pub enum IpNet {
V4(Ipv4Net),
V6(Ipv6Net),
}
Expand description
An IP network address, either IPv4 or IPv6.
This enum can contain either an Ipv4Net
or an Ipv6Net
. A
From
implementation is provided to convert these into an
IpNet
.
§Textual representation
IpNet
provides a FromStr
implementation for parsing network
addresses represented in CIDR notation. See IETF RFC 4632 for the
CIDR notation.
§Examples
use std::net::IpAddr;
use ipnet::IpNet;
let net: IpNet = "10.1.1.0/24".parse().unwrap();
assert_eq!(Ok(net.network()), "10.1.1.0".parse());
let net: IpNet = "fd00::/32".parse().unwrap();
assert_eq!(Ok(net.network()), "fd00::".parse());
Variants§
Implementations§
source§impl IpNet
impl IpNet
sourcepub fn new(ip: IpAddr, prefix_len: u8) -> Result<IpNet, PrefixLenError>
pub fn new(ip: IpAddr, prefix_len: u8) -> Result<IpNet, PrefixLenError>
Creates a new IP network address from an IpAddr
and prefix
length.
§Examples
use std::net::Ipv6Addr;
use ipnet::{IpNet, PrefixLenError};
let net = IpNet::new(Ipv6Addr::LOCALHOST.into(), 48);
assert!(net.is_ok());
let bad_prefix_len = IpNet::new(Ipv6Addr::LOCALHOST.into(), 129);
assert_eq!(bad_prefix_len, Err(PrefixLenError));
sourcepub const fn new_assert(ip: IpAddr, prefix_len: u8) -> IpNet
pub const fn new_assert(ip: IpAddr, prefix_len: u8) -> IpNet
Creates a new IP network address from an IpAddr
and prefix
length. If called from a const context it will verify prefix length
at compile time. Otherwise it will panic at runtime if prefix length
is incorrect for a given IpAddr type.
§Examples
use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
use ipnet::{IpNet};
// This code is verified at compile time:
const NET: IpNet = IpNet::new_assert(IpAddr::V4(Ipv4Addr::new(10, 1, 1, 0)), 24);
assert_eq!(NET.prefix_len(), 24);
// This code is verified at runtime:
let net = IpNet::new_assert(Ipv6Addr::LOCALHOST.into(), 24);
assert_eq!(net.prefix_len(), 24);
// This code does not compile:
// const BAD_PREFIX_LEN: IpNet = IpNet::new_assert(IpAddr::V4(Ipv4Addr::new(10, 1, 1, 0)), 33);
// This code panics at runtime:
// let bad_prefix_len = IpNet::new_assert(Ipv6Addr::LOCALHOST.into(), 129);
sourcepub fn with_netmask(
ip: IpAddr,
netmask: IpAddr,
) -> Result<IpNet, PrefixLenError>
pub fn with_netmask( ip: IpAddr, netmask: IpAddr, ) -> Result<IpNet, PrefixLenError>
Creates a new IP network address from an IpAddr
and netmask.
§Examples
use std::net::Ipv6Addr;
use ipnet::{IpNet, PrefixLenError};
let net = IpNet::with_netmask(Ipv6Addr::LOCALHOST.into(), Ipv6Addr::from(0xffff_ffff_ffff_0000_0000_0000_0000_0000).into());
assert!(net.is_ok());
let bad_prefix_len = IpNet::with_netmask(Ipv6Addr::LOCALHOST.into(), Ipv6Addr::from(0xffff_ffff_ffff_0000_0001_0000_0000_0000).into());
assert_eq!(bad_prefix_len, Err(PrefixLenError));
sourcepub fn trunc(&self) -> IpNet
pub fn trunc(&self) -> IpNet
Returns a copy of the network with the address truncated to the prefix length.
§Examples
assert_eq!(
"192.168.12.34/16".parse::<IpNet>().unwrap().trunc(),
"192.168.0.0/16".parse().unwrap()
);
assert_eq!(
"fd00::1:2:3:4/16".parse::<IpNet>().unwrap().trunc(),
"fd00::/16".parse().unwrap()
);
sourcepub fn prefix_len(&self) -> u8
pub fn prefix_len(&self) -> u8
Returns the prefix length.
sourcepub fn max_prefix_len(&self) -> u8
pub fn max_prefix_len(&self) -> u8
Returns the maximum valid prefix length.
sourcepub fn netmask(&self) -> IpAddr
pub fn netmask(&self) -> IpAddr
Returns the network mask.
§Examples
let net: IpNet = "10.1.0.0/20".parse().unwrap();
assert_eq!(Ok(net.netmask()), "255.255.240.0".parse());
let net: IpNet = "fd00::/24".parse().unwrap();
assert_eq!(Ok(net.netmask()), "ffff:ff00::".parse());
sourcepub fn hostmask(&self) -> IpAddr
pub fn hostmask(&self) -> IpAddr
Returns the host mask.
§Examples
let net: IpNet = "10.1.0.0/20".parse().unwrap();
assert_eq!(Ok(net.hostmask()), "0.0.15.255".parse());
let net: IpNet = "fd00::/24".parse().unwrap();
assert_eq!(Ok(net.hostmask()), "::ff:ffff:ffff:ffff:ffff:ffff:ffff".parse());
sourcepub fn network(&self) -> IpAddr
pub fn network(&self) -> IpAddr
Returns the network address.
§Examples
let net: IpNet = "172.16.123.123/16".parse().unwrap();
assert_eq!(Ok(net.network()), "172.16.0.0".parse());
let net: IpNet = "fd00:1234:5678::/24".parse().unwrap();
assert_eq!(Ok(net.network()), "fd00:1200::".parse());
sourcepub fn broadcast(&self) -> IpAddr
pub fn broadcast(&self) -> IpAddr
Returns the broadcast address.
§Examples
let net: IpNet = "172.16.0.0/22".parse().unwrap();
assert_eq!(Ok(net.broadcast()), "172.16.3.255".parse());
let net: IpNet = "fd00:1234:5678::/24".parse().unwrap();
assert_eq!(Ok(net.broadcast()), "fd00:12ff:ffff:ffff:ffff:ffff:ffff:ffff".parse());
sourcepub fn supernet(&self) -> Option<IpNet>
pub fn supernet(&self) -> Option<IpNet>
Returns the IpNet
that contains this one.
§Examples
let n1: IpNet = "172.16.1.0/24".parse().unwrap();
let n2: IpNet = "172.16.0.0/23".parse().unwrap();
let n3: IpNet = "172.16.0.0/0".parse().unwrap();
assert_eq!(n1.supernet().unwrap(), n2);
assert_eq!(n3.supernet(), None);
let n1: IpNet = "fd00:ff00::/24".parse().unwrap();
let n2: IpNet = "fd00:fe00::/23".parse().unwrap();
let n3: IpNet = "fd00:fe00::/0".parse().unwrap();
assert_eq!(n1.supernet().unwrap(), n2);
assert_eq!(n3.supernet(), None);
sourcepub fn is_sibling(&self, other: &IpNet) -> bool
pub fn is_sibling(&self, other: &IpNet) -> bool
Returns true
if this network and the given network are
children of the same supernet.
§Examples
let n4_1: IpNet = "10.1.0.0/24".parse().unwrap();
let n4_2: IpNet = "10.1.1.0/24".parse().unwrap();
let n4_3: IpNet = "10.1.2.0/24".parse().unwrap();
let n6_1: IpNet = "fd00::/18".parse().unwrap();
let n6_2: IpNet = "fd00:4000::/18".parse().unwrap();
let n6_3: IpNet = "fd00:8000::/18".parse().unwrap();
assert!( n4_1.is_sibling(&n4_2));
assert!(!n4_2.is_sibling(&n4_3));
assert!( n6_1.is_sibling(&n6_2));
assert!(!n6_2.is_sibling(&n6_3));
assert!(!n4_1.is_sibling(&n6_2));
sourcepub fn hosts(&self) -> IpAddrRange ⓘ
pub fn hosts(&self) -> IpAddrRange ⓘ
Return an Iterator
over the host addresses in this network.
§Examples
let net: IpNet = "10.0.0.0/30".parse().unwrap();
assert_eq!(net.hosts().collect::<Vec<IpAddr>>(), vec![
"10.0.0.1".parse::<IpAddr>().unwrap(),
"10.0.0.2".parse().unwrap(),
]);
let net: IpNet = "10.0.0.0/31".parse().unwrap();
assert_eq!(net.hosts().collect::<Vec<IpAddr>>(), vec![
"10.0.0.0".parse::<IpAddr>().unwrap(),
"10.0.0.1".parse().unwrap(),
]);
let net: IpNet = "fd00::/126".parse().unwrap();
assert_eq!(net.hosts().collect::<Vec<IpAddr>>(), vec![
"fd00::".parse::<IpAddr>().unwrap(),
"fd00::1".parse().unwrap(),
"fd00::2".parse().unwrap(),
"fd00::3".parse().unwrap(),
]);
sourcepub fn subnets(&self, new_prefix_len: u8) -> Result<IpSubnets, PrefixLenError>
pub fn subnets(&self, new_prefix_len: u8) -> Result<IpSubnets, PrefixLenError>
Returns an Iterator
over the subnets of this network with the
given prefix length.
