tracing/
span.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
//! Spans represent periods of time in which a program was executing in a
//! particular context.
//!
//! A span consists of [fields], user-defined key-value pairs of arbitrary data
//! that describe the context the span represents, and a set of fixed attributes
//! that describe all `tracing` spans and events. Attributes describing spans
//! include:
//!
//! - An [`Id`] assigned by the subscriber that uniquely identifies it in relation
//!   to other spans.
//! - The span's [parent] in the trace tree.
//! - [Metadata] that describes static characteristics of all spans
//!   originating from that callsite, such as its name, source code location,
//!   [verbosity level], and the names of its fields.
//!
//! # Creating Spans
//!
//! Spans are created using the [`span!`] macro. This macro is invoked with the
//! following arguments, in order:
//!
//! - The [`target`] and/or [`parent`][parent] attributes, if the user wishes to
//!   override their default values.
//! - The span's [verbosity level]
//! - A string literal providing the span's name.
//! - Finally, zero or more arbitrary key/value fields.
//!
//! [`target`]: super::Metadata::target
//!
//! For example:
//! ```rust
//! use tracing::{span, Level};
//!
//! /// Construct a new span at the `INFO` level named "my_span", with a single
//! /// field named answer , with the value `42`.
//! let my_span = span!(Level::INFO, "my_span", answer = 42);
//! ```
//!
//! The documentation for the [`span!`] macro provides additional examples of
//! the various options that exist when creating spans.
//!
//! The [`trace_span!`], [`debug_span!`], [`info_span!`], [`warn_span!`], and
//! [`error_span!`] exist as shorthand for constructing spans at various
//! verbosity levels.
//!
//! ## Recording Span Creation
//!
//! The [`Attributes`] type contains data associated with a span, and is
//! provided to the [`Subscriber`] when a new span is created. It contains
//! the span's metadata, the ID of [the span's parent][parent] if one was
//! explicitly set, and any fields whose values were recorded when the span was
//! constructed. The subscriber, which is responsible for recording `tracing`
//! data, can then store or record these values.
//!
//! # The Span Lifecycle
//!
//! ## Entering a Span
//!
//! A thread of execution is said to _enter_ a span when it begins executing,
//! and _exit_ the span when it switches to another context. Spans may be
//! entered through the [`enter`], [`entered`], and [`in_scope`] methods.
//!
//! The [`enter`] method enters a span, returning a [guard] that exits the span
//! when dropped
//! ```
//! # use tracing::{span, Level};
//! let my_var: u64 = 5;
//! let my_span = span!(Level::TRACE, "my_span", my_var);
//!
//! // `my_span` exists but has not been entered.
//!
//! // Enter `my_span`...
//! let _enter = my_span.enter();
//!
//! // Perform some work inside of the context of `my_span`...
//! // Dropping the `_enter` guard will exit the span.
//!```
//!
//! <div class="example-wrap" style="display:inline-block"><pre class="compile_fail" style="white-space:normal;font:inherit;">
//!     <strong>Warning</strong>: In asynchronous code that uses async/await syntax,
//!     <code>Span::enter</code> may produce incorrect traces if the returned drop
//!     guard is held across an await point. See
//!     <a href="struct.Span.html#in-asynchronous-code">the method documentation</a>
//!     for details.
//! </pre></div>
//!
//! The [`entered`] method is analogous to [`enter`], but moves the span into
//! the returned guard, rather than borrowing it. This allows creating and
//! entering a span in a single expression:
//!
//! ```
//! # use tracing::{span, Level};
//! // Create a span and enter it, returning a guard:
//! let span = span!(Level::INFO, "my_span").entered();
//!
//! // We are now inside the span! Like `enter()`, the guard returned by
//! // `entered()` will exit the span when it is dropped...
//!
//! // ...but, it can also be exited explicitly, returning the `Span`
//! // struct:
//! let span = span.exit();
//! ```
//!
//! Finally, [`in_scope`] takes a closure or function pointer and executes it
//! inside the span:
//!
//! ```
//! # use tracing::{span, Level};
//! let my_var: u64 = 5;
//! let my_span = span!(Level::TRACE, "my_span", my_var = &my_var);
//!
//! my_span.in_scope(|| {
//!     // perform some work in the context of `my_span`...
//! });
//!
//! // Perform some work outside of the context of `my_span`...
//!
//! my_span.in_scope(|| {
//!     // Perform some more work in the context of `my_span`.
//! });
//! ```
//!
//! <pre class="ignore" style="white-space:normal;font:inherit;">
//!     <strong>Note</strong>: Since entering a span takes <code>&self</code>, and
//!     <code>Span</code>s are <code>Clone</code>, <code>Send</code>, and
//!     <code>Sync</code>, it is entirely valid for multiple threads to enter the
//!     same span concurrently.
//! </pre>
//!
//! ## Span Relationships
//!
//! Spans form a tree structure — unless it is a root span, all spans have a
//! _parent_, and may have one or more _children_. When a new span is created,
//! the current span becomes the new span's parent. The total execution time of
//! a span consists of the time spent in that span and in the entire subtree
//! represented by its children. Thus, a parent span always lasts for at least
//! as long as the longest-executing span in its subtree.
//!
//! ```
//! # use tracing::{Level, span};
//! // this span is considered the "root" of a new trace tree:
//! span!(Level::INFO, "root").in_scope(|| {
//!     // since we are now inside "root", this span is considered a child
//!     // of "root":
//!     span!(Level::DEBUG, "outer_child").in_scope(|| {
//!         // this span is a child of "outer_child", which is in turn a
//!         // child of "root":
//!         span!(Level::TRACE, "inner_child").in_scope(|| {
//!             // and so on...
//!         });
//!     });
//!     // another span created here would also be a child of "root".
//! });
//!```
//!
//! In addition, the parent of a span may be explicitly specified in
//! the `span!` macro. For example:
//!
//! ```rust
//! # use tracing::{Level, span};
//! // Create, but do not enter, a span called "foo".
//! let foo = span!(Level::INFO, "foo");
//!
//! // Create and enter a span called "bar".
//! let bar = span!(Level::INFO, "bar");
//! let _enter = bar.enter();
//!
//! // Although we have currently entered "bar", "baz"'s parent span
//! // will be "foo".
//! let baz = span!(parent: &foo, Level::INFO, "baz");
//! ```
//!
