pub struct UInt<U, B> { /* private fields */ }
Expand description
UInt
is defined recursively, where B
is the least significant bit and U
is the rest
of the number. Conceptually, U
should be bound by the trait Unsigned
and B
should
be bound by the trait Bit
, but enforcing these bounds causes linear instead of
logrithmic scaling in some places, so they are left off for now. They may be enforced in
future.
In order to keep numbers unique, leading zeros are not allowed, so UInt<UTerm, B0>
is
forbidden.
§Example
use typenum::{UInt, UTerm, B0, B1};
type U6 = UInt<UInt<UInt<UTerm, B1>, B1>, B0>;
Implementations§
Trait Implementations§
Source§impl<Ul, Ur: Unsigned> Add<UInt<Ur, B0>> for UInt<Ul, B0>
UInt<Ul, B0> + UInt<Ur, B0> = UInt<Ul + Ur, B0>
impl<Ul, Ur: Unsigned> Add<UInt<Ur, B0>> for UInt<Ul, B0>
UInt<Ul, B0> + UInt<Ur, B0> = UInt<Ul + Ur, B0>
Source§impl<Ul, Ur: Unsigned> Add<UInt<Ur, B0>> for UInt<Ul, B1>
UInt<Ul, B1> + UInt<Ur, B0> = UInt<Ul + Ur, B1>
impl<Ul, Ur: Unsigned> Add<UInt<Ur, B0>> for UInt<Ul, B1>
UInt<Ul, B1> + UInt<Ur, B0> = UInt<Ul + Ur, B1>
Source§impl<Ul, Ur: Unsigned> Add<UInt<Ur, B1>> for UInt<Ul, B0>
UInt<Ul, B0> + UInt<Ur, B1> = UInt<Ul + Ur, B1>
impl<Ul, Ur: Unsigned> Add<UInt<Ur, B1>> for UInt<Ul, B0>
UInt<Ul, B0> + UInt<Ur, B1> = UInt<Ul + Ur, B1>
Source§impl<Ul, Ur: Unsigned> Add<UInt<Ur, B1>> for UInt<Ul, B1>
UInt<Ul, B1> + UInt<Ur, B1> = UInt<(Ul + Ur) + B1, B0>
impl<Ul, Ur: Unsigned> Add<UInt<Ur, B1>> for UInt<Ul, B1>
UInt<Ul, B1> + UInt<Ur, B1> = UInt<(Ul + Ur) + B1, B0>
Source§impl<Ul: Unsigned, Bl: Bit, Ur: Unsigned> BitAnd<Ur> for UInt<Ul, Bl>
Anding unsigned integers.
We use our PrivateAnd
operator and then Trim
the output.
impl<Ul: Unsigned, Bl: Bit, Ur: Unsigned> BitAnd<Ur> for UInt<Ul, Bl>
Anding unsigned integers.
We use our PrivateAnd
operator and then Trim
the output.
Source§impl<Ul, Ur: Unsigned> BitOr<UInt<Ur, B0>> for UInt<Ul, B0>
UInt<Ul, B0> | UInt<Ur, B0> = UInt<Ul | Ur, B0>
impl<Ul, Ur: Unsigned> BitOr<UInt<Ur, B0>> for UInt<Ul, B0>
UInt<Ul, B0> | UInt<Ur, B0> = UInt<Ul | Ur, B0>
Source§impl<Ul, Ur: Unsigned> BitOr<UInt<Ur, B0>> for UInt<Ul, B1>
UInt<Ul, B1> | UInt<Ur, B0> = UInt<Ul | Ur, B1>
impl<Ul, Ur: Unsigned> BitOr<UInt<Ur, B0>> for UInt<Ul, B1>
UInt<Ul, B1> | UInt<Ur, B0> = UInt<Ul | Ur, B1>
Source§impl<Ul, Ur: Unsigned> BitOr<UInt<Ur, B1>> for UInt<Ul, B0>
UInt<Ul, B0> | UInt<Ur, B1> = UInt<Ul | Ur, B1>
impl<Ul, Ur: Unsigned> BitOr<UInt<Ur, B1>> for UInt<Ul, B0>
UInt<Ul, B0> | UInt<Ur, B1> = UInt<Ul | Ur, B1>
Source§impl<Ul, Ur: Unsigned> BitOr<UInt<Ur, B1>> for UInt<Ul, B1>
UInt<Ul, B1> | UInt<Ur, B1> = UInt<Ul | Ur, B1>
impl<Ul, Ur: Unsigned> BitOr<UInt<Ur, B1>> for UInt<Ul, B1>
UInt<Ul, B1> | UInt<Ur, B1> = UInt<Ul | Ur, B1>
Source§impl<Ul: Unsigned, Bl: Bit, Ur: Unsigned> BitXor<Ur> for UInt<Ul, Bl>
Xoring unsigned integers.