§Examples
let net: IpNet = "10.0.0.0/24".parse().unwrap();
assert_eq!(net.subnets(26).unwrap().collect::<Vec<IpNet>>(), vec![
"10.0.0.0/26".parse::<IpNet>().unwrap(),
"10.0.0.64/26".parse().unwrap(),
"10.0.0.128/26".parse().unwrap(),
"10.0.0.192/26".parse().unwrap(),
]);
let net: IpNet = "fd00::/16".parse().unwrap();
assert_eq!(net.subnets(18).unwrap().collect::<Vec<IpNet>>(), vec![
"fd00::/18".parse::<IpNet>().unwrap(),
"fd00:4000::/18".parse().unwrap(),
"fd00:8000::/18".parse().unwrap(),
"fd00:c000::/18".parse().unwrap(),
]);
let net: IpNet = "10.0.0.0/24".parse().unwrap();
assert_eq!(net.subnets(23), Err(PrefixLenError));
let net: IpNet = "10.0.0.0/24".parse().unwrap();
assert_eq!(net.subnets(33), Err(PrefixLenError));
let net: IpNet = "fd00::/16".parse().unwrap();
assert_eq!(net.subnets(15), Err(PrefixLenError));
let net: IpNet = "fd00::/16".parse().unwrap();
assert_eq!(net.subnets(129), Err(PrefixLenError));
sourcepub fn contains<T>(&self, other: T) -> boolwhere
Self: Contains<T>,
pub fn contains<T>(&self, other: T) -> boolwhere
Self: Contains<T>,
Test if a network address contains either another network address or an IP address.
§Examples
let net4: IpNet = "192.168.0.0/24".parse().unwrap();
let net4_yes: IpNet = "192.168.0.0/25".parse().unwrap();
let net4_no: IpNet = "192.168.0.0/23".parse().unwrap();
let ip4_yes: IpAddr = "192.168.0.1".parse().unwrap();
let ip4_no: IpAddr = "192.168.1.0".parse().unwrap();
assert!(net4.contains(&net4));
assert!(net4.contains(&net4_yes));
assert!(!net4.contains(&net4_no));
assert!(net4.contains(&ip4_yes));
assert!(!net4.contains(&ip4_no));
let net6: IpNet = "fd00::/16".parse().unwrap();
let net6_yes: IpNet = "fd00::/17".parse().unwrap();
let net6_no: IpNet = "fd00::/15".parse().unwrap();
let ip6_yes: IpAddr = "fd00::1".parse().unwrap();
let ip6_no: IpAddr = "fd01::".parse().unwrap();
assert!(net6.contains(&net6));
assert!(net6.contains(&net6_yes));
assert!(!net6.contains(&net6_no));
assert!(net6.contains(&ip6_yes));
assert!(!net6.contains(&ip6_no));
assert!(!net4.contains(&net6));
assert!(!net6.contains(&net4));
assert!(!net4.contains(&ip6_no));
assert!(!net6.contains(&ip4_no));
sourcepub fn aggregate(networks: &Vec<IpNet>) -> Vec<IpNet>
pub fn aggregate(networks: &Vec<IpNet>) -> Vec<IpNet>
Aggregate a Vec
of IpNet
s and return the result as a new
Vec
.
§Examples
let nets = vec![
"10.0.0.0/24".parse::<IpNet>().unwrap(),
"10.0.1.0/24".parse().unwrap(),
"10.0.2.0/24".parse().unwrap(),
"fd00::/18".parse().unwrap(),
"fd00:4000::/18".parse().unwrap(),
"fd00:8000::/18".parse().unwrap(),
];
assert_eq!(IpNet::aggregate(&nets), vec![
"10.0.0.0/23".parse::<IpNet>().unwrap(),
"10.0.2.0/24".parse().unwrap(),
"fd00::/17".parse().unwrap(),
"fd00:8000::/18".parse().unwrap(),
]);
Trait Implementations§
source§impl Ord for IpNet
impl Ord for IpNet
source§impl PartialEq for IpNet
impl PartialEq for IpNet
source§impl PartialOrd for IpNet
impl PartialOrd for IpNet
1.0.0 · source§fn le(&self, other: &Rhs) -> bool
fn le(&self, other: &Rhs) -> bool
self
and other
) and is used by the <=
operator. Read moreimpl Copy for IpNet
impl Eq for IpNet
impl StructuralPartialEq for IpNet
Auto Trait Implementations§
impl Freeze for IpNet
impl RefUnwindSafe for IpNet
impl Send for IpNet
impl Sync for IpNet
impl Unpin for IpNet
impl UnwindSafe for IpNet
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
source§default unsafe fn clone_to_uninit(&self, dst: *mut T)
default unsafe fn clone_to_uninit(&self, dst: *mut T)
clone_to_uninit
)source§impl<T> CloneToUninit for Twhere
T: Copy,
impl<T> CloneToUninit for Twhere
T: Copy,
source§unsafe fn clone_to_uninit(&self, dst: *mut T)
unsafe fn clone_to_uninit(&self, dst: *mut T)
clone_to_uninit
)