//! A child span should typically be considered _part_ of its parent. For
//! example, if a subscriber is recording the length of time spent in various
//! spans, it should generally include the time spent in a span's children as
//! part of that span's duration.
//!
//! In addition to having zero or one parent, a span may also _follow from_ any
//! number of other spans. This indicates a causal relationship between the span
//! and the spans that it follows from, but a follower is *not* typically
//! considered part of the duration of the span it follows. Unlike the parent, a
//! span may record that it follows from another span after it is created, using
//! the [`follows_from`] method.
//!
//! As an example, consider a listener task in a server. As the listener accepts
//! incoming connections, it spawns new tasks that handle those connections. We
//! might want to have a span representing the listener, and instrument each
//! spawned handler task with its own span. We would want our instrumentation to
//! record that the handler tasks were spawned as a result of the listener task.
//! However, we might not consider the handler tasks to be _part_ of the time
//! spent in the listener task, so we would not consider those spans children of
//! the listener span. Instead, we would record that the handler tasks follow
//! from the listener, recording the causal relationship but treating the spans
//! as separate durations.
//!
//! ## Closing Spans
//!
//! Execution may enter and exit a span multiple times before that span is
//! _closed_. Consider, for example, a future which has an associated
//! span and enters that span every time it is polled:
//! ```rust
//! # use std::future::Future;
//! # use std::task::{Context, Poll};
//! # use std::pin::Pin;
//! struct MyFuture {
//!    // data
//!    span: tracing::Span,
//! }
//!
//! impl Future for MyFuture {
//!     type Output = ();
//!
//!     fn poll(self: Pin<&mut Self>, _cx: &mut Context<'_>) -> Poll<Self::Output> {
//!         let _enter = self.span.enter();
//!         // Do actual future work...
//! # Poll::Ready(())
//!     }
//! }
//! ```
//!
//! If this future was spawned on an executor, it might yield one or more times
//! before `poll` returns [`Poll::Ready`]. If the future were to yield, then
//! the executor would move on to poll the next future, which may _also_ enter
//! an associated span or series of spans. Therefore, it is valid for a span to
//! be entered repeatedly before it completes. Only the time when that span or
//! one of its children was the current span is considered to be time spent in
//! that span. A span which is not executing and has not yet been closed is said
//! to be _idle_.
//!
//! Because spans may be entered and exited multiple times before they close,
//! [`Subscriber`]s have separate trait methods which are called to notify them
//! of span exits and when span handles are dropped. When execution exits a
//! span, [`exit`] will always be called with that span's ID to notify the
//! subscriber that the span has been exited. When span handles are dropped, the
//! [`drop_span`] method is called with that span's ID. The subscriber may use
//! this to determine whether or not the span will be entered again.
//!
//! If there is only a single handle with the capacity to exit a span, dropping
//! that handle "closes" the span, since the capacity to enter it no longer
//! exists. For example:
//! ```
//! # use tracing::{Level, span};
//! {
//!     span!(Level::TRACE, "my_span").in_scope(|| {
//!         // perform some work in the context of `my_span`...
//!     }); // --> Subscriber::exit(my_span)
//!
//!     // The handle to `my_span` only lives inside of this block; when it is
//!     // dropped, the subscriber will be informed via `drop_span`.
//!
//! } // --> Subscriber::drop_span(my_span)
//! ```
//!
//! However, if multiple handles exist, the span can still be re-entered even if
//! one or more is dropped. For determining when _all_ handles to a span have
//! been dropped, `Subscriber`s have a [`clone_span`] method, which is called
//! every time a span handle is cloned. Combined with `drop_span`, this may be
//! used to track the number of handles to a given span — if `drop_span` has
//! been called one more time than the number of calls to `clone_span` for a
//! given ID, then no more handles to the span with that ID exist. The
//! subscriber may then treat it as closed.
//!
//! # When to use spans
//!
//! As a rule of thumb, spans should be used to represent discrete units of work
//! (e.g., a given request's lifetime in a server) or periods of time spent in a
//! given context (e.g., time spent interacting with an instance of an external
//! system, such as a database).
//!
//! Which scopes in a program correspond to new spans depend somewhat on user
//! intent. For example, consider the case of a loop in a program. Should we
//! construct one span and perform the entire loop inside of that span, like:
//!
//! ```rust
//! # use tracing::{Level, span};
//! # let n = 1;
//! let span = span!(Level::TRACE, "my_loop");
//! let _enter = span.enter();
//! for i in 0..n {
//!     # let _ = i;
//!     // ...
//! }
//! ```
//! Or, should we create a new span for each iteration of the loop, as in:
//! ```rust
//! # use tracing::{Level, span};
//! # let n = 1u64;
//! for i in 0..n {
//!     let span = span!(Level::TRACE, "my_loop", iteration = i);
//!     let _enter = span.enter();
//!     // ...
//! }
//! ```
//!
//! Depending on the circumstances, we might want to do either, or both. For
//! example, if we want to know how long was spent in the loop overall, we would
//! create a single span around the entire loop; whereas if we wanted to know how
//! much time was spent in each individual iteration, we would enter a new span
//! on every iteration.
//!
//! [fields]: super::field
//! [Metadata]: super::Metadata
//! [verbosity level]: super::Level
//! [`Poll::Ready`]: std::task::Poll::Ready
//! [`span!`]: super::span!
//! [`trace_span!`]: super::trace_span!
//! [`debug_span!`]: super::debug_span!
//! [`info_span!`]: super::info_span!
//! [`warn_span!`]: super::warn_span!
//! [`error_span!`]: super::error_span!
//! [`clone_span`]: super::subscriber::Subscriber::clone_span()
//! [`drop_span`]: super::subscriber::Subscriber::drop_span()
//! [`exit`]: super::subscriber::Subscriber::exit
//! [`Subscriber`]: super::subscriber::Subscriber
//! [`enter`]: Span::enter()
//! [`entered`]: Span::entered()
//! [`in_scope`]: Span::in_scope()
//! [`follows_from`]: Span::follows_from()
//! [guard]: Entered
//! [parent]: #span-relationships
pub use tracing_core::span::{Attributes, Id, Record};