We use our PrivateXor
operator and then Trim
the output.
impl<Ul: Unsigned, Bl: Bit, Ur: Unsigned> BitXor<Ur> for UInt<Ul, Bl>
Xoring unsigned integers.
We use our PrivateXor
operator and then Trim
the output.
Source§impl<Ul, Ur: Unsigned> Cmp<UInt<Ur, B0>> for UInt<Ul, B0>
UInt<Ul, B0>
cmp with UInt<Ur, B0>
: SoFar
is Equal
impl<Ul, Ur: Unsigned> Cmp<UInt<Ur, B0>> for UInt<Ul, B0>
UInt<Ul, B0>
cmp with UInt<Ur, B0>
: SoFar
is Equal
Source§impl<Ul, Ur: Unsigned> Cmp<UInt<Ur, B0>> for UInt<Ul, B1>
UInt<Ul, B1>
cmp with UInt<Ur, B0>
: SoFar
is Greater
impl<Ul, Ur: Unsigned> Cmp<UInt<Ur, B0>> for UInt<Ul, B1>
UInt<Ul, B1>
cmp with UInt<Ur, B0>
: SoFar
is Greater
Source§impl<Ul, Ur: Unsigned> Cmp<UInt<Ur, B1>> for UInt<Ul, B0>
UInt<Ul, B0>
cmp with UInt<Ur, B1>
: SoFar
is Less
impl<Ul, Ur: Unsigned> Cmp<UInt<Ur, B1>> for UInt<Ul, B0>
UInt<Ul, B0>
cmp with UInt<Ur, B1>
: SoFar
is Less
Source§impl<Ul, Ur: Unsigned> Cmp<UInt<Ur, B1>> for UInt<Ul, B1>
UInt<Ul, B1>
cmp with UInt<Ur, B1>
: SoFar
is Equal
impl<Ul, Ur: Unsigned> Cmp<UInt<Ur, B1>> for UInt<Ul, B1>
UInt<Ul, B1>
cmp with UInt<Ur, B1>
: SoFar
is Equal
Source§impl<Xp, Yp> Gcd<UInt<Yp, B0>> for UInt<Xp, B0>
gcd(x, y) = 2*gcd(x/2, y/2) if both x and y even
impl<Xp, Yp> Gcd<UInt<Yp, B0>> for UInt<Xp, B0>
gcd(x, y) = 2*gcd(x/2, y/2) if both x and y even
Source§impl<Xp, Yp> Gcd<UInt<Yp, B1>> for UInt<Xp, B1>where
UInt<Xp, B1>: Max<UInt<Yp, B1>> + Min<UInt<Yp, B1>>,
UInt<Yp, B1>: Max<UInt<Xp, B1>> + Min<UInt<Xp, B1>>,
Maximum<UInt<Xp, B1>, UInt<Yp, B1>>: Sub<Minimum<UInt<Xp, B1>, UInt<Yp, B1>>>,
Diff<Maximum<UInt<Xp, B1>, UInt<Yp, B1>>, Minimum<UInt<Xp, B1>, UInt<Yp, B1>>>: Gcd<Minimum<UInt<Xp, B1>, UInt<Yp, B1>>>,
gcd(x, y) = gcd([max(x, y) - min(x, y)], min(x, y)) if both x and y odd
impl<Xp, Yp> Gcd<UInt<Yp, B1>> for UInt<Xp, B1>where
UInt<Xp, B1>: Max<UInt<Yp, B1>> + Min<UInt<Yp, B1>>,
UInt<Yp, B1>: Max<UInt<Xp, B1>> + Min<UInt<Xp, B1>>,
Maximum<UInt<Xp, B1>, UInt<Yp, B1>>: Sub<Minimum<UInt<Xp, B1>, UInt<Yp, B1>>>,
Diff<Maximum<UInt<Xp, B1>, UInt<Yp, B1>>, Minimum<UInt<Xp, B1>, UInt<Yp, B1>>>: Gcd<Minimum<UInt<Xp, B1>, UInt<Yp, B1>>>,
gcd(x, y) = gcd([max(x, y) - min(x, y)], min(x, y)) if both x and y odd
This will immediately invