, it satisfies the `#[must_use]`
    /// constraint on the [`AsyncFdReadyGuard`] type.
    pub fn retain_ready(&mut self) {
        // no-op
    }

    /// Get the [`Ready`] value associated with this guard.
    ///
    /// This method will return the empty readiness state if
    /// [`AsyncFdReadyGuard::clear_ready`] has been called on
    /// the guard.
    ///
    /// [`Ready`]: super::Ready
    pub fn ready(&self) -> Ready {
        match &self.event {
            Some(event) => event.ready,
            None => Ready::EMPTY,
        }
    }

    /// Performs the provided IO operation.
    ///
    /// If `f` returns a [`WouldBlock`] error, the readiness state associated
    /// with this file descriptor is cleared, and the method returns
    /// `Err(TryIoError::WouldBlock)`. You will typically need to poll the
    /// `AsyncFd` again when this happens.
    ///
    /// This method helps ensure that the readiness state of the underlying file
    /// descriptor remains in sync with the tokio-side readiness state, by
    /// clearing the tokio-side state only when a [`WouldBlock`] condition
    /// occurs. It is the responsibility of the caller to ensure that `f`
    /// returns [`WouldBlock`] only if the file descriptor that originated this
    /// `AsyncFdReadyGuard` no longer expresses the readiness state that was queried to
    /// create this `AsyncFdReadyGuard`.
    ///
    /// [`WouldBlock`]: std::io::ErrorKind::WouldBlock
    pub fn try_io<R>(
        &mut self,
        f: impl FnOnce(&mut AsyncFd<Inner>) -> io::Result<R>,
    ) -> Result<io::Result<R>, TryIoError> {
        let result = f(self.async_fd);

        match result {
            Err(err) if err.kind() == io::ErrorKind::WouldBlock => {
                self.clear_ready();
                Err(TryIoError(()))
            }
            result => Ok(result),
        }
    }

    /// Returns a shared reference to the inner [`AsyncFd`].
    pub fn get_ref(&self) -> &AsyncFd<Inner> {
        self.async_fd
    }

    /// Returns a mutable reference to the inner [`AsyncFd`].
    pub fn get_mut(&mut self) -> &mut AsyncFd<Inner> {
        self.async_fd
    }

    /// Returns a shared reference to the backing object of the inner [`AsyncFd`].
    pub fn get_inner(&self) -> &Inner {
        self.get_ref().get_ref()
    }

    /// Returns a mutable reference to the backing object of the inner [`AsyncFd`].
    pub fn get_inner_mut(&mut self) -> &mut Inner {
        self.get_mut().get_mut()
    }
}

impl<'a, T: std::fmt::Debug + AsRawFd> std::fmt::Debug for AsyncFdReadyGuard<'a, T> {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        f.debug_struct("ReadyGuard")
            .field("async_fd", &self.async_fd)
            .finish()
    }
}

impl<'a, T: std::fmt::Debug + AsRawFd> std::fmt::Debug for AsyncFdReadyMutGuard<'a, T> {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        f.debug_struct("MutReadyGuard")
            .field("async_fd", &self.async_fd)
            .finish()
    }
}

/// The error type returned by [`try_io`].
///
/// This error indicates that the IO resource returned a [`WouldBlock`] error.
///
/// [`WouldBlock`]: std::io::ErrorKind::WouldBlock
/// [`try_io`]: method@AsyncFdReadyGuard::try_io
#[derive(Debug)]
pub struct TryIoError(());

/// Error returned by [`try_new`] or [`try_with_interest`].
///
/// [`try_new`]: AsyncFd::try_new
/// [`try_with_interest`]: AsyncFd::try_with_interest
pub struct AsyncFdTryNewError<T> {
    inner: T,
    cause: io::Error,
}

impl<T> AsyncFdTryNewError<T> {
    /// Returns the original object passed to [`try_new`] or [`try_with_interest`]
    /// alongside the error that caused these functions to fail.
    ///
    /// [`try_new`]: AsyncFd::try_new
    /// [`try_with_interest`]: AsyncFd::try_with_interest
    pub fn into_parts(self) -> (T, io::Error) {
        (self.inner, self.cause)
    }
}

impl<T> fmt::Display for AsyncFdTryNewError<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt::Display::fmt(&self.cause, f)
    }
}

impl<T> fmt::Debug for AsyncFdTryNewError<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt::Debug::fmt(&self.cause, f)
    }
}

impl<T> Error for AsyncFdTryNewError<T> {
    fn source(&self) -> Option<&(dyn Error + 'static)> {
        Some(&self.cause)
    }
}

impl<T> From<AsyncFdTryNewError<T>> for io::Error {
    fn from(value: AsyncFdTryNewError<T>) -> Self {
        value.cause
    }
}