use crate::stdlib::{
    cmp, fmt,
    hash::{Hash, Hasher},
    marker::PhantomData,
    mem,
    ops::Deref,
};
use crate::{
    dispatcher::{self, Dispatch},
    field, Metadata,
};

/// Trait implemented by types which have a span `Id`.
pub trait AsId: crate::sealed::Sealed {
    /// Returns the `Id` of the span that `self` corresponds to, or `None` if
    /// this corresponds to a disabled span.
    fn as_id(&self) -> Option<&Id>;
}

/// A handle representing a span, with the capability to enter the span if it
/// exists.
///
/// If the span was rejected by the current `Subscriber`'s filter, entering the
/// span will silently do nothing. Thus, the handle can be used in the same
/// manner regardless of whether or not the trace is currently being collected.
#[derive(Clone)]
pub struct Span {
    /// A handle used to enter the span when it is not executing.
    ///
    /// If this is `None`, then the span has either closed or was never enabled.
    inner: Option<Inner>,
    /// Metadata describing the span.
    ///
    /// This might be `Some` even if `inner` is `None`, in the case that the
    /// span is disabled but the metadata is needed for `log` support.
    meta: Option<&'static Metadata<'static>>,
}

/// A handle representing the capacity to enter a span which is known to exist.
///
/// Unlike `Span`, this type is only constructed for spans which _have_ been
/// enabled by the current filter. This type is primarily used for implementing
/// span handles; users should typically not need to interact with it directly.
#[derive(Debug)]
pub(crate) struct Inner {
    /// The span's ID, as provided by `subscriber`.
    id: Id,

    /// The subscriber that will receive events relating to this span.
    ///
    /// This should be the same subscriber that provided this span with its
    /// `id`.
    subscriber: Dispatch,
}

/// A guard representing a span which has been entered and is currently
/// executing.
///
/// When the guard is dropped, the span will be exited.
///
/// This is returned by the [`Span::enter`] function.
///
/// [`Span::enter`]: super::Span::enter
#[derive(Debug)]
#[must_use = "once a span has been entered, it should be exited"]
pub struct Entered<'a> {
    span: &'a Span,
}

/// An owned version of [`Entered`], a guard representing a span which has been
/// entered and is currently executing.
///
/// When the guard is dropped, the span will be exited.
///
/// This is returned by the [`Span::entered`] function.
///
/// [`Span::entered`]: super::Span::entered()
#[derive(Debug)]
#[must_use = "once a span has been entered, it should be exited"]
pub struct EnteredSpan {
    span: Span,

    /// ```compile_fail
    /// use tracing::span::*;
    /// trait AssertSend: Send {}
    ///
    /// impl AssertSend for EnteredSpan {}
    /// ```
    _not_send: PhantomNotSend,
}

/// `log` target for all span lifecycle (creation/enter/exit/close) records.
#[cfg(feature = "log")]
const LIFECYCLE_LOG_TARGET: &str = "tracing::span";
/// `log` target for span activity (enter/exit) records.
#[cfg(feature = "log")]
const ACTIVITY_LOG_TARGET: &str = "tracing::span::active";

// ===== impl Span =====

impl Span {
    /// Constructs a new `Span` with the given [metadata] and set of
    /// [field values].
    ///
    /// The new span will be constructed by the currently-active [`Subscriber`],
    /// with the current span as its parent (if one exists).
    ///
    /// After the span is constructed, [field values] and/or [`follows_from`]
    /// annotations may be added to it.
    ///
    /// [metadata]: super::Metadata
    /// [`Subscriber`]: super::subscriber::Subscriber
    /// [field values]: super::field::ValueSet
    /// [`follows_from`]: super::Span::follows_from
    pub fn new(meta: &'static Metadata<'static>, values: &field::ValueSet<'_>) -> Span {
        dispatcher::get_default(|dispatch| Self::new_with(meta, values, dispatch))
    }

    #[inline]
    #[doc(hidden)]
    pub fn new_with(
        meta: &'static Metadata<'static>,
        values: &field::ValueSet<'_>,
        dispatch: &Dispatch,
    ) -> Span {
        let new_span = Attributes::new(meta, values);
        Self::make_with(meta, new_span, dispatch)
    }

    /// Constructs a new `Span` as the root of its own trace tree, with the
    /// given [metadata] and set of [field values].
    ///
    /// After the span is constructed, [field values] and/or [`follows_from`]
    /// annotations may be added to it.
    ///
    /// [metadata]: super::Metadata
    /// [field values]: super::field::ValueSet
    /// [`follows_from`]: super::Span::follows_from
    pub fn new_root(meta: &'static Metadata<'static>, values: &field::ValueSet<'_>) -> Span {
        dispatcher::get_default(|dispatch| Self::new_root_with(meta, values, dispatch))
    }

    #[inline]
    #[doc(hidden)]
    pub fn new_root_with(
        meta: &'static Metadata<'static>,
        values: &field::ValueSet<'_>,
        dispatch: &Dispatch,
    ) -> Span {
        let new_span = Attributes::new_root(meta, values);
        Self::make_with(meta, new_span, dispatch)
    }

    /// Constructs a new `Span` as child of the given parent span, with the
    /// given [metadata] and set of [field values].
    ///
    /// After the span is constructed, [field values] and/or [`follows_from`]
    /// annotations may be added to it.
    ///
    /// [metadata]: super::Metadata
    /// [field values]: super::field::ValueSet
    /// [`follows_from`]: super::Span::follows_from
    pub fn child_of(
        parent: impl Into<Option<Id>>,
        meta: &'static Metadata<'static>,
        values: &field::ValueSet<'_>,
    ) -> Span {
        let mut parent = parent.into();
        dispatcher::get_default(move |dispatch| {
            Self::child_of_with(Option::take(&mut parent), meta, values, dispatch)
        })
    }

    #[inline]
    #[doc(hidden)]
    pub fn child_of_with(
        parent: impl Into<Option<Id>>,
        meta: &'static Metadata<'static>,
        values: &field::ValueSet<'_>,
        dispatch: &Dispatch,
    ) -> Span {
        let new_span = match parent.into() {
            Some(parent) => Attributes::child_of(parent, meta, values),
            None => Attributes::new_root(meta, values),
        };
        Self::make_with(meta, new_span, dispatch)
    }

    /// Constructs a new disabled span with the given `Metadata`.
    ///
    /// This should be used when a span is constructed from a known callsite,
    /// but the subscriber indicates that it is disabled.
    ///
    /// Entering, exiting, and recording values on this span will not notify the
    /// `Subscriber` but _may_ record log messages if the `log` feature flag is
    /// enabled.
    #[inline(always)]
    pub fn new_disabled(meta: &'static Metadata<'static>) -> Span {
        Self {
            inner: None,
            meta: Some(meta),
        }
    }

    /// Constructs a new span that is *completely disabled*.
    ///
    /// This can be used rather than `Option<Span>` to represent cases where a
    /// span is not present.
    ///
    /// Entering, exiting, and recording values on this span will do nothing.
    #[inline(always)]
    pub const fn none() -> Span {
        Self {
            inner: None,
            meta: None,
        }
    }

    /// Returns a handle to the span [considered by the `Subscriber`] to be the
    /// current span.
    ///
    /// If the subscriber indicates that it does not track the current span, or
    /// that the thread from which this function is called is not currently
    /// inside a span, the returned span will be disabled.
    ///
    /// [considered by the `Subscriber`]:
    ///     super::subscriber::Subscriber::current_span
    pub fn current() -> Span {
        dispatcher::get_default(|dispatch| {
            if let Some((id, meta)) = dispatch.current_span().into_inner() {
                let id = dispatch.clone_span(&id);
                Self {
                    inner: Some(Inner::new(id, dispatch)),
                    meta: Some(meta),
                }
            } else {
                Self::none()
            }
        })
    }

    fn make_with(
        meta: &'static Metadata<'static>,
        new_span: Attributes<'_>,
        dispatch: &Dispatch,
    ) -> Span {
        let attrs = &new_span;
        let id = dispatch.new_span(attrs);
        let inner = Some(Inner::new(id, dispatch));

        let span = Self {
            inner,
            meta: Some(meta),
        };

        if_log_enabled! { *meta.level(), {
            let target = if attrs.is_empty() {
                LIFECYCLE_LOG_TARGET
            } else {
                meta.target()
            };
            let values = attrs.values();
            span.log(
                target,
                level_to_log!(*meta.level()),
                format_args!("++ {};{}", meta.name(), crate::log::LogValueSet { values, is_first: false }),
            );
        }}

        span
    }

    /// Enters this span, returning a guard that will exit the span when dropped.
    ///
    /// If this span is enabled by the current subscriber, then this function will
    /// call [`Subscriber::enter`] with the span's [`Id`], and dropping the guard
    /// will call [`Subscriber::exit`]. If the span is disabled, this does
    /// nothing.
    ///
    /// # In Asynchronous Code
    ///
    /// **Warning**: in asynchronous code that uses [async/await syntax][syntax],
    /// `Span::enter` should be used very carefully or avoided entirely. Holding
    /// the drop guard returned by `Span::enter` across `.await` points will
    /// result in incorrect traces. For example,
    ///
    /// ```
    /// # use tracing::info_span;
    /// # async fn some_other_async_function() {}
    /// async fn my_async_function() {
    ///     let span = info_span!("my_async_function");
    ///
    ///     // WARNING: This span will remain entered until this
    ///     // guard is dropped...
    ///     let _enter = span.enter();
    ///     // ...but the `await` keyword may yield, causing the
    ///     // runtime to switch to another task, while remaining in
    ///     // this span!
    ///     some_other_async_function().await
    ///
    ///     // ...
    /// }
    /// ```
    ///
    /// The drop guard returned by `Span::enter` exits the span when it is
    /// dropped. When an async function or async block yields at an `.await`
    /// point, the current scope is _exited_, but values in that scope are
    /// **not** dropped (because the async block will eventually resume
    /// execution from that await point). This means that _another_ task will
    /// begin executing while _remaining_ in the entered span. This results in
    /// an incorrect trace.
    ///
    /// Instead of using `Span::enter` in asynchronous code, prefer the
    /// following:
    ///
    /// * To enter a span for a synchronous section of code within an async
    ///   block or function, prefer [`Span::in_scope`]. Since `in_scope` takes a
    ///   synchronous closure and exits the span when the closure returns, the
    ///   span will always be exited before the next await point. For example:
    ///   ```
    ///   # use tracing::info_span;
    ///   # async fn some_other_async_function(_: ()) {}
    ///   async fn my_async_function() {
    ///       let span = info_span!("my_async_function");
    ///
    ///       let some_value = span.in_scope(|| {
    ///           // run some synchronous code inside the span...
    ///       });
    ///
    ///       // This is okay! The span has already been exited before we reach
    ///       // the await point.
    ///       some_other_async_function(some_value).await;
    ///
    ///       // ...
    ///   }
    ///   ```
    /// * For instrumenting asynchronous code, `tracing` provides the
    ///   [`Future::instrument` combinator][instrument] for
    ///   attaching a span to a future (async function or block). This will
    ///   enter the span _every_ time the future is polled, and exit it whenever
    ///   the future yields.
    ///
    ///   `Instrument` can be used with an async block inside an async function:
    ///   ```ignore
    ///   # use tracing::info_span;
    ///   use tracing::Instrument;
    ///
    ///   # async fn some_other_async_function() {}
    ///   async fn my_async_function() {
    ///       let span = info_span!("my_async_function");
    ///       async move {
    ///          // This is correct! If we yield here, the span will be exited,
    ///          // and re-entered when we resume.
    ///          some_other_async_function().await;
    ///
    ///          //more asynchronous code inside the span...
    ///
    ///       }
    ///         // instrument the async block with the span...
    ///         .instrument(span)
    ///         // ...and await it.
    ///         .await
    ///   }
    ///   ```
    ///
    ///   It can also be used to instrument calls to async functions at the
    ///   callsite:
    ///   ```ignore
    ///   # use tracing::debug_span;
    ///   use tracing::Instrument;
    ///
    ///   # async fn some_other_async_function() {}
    ///   async fn my_async_function() {
    ///       let some_value = some_other_async_function()
    ///          .instrument(debug_span!("some_other_async_function"))
    ///          .await;
    ///
    ///       // ...
    ///   }
    ///   ```
    ///
    /// * The [`#[instrument]` attribute macro][attr] can automatically generate
    ///   correct code when used on an async function:
    ///
    ///   ```ignore
    ///   # async fn some_other_async_function() {}
    ///   #[tracing::instrument(level = "info")]
    ///   async fn my_async_function() {
    ///
    ///       // This is correct! If we yield here, the span will be exited,
    ///       // and re-entered when we resume.
    ///       some_other_async_function().await;
    ///
    ///       // ...
    ///
    ///   }
    ///   ```
    ///
    /// [syntax]: https://rust-lang.github.io/async-book/01_getting_started/04_async_await_primer.html
    /// [`Span::in_scope`]: Span::in_scope()
    /// [instrument]: crate::Instrument
    /// [attr]: macro@crate::instrument
    ///
    /// # Examples
    ///
    /// ```
    /// # use tracing::{span, Level};
    /// let span = span!(Level::INFO, "my_span");
    /// let guard = span.enter();
    ///
    /// // code here is within the span
    ///
    /// drop(guard);
    ///
    /// // code here is no longer within the span
    ///
    /// ```
    ///
    /// Guards need not be explicitly dropped:
    ///
    /// ```
    /// # use tracing::trace_span;
    /// fn my_function() -> String {
    ///     // enter a span for the duration of this function.
    ///     let span = trace_span!("my_function");
    ///     let _enter = span.enter();
    ///
    ///     // anything happening in functions we call is still inside the span...
    ///     my_other_function();
    ///
    ///     // returning from the function drops the guard, exiting the span.
    ///     return "Hello world".to_owned();
    /// }
    ///
    /// fn my_other_function() {
    ///     // ...
    /// }
    /// ```
    ///
    /// Sub-scopes may be created to limit the duration for which the span is
    /// entered:
    ///
    /// ```
    /// # use tracing::{info, info_span};
    /// let span = info_span!("my_great_span");
    ///
    /// {
    ///     let _enter = span.enter();
    ///
    ///     // this event occurs inside the span.
    ///     info!("i'm in the span!");
    ///
    ///     // exiting the scope drops the guard, exiting the span.
    /// }
    ///
    /// // this event is not inside the span.
    /// info!("i'm outside the span!")
    /// ```
    ///
    /// [`Subscriber::enter`]: super::subscriber::Subscriber::enter()
    /// [`Subscriber::exit`]: super::subscriber::Subscriber::exit()
    /// [`Id`]: super::Id
    #[inline(always)]
    pub fn enter(&self) -> Entered<'_> {
        self.do_enter();
        Entered { span: self }
    }

    /// Enters this span, consuming it and returning a [guard][`EnteredSpan`]
    /// that will exit the span when dropped.
    ///
    /// <pre class="compile_fail" style="white-space:normal;font:inherit;">
    ///     <strong>Warning</strong>: In asynchronous code that uses async/await syntax,
    ///     <code>Span::entered</code> may produce incorrect traces if the returned drop
    ///     guard is held across an await point. See <a href="#in-asynchronous-code">the
    ///     <code>Span::enter</code> documentation</a> for details.
    /// </pre>
    ///
    ///
    /// If this span is enabled by the current subscriber, then this function will
    /// call [`Subscriber::enter`] with the span's [`Id`], and dropping the guard
    /// will call [`Subscriber::exit`]. If the span is disabled, this does
    /// nothing.
    ///
    /// This is similar to the [`Span::enter`] method, except that it moves the
    /// span by value into the returned guard, rather than borrowing it.
    /// Therefore, this method can be used to create and enter a span in a
    /// single expression, without requiring a `let`-binding. For example:
    ///
    /// ```
    /// # use tracing::info_span;
    /// let _span = info_span!("something_interesting").entered();
    /// ```
    /// rather than:
    /// ```
    /// # use tracing::info_span;
    /// let span = info_span!("something_interesting");
    /// let _e = span.enter();
    /// ```
    ///
    /// Furthermore, `entered` may be used when the span must be stored in some
    /// other struct or be passed to a function while remaining entered.
    ///
    /// <pre class="ignore" style="white-space:normal;font:inherit;">
    ///     <strong>Note</strong>: The returned <a href="../struct.EnteredSpan.html">
    ///     <code>EnteredSpan</code></a> guard does not implement <code>Send</code>.
    ///     Dropping the guard will exit <em>this</em> span, and if the guard is sent
    ///     to another thread and dropped there, that thread may never have entered
    ///     this span. Thus, <code>EnteredSpan</code>s should not be sent between threads.
    /// </pre>
    ///
    /// [syntax]: https://rust-lang.github.io/async-book/01_getting_started/04_async_await_primer.html
    ///
    /// # Examples
    ///
    /// The returned guard can be [explicitly exited][EnteredSpan::exit],
    /// returning the un-entered span:
    ///
    /// ```
    /// # use tracing::{Level, span};
    /// let span = span!(Level::INFO, "doing_something").entered();
    ///
    /// // code here is within the span
    ///
    /// // explicitly exit the span, returning it
    /// let span = span.exit();
    ///
    /// // code here is no longer within the span
    ///
    /// // enter the span again
    /// let span = span.entered();
    ///
    /// // now we are inside the span once again
    /// ```
    ///
    /// Guards need not be explicitly dropped:
    ///
    /// ```
    /// # use tracing::trace_span;
    /// fn my_function() -> String {
    ///     // enter a span for the duration of this function.
    ///     let span = trace_span!("my_function").entered();
    ///
    ///     // anything happening in functions we call is still inside the span...
    ///     my_other_function();
    ///
    ///     // returning from the function drops the guard, exiting the span.
    ///     return "Hello world".to_owned();
    /// }
    ///
    /// fn my_other_function() {
    ///     // ...
    /// }
    /// ```
    ///
    /// Since the [`EnteredSpan`] guard can dereference to the [`Span`] itself,
    /// the span may still be accessed while entered. For example:
    ///
    /// ```rust
    /// # use tracing::info_span;
    /// use tracing::field;
    ///
    /// // create the span with an empty field, and enter it.
    /// let span = info_span!("my_span", some_field = field::Empty).entered();
    ///
    /// // we can still record a value for the field while the span is entered.
    /// span.record("some_field", &"hello world!");
    /// ```
    ///

    /// [`Subscriber::enter`]: super::subscriber::Subscriber::enter()
    /// [`Subscriber::exit`]: super::subscriber::Subscriber::exit()
    /// [`Id`]: super::Id
    #[inline(always)]
    pub fn entered(self) -> EnteredSpan {
        self.do_enter();
        EnteredSpan {
            span: self,
            _not_send: PhantomNotSend,
        }
    }

    /// Returns this span, if it was [enabled] by the current [`Subscriber`], or
    /// the [current span] (whose lexical distance may be further than expected),
    ///  if this span [is disabled].
    ///
    /// This method can be useful when propagating spans to spawned threads or
    /// [async tasks]. Consider the following:
    ///
    /// ```
    /// let _parent_span = tracing::info_span!("parent").entered();
    ///
    /// // ...
    ///
    /// let child_span = tracing::debug_span!("child");
    ///
    /// std::thread::spawn(move || {
    ///     let _entered = child_span.entered();
    ///
    ///     tracing::info!("spawned a thread!");
    ///
    ///     // ...
    /// });
    /// ```
    ///
    /// If the current [`Subscriber`] enables the [`DEBUG`] level, then both
    /// the "parent" and "child" spans will be enabled. Thus, when the "spawaned
    /// a thread!" event occurs, it will be inside of the "child" span. Because
    /// "parent" is the parent of "child", the event will _also_ be inside of
    /// "parent".
    ///
    /// However, if the [`Subscriber`] only enables the [`INFO`] level, the "child"
    /// span will be disabled. When the thread is spawned, the
    /// `child_span.entered()` call will do nothing, since "child" is not
    /// enabled. In this case, the "spawned a thread!" event occurs outside of
    /// *any* span, since the "child" span was responsible for propagating its
    /// parent to the spawned thread.
    ///
    /// If this is not the desired behavior, `Span::or_current` can be used to
    /// ensure that the "parent" span is propagated in both cases, either as a
    /// parent of "child" _or_ directly. For example:
    ///
    /// ```
    /// let _parent_span = tracing::info_span!("parent").entered();
    ///
    /// // ...
    ///
    /// // If DEBUG is enabled, then "child" will be enabled, and `or_current`
    /// // returns "child". Otherwise, if DEBUG is not enabled, "child" will be
    /// // disabled, and `or_current` returns "parent".
    /// let child_span = tracing::debug_span!("child").or_current();
    ///
    /// std::thread::spawn(move || {
    ///     let _entered = child_span.entered();
    ///
    ///     tracing::info!("spawned a thread!");
    ///
    ///     // ...
    /// });
    /// ```
    ///
    /// When spawning [asynchronous tasks][async tasks], `Span::or_current` can
    /// be used similarly, in combination with [`instrument`]:
    ///
    /// ```
    /// use tracing::Instrument;
    /// # // lol
    /// # mod tokio {
    /// #     pub(super) fn spawn(_: impl std::future::Future) {}
    /// # }
    ///
    /// let _parent_span = tracing::info_span!("parent").entered();
    ///
    /// // ...
    ///
    /// let child_span = tracing::debug_span!("child");
    ///
    /// tokio::spawn(
    ///     async {
    ///         tracing::info!("spawned a task!");
    ///
    ///         // ...
    ///
    ///     }.instrument(child_span.or_current())
    /// );
    /// ```
    ///
    /// In general, `or_current` should be preferred over nesting an
    /// [`instrument`]  call inside of an [`in_current_span`] call, as using
    /// `or_current` will be more efficient.
    ///
    /// ```
    /// use tracing::Instrument;
    /// # // lol
    /// # mod tokio {
    /// #     pub(super) fn spawn(_: impl std::future::Future) {}
    /// # }
    /// async fn my_async_fn() {
    ///     // ...
    /// }
    ///
    /// let _parent_span = tracing::info_span!("parent").entered();
    ///
    /// // Do this:
    /// tokio::spawn(
    ///     my_async_fn().instrument(tracing::debug_span!("child").or_current())
    /// );
    ///
    /// // ...rather than this:
    /// tokio::spawn(
    ///     my_async_fn()
    ///         .instrument(tracing::debug_span!("child"))
    ///         .in_current_span()
    /// );
    /// ```
    ///
    /// [enabled]: crate::Subscriber::enabled
    /// [`Subscriber`]: crate::Subscriber
    /// [current span]: Span::current
    /// [is disabled]: Span::is_disabled
    /// [`INFO`]: crate::Level::INFO
    /// [`DEBUG`]: crate::Level::DEBUG
    /// [async tasks]: std::task
    /// [`instrument`]: crate::instrument::Instrument::instrument
    /// [`in_current_span`]: crate::instrument::Instrument::in_current_span
    pub fn or_current(self) -> Self {
        if self.is_disabled() {
            return Self::current();
        }
        self
    }

    #[inline(always)]
    fn do_enter(&self) {
        if let Some(inner) = self.inner.as_ref() {
            inner.subscriber.enter(&inner.id);
        }

        if_log_enabled! { crate::Level::TRACE, {
            if let Some(_meta) = self.meta {
                self.log(ACTIVITY_LOG_TARGET, log::Level::Trace, format_args!("-> {};", _meta.name()));
            }
        }}
    }

    // Called from [`Entered`] and [`EnteredSpan`] drops.
    //
    // Running this behaviour on drop rather than with an explicit function
    // call means that spans may still be exited when unwinding.
    #[inline(always)]
    fn do_exit(&self) {
        if let Some(inner) = self.inner.as_ref() {
            inner.subscriber.exit(&inner.id);
        }

        if_log_enabled! { crate::Level::TRACE, {
            if let Some(_meta) = self.meta {
                self.log(ACTIVITY_LOG_TARGET, log::Level::Trace, format_args!("<- {};", _meta.name()));
            }
        }}
    }

    /// Executes the given function in the context of this span.
    ///
    /// If this span is enabled, then this function enters the span, invokes `f`
    /// and then exits the span. If the span is disabled, `f` will still be
    /// invoked, but in the context of the currently-executing span (if there is
    /// one).
    ///
    /// Returns the result of evaluating `f`.
    ///
    /// # Examples
    ///
    /// ```
    /// # use tracing::{trace, span, Level};
    /// let my_span = span!(Level::TRACE, "my_span");
    ///
    /// my_span.in_scope(|| {
    ///     // this event occurs within the span.
    ///     trace!("i'm in the span!");
    /// });
    ///
    /// // this event occurs outside the span.
    /// trace!("i'm not in the span!");
    /// ```
    ///
    /// Calling a function and returning the result:
    /// ```
    /// # use tracing::{info_span, Level};
    /// fn hello_world() -> String {
    ///     "Hello world!".to_owned()
    /// }
    ///
    /// let span = info_span!("hello_world");
    /// // the span will be entered for the duration of the call to
    /// // `hello_world`.
    /// let a_string = span.in_scope(hello_world);
    ///
    pub fn in_scope<F: FnOnce() -> T, T>(&self, f: F) -> T {
        let _enter = self.enter();
        f()
    }

    /// Returns a [`Field`][super::field::Field] for the field with the
    /// given `name`, if one exists,
    pub fn field<Q: field::AsField + ?Sized>(&self, field: &Q) -> Option<field::Field> {
        self.metadata().and_then(|meta| field.as_field(meta))
    }

    /// Returns true if this `Span` has a field for the given
    /// [`Field`][super::field::Field] or field name.
    #[inline]
    pub fn has_field<Q: field::AsField + ?Sized>(&self, field: &Q) -> bool {
        self.field(field).is_some()
    }

    /// Records that the field described by `field` has the value `value`.
    ///
    /// This may be used with [`field::Empty`] to declare fields whose values
    /// are not known when the span is created, and record them later:
    /// ```
    /// use tracing::{trace_span, field};
    ///
    /// // Create a span with two fields: `greeting`, with the value "hello world", and
    /// // `parting`, without a value.
    /// let span = trace_span!("my_span", greeting = "hello world", parting = field::Empty);
    ///
    /// // ...
    ///
    /// // Now, record a value for parting as well.
    /// // (note that the field name is passed as a string slice)
    /// span.record("parting", "goodbye world!");
    /// ```
    /// However, it may also be used to record a _new_ value for a field whose
    /// value was already recorded:
    /// ```
    /// use tracing::info_span;
    /// # fn do_something() -> Result<(), ()> { Err(()) }
    ///
    /// // Initially, let's assume that our attempt to do something is going okay...
    /// let span = info_span!("doing_something", is_okay = true);
    /// let _e = span.enter();
    ///
    /// match do_something() {
    ///     Ok(something) => {
    ///         // ...
    ///     }
    ///     Err(_) => {
    ///         // Things are no longer okay!
    ///         span.record("is_okay", false);
    ///     }
    /// }
    /// ```
    ///
    /// <pre class="ignore" style="white-space:normal;font:inherit;">
    ///     <strong>Note</strong>: The fields associated with a span are part
    ///     of its <a href="../struct.Metadata.html"><code>Metadata</code></a>.
    ///     The <a href="../struct.Metadata.html"><code>Metadata</code></a>
    ///     describing a particular span is constructed statically when the span
    ///     is created and cannot be extended later to add new fields. Therefore,
    ///     you cannot record a value for a field that was not specified when the
    ///     span was created:
    /// </pre>
    ///
    /// ```
    /// use tracing::{trace_span, field};
    ///
    /// // Create a span with two fields: `greeting`, with the value "hello world", and
    /// // `parting`, without a value.
    /// let span = trace_span!("my_span", greeting = "hello world", parting = field::Empty);
    ///
    /// // ...
    ///
    /// // Now, you try to record a value for a new field, `new_field`, which was not
    /// // declared as `Empty` or populated when you created `span`.
    /// // You won't get any error, but the assignment will have no effect!
    /// span.record("new_field", "interesting_value_you_really_need");
    ///
    /// // Instead, all fields that may be recorded after span creation should be declared up front,
    /// // using field::Empty when a value is not known, as we did for `parting`.
    /// // This `record` call will indeed replace field::Empty with "you will be remembered".
    /// span.record("parting", "you will be remembered");
    /// ```
    ///
    /// [`field::Empty`]: super::field::Empty
    /// [`Metadata`]: super::Metadata
    pub fn record<Q: field::AsField + ?Sized, V: field::Value>(
        &self,
        field: &Q,
        value: V,
    ) -> &Self {
        if let Some(meta) = self.meta {
            if let Some(field) = field.as_field(meta) {
                self.record_all(
                    &meta
                        .fields()
                        .value_set(&[(&field, Some(&value as &dyn field::Value))]),
                );
            }
        }

        self
    }

    /// Records all the fields in the provided `ValueSet`.
    pub fn record_all(&self, values: &field::ValueSet<'_>) -> &Self {
        let record = Record::new(values);
        if let Some(ref inner) = self.inner {
            inner.record(&record);
        }

        if let Some(_meta) = self.meta {
            if_log_enabled! { *_meta.level(), {
                let target = if record.is_empty() {
                    LIFECYCLE_LOG_TARGET
                } else {
                    _meta.target()
                };
                self.log(
                    target,
                    level_to_log!(*_meta.level()),
                    format_args!("{};{}", _meta.name(), crate::log::LogValueSet { values, is_first: false }),
                );
            }}
        }

        self
    }

    /// Returns `true` if this span was disabled by the subscriber and does not
    /// exist.
    ///
    /// See also [`is_none`].
    ///
    /// [`is_none`]: Span::is_none()
    #[inline]
    pub fn is_disabled(&self) -> bool {
        self.inner.is_none()
    }

    /// Returns `true` if this span was constructed by [`Span::none`] and is
    /// empty.
    ///
    /// If `is_none` returns `true` for a given span, then [`is_disabled`] will
    /// also return `true`. However, when a span is disabled by the subscriber
    /// rather than constructed by `Span::none`, this method will return
    /// `false`, while `is_disabled` will return `true`.
    ///
    /// [`Span::none`]: Span::none()
    /// [`is_disabled`]: Span::is_disabled()
    #[inline]
    pub fn is_none(&self) -> bool {
        self.is_disabled() && self.meta.is_none()
    }

    /// Indicates that the span with the given ID has an indirect causal
    /// relationship with this span.
    ///
    /// This relationship differs somewhat from the parent-child relationship: a
    /// span may have any number of prior spans, rather than a single one; and
    /// spans are not considered to be executing _inside_ of the spans they
    /// follow from. This means that a span may close even if subsequent spans
    /// that follow from it are still open, and time spent inside of a
    /// subsequent span should not be included in the time its precedents were
    /// executing. This is used to model causal relationships such as when a
    /// single future spawns several related background tasks, et cetera.
    ///
    /// If this span is disabled, or the resulting follows-from relationship
    /// would be invalid, this function will do nothing.
    ///
    /// # Examples
    ///
    /// Setting a `follows_from` relationship with a `Span`:
    /// ```
    /// # use tracing::{span, Id, Level, Span};
    /// let span1 = span!(Level::INFO, "span_1");
    /// let span2 = span!(Level::DEBUG, "span_2");
    /// span2.follows_from(span1);
    /// ```
    ///
    /// Setting a `follows_from` relationship with the current span:
    /// ```
    /// # use tracing::{span, Id, Level, Span};
    /// let span = span!(Level::INFO, "hello!");
    /// span.follows_from(Span::current());
    /// ```
    ///
    /// Setting a `follows_from` relationship with a `Span` reference:
    /// ```
    /// # use tracing::{span, Id, Level, Span};
    /// let span = span!(Level::INFO, "hello!");
    /// let curr = Span::current();
    /// span.follows_from(&curr);
    /// ```
    ///
    /// Setting a `follows_from` relationship with an `Id`:
    /// ```
    /// # use tracing::{span, Id, Level, Span};
    /// let span = span!(Level::INFO, "hello!");
    /// let id = span.id();
    /// span.follows_from(id);
    /// ```
    pub fn follows_from(&self, from: impl Into<Option<Id>>) -> &Self {
        if let Some(ref inner) = self.inner {
            if let Some(from) = from.into() {
                inner.follows_from(&from);
            }
        }
        self
    }

    /// Returns this span's `Id`, if it is enabled.
    pub fn id(&self) -> Option<Id> {
        self.inner.as_ref().map(Inner::id)
    }

    /// Returns this span's `Metadata`, if it is enabled.
    pub fn metadata(&self) -> Option<&'static Metadata<'static>> {
        self.meta
    }

    #[cfg(feature = "log")]
    #[inline]
    fn log(&self, target: &str, level: log::Level, message: fmt::Arguments<'_>) {
        if let Some(meta) = self.meta {
            if level_to_log!(*meta.level()) <= log::max_level() {
                let logger = log::logger();
                let log_meta = log::Metadata::builder().level(level).target(target).build();
                if logger.enabled(&log_meta) {
                    if let Some(ref inner) = self.inner {
                        logger.log(
                            &log::Record::builder()
                                .metadata(log_meta)
                                .module_path(meta.module_path())
                                .file(meta.file())
                                .line(meta.line())
                                .args(format_args!("{} span={}", message, inner.id.into_u64()))
                                .build(),
                        );
                    } else {
                        logger.log(
                            &log::Record::builder()
                                .metadata(log_meta)
                                .module_path(meta.module_path())
                                .file(meta.file())
                                .line(meta.line())
                                .args(message)
                                .build(),
                        );
                    }
                }
            }
        }
    }

    /// Invokes a function with a reference to this span's ID and subscriber.
    ///
    /// if this span is enabled, the provided function is called, and the result is returned.
    /// If the span is disabled, the function is not called, and this method returns `None`
    /// instead.
    pub fn with_subscriber<T>(&self, f: impl FnOnce((&Id, &Dispatch)) -> T) -> Option<T> {
        self.inner
            .as_ref()
            .map(|inner| f((&inner.id, &inner.subscriber)))
    }
}

impl cmp::PartialEq for Span {
    fn eq(&self, other: &Self) -> bool {
        match (&self.meta, &other.meta) {
            (Some(this), Some(that)) => {
                this.callsite() == that.callsite() && self.inner == other.inner
            }
            _ => false,
        }
    }
}

impl Hash for Span {
    fn hash<H: Hasher>(&self, hasher: &mut H) {
        self.inner.hash(hasher);
    }
}

impl fmt::Debug for Span {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        let mut span = f.debug_struct("Span");
        if let Some(meta) = self.meta {
            span.field("name", &meta.name())
                .field("level", &meta.level())
                .field("target", &meta.target());

            if let Some(ref inner) = self.inner {
                span.field("id", &inner.id());
            } else {
                span.field("disabled", &true);
            }

            if let Some(ref path) = meta.module_path() {
                span.field("module_path", &path);
            }

            if let Some(ref line) = meta.line() {
                span.field("line", &line);
            }

            if let Some(ref file) = meta.file() {
                span.field("file", &file);
            }
        } else {
            span.field("none", &true);
        }

        span.finish()
    }
}

impl<'a> From<&'a Span> for Option<&'a Id> {
    fn from(span: &'a Span) -> Self {
        span.inner.as_ref().map(|inner| &inner.id)
    }
}

impl<'a> From<&'a Span> for Option<Id> {
    fn from(span: &'a Span) -> Self {
        span.inner.as_ref().map(Inner::id)
    }
}

impl From<Span> for Option<Id> {
    fn from(span: Span) -> Self {
        span.inner.as_ref().map(Inner::id)
    }
}

impl<'a> From<&'a EnteredSpan> for Option<&'a Id> {
    fn from(span: &'a EnteredSpan) -> Self {
        span.inner.as_ref().map(|inner| &inner.id)
    }
}

impl<'a> From<&'a EnteredSpan> for Option<Id> {
    fn from(span: &'a EnteredSpan) -> Self {
        span.inner.as_ref().map(Inner::id)
    }
}

impl Drop for Span {
    #[inline(always)]
    fn drop(&mut self) {
        if let Some(Inner {
            ref id,
            ref subscriber,
        }) = self.inner
        {
            subscriber.try_close(id.clone());
        }

        if_log_enabled! { crate::Level::TRACE, {
            if let Some(meta) = self.meta {
                self.log(
                    LIFECYCLE_LOG_TARGET,
                    log::Level::Trace,
                    format_args!("-- {};", meta.name()),
                );
            }
        }}
    }
}

// ===== impl Inner =====

impl Inner {
    /// Indicates that the span with the given ID has an indirect causal
    /// relationship with this span.
    ///
    /// This relationship differs somewhat from the parent-child relationship: a
    /// span may have any number of prior spans, rather than a single one; and
    /// spans are not considered to be executing _inside_ of the spans they
    /// follow from. This means that a span may close even if subsequent spans
    /// that follow from it are still open, and time spent inside of a
    /// subsequent span should not be included in the time its precedents were
    /// executing. This is used to model causal relationships such as when a
    /// single future spawns several related background tasks, et cetera.
    ///
    /// If this span is disabled, this function will do nothing. Otherwise, it
    /// returns `Ok(())` if the other span was added as a precedent of this
    /// span, or an error if this was not possible.
    fn follows_from(&self, from: &Id) {
        self.subscriber.record_follows_from(&self.id, from)
    }

    /// Returns the span's ID.
    fn id(&self) -> Id {
        self.id.clone()
    }

    fn record(&self, values: &Record<'_>) {
        self.subscriber.record(&self.id, values)
    }

    fn new(id: Id, subscriber: &Dispatch) -> Self {
        Inner {
            id,
            subscriber: subscriber.clone(),
        }
    }
}

impl cmp::PartialEq for Inner {
    fn eq(&self, other: &Self) -> bool {
        self.id == other.id
    }
}

impl Hash for Inner {
    fn hash<H: Hasher>(&self, state: &mut H) {
        self.id.hash(state);
    }
}

impl Clone for Inner {
    fn clone(&self) -> Self {
        Inner {
            id: self.subscriber.clone_span(&self.id),
            subscriber: self.subscriber.clone(),
        }
    }
}

// ===== impl Entered =====

impl EnteredSpan {
    /// Returns this span's `Id`, if it is enabled.
    pub fn id(&self) -> Option<Id> {
        self.inner.as_ref().map(Inner::id)
    }

    /// Exits this span, returning the underlying [`Span`].
    #[inline]
    pub fn exit(mut self) -> Span {
        // One does not simply move out of a struct with `Drop`.
        let span = mem::replace(&mut self.span, Span::none());
        span.do_exit();
        span
    }
}

impl Deref for EnteredSpan {
    type Target = Span;

    #[inline]
    fn deref(&self) -> &Span {
        &self.span
    }
}

impl<'a> Drop for Entered<'a> {
    #[inline(always)]
    fn drop(&mut self) {
        self.span.do_exit()
    }
}

impl Drop for EnteredSpan {
    #[inline(always)]
    fn drop(&mut self) {
        self.span.do_exit()
    }
}

/// Technically, `EnteredSpan` _can_ implement both `Send` *and*
/// `Sync` safely. It doesn't, because it has a `PhantomNotSend` field,
/// specifically added in order to make it `!Send`.
///
/// Sending an `EnteredSpan` guard between threads cannot cause memory unsafety.
/// However, it *would* result in incorrect behavior, so we add a
/// `PhantomNotSend` to prevent it from being sent between threads. This is
/// because it must be *dropped* on the same thread that it was created;
/// otherwise, the span will never be exited on the thread where it was entered,
/// and it will attempt to exit the span on a thread that may never have entered
/// it. However, we still want them to be `Sync` so that a struct holding an
/// `Entered` guard can be `Sync`.
///
/// Thus, this is totally safe.
#[derive(Debug)]
struct PhantomNotSend {
    ghost: PhantomData<*mut ()>,
}

#[allow(non_upper_case_globals)]
const PhantomNotSend: PhantomNotSend = PhantomNotSend { ghost: PhantomData };

/// # Safety
///
/// Trivially safe, as `PhantomNotSend` doesn't have any API.
unsafe impl Sync for PhantomNotSend {}

#[cfg(test)]
mod test {
    use super::*;

    #[test]
    fn test_record_backwards_compat() {
        Span::current().record("some-key", "some text");
        Span::current().record("some-key", false);
    }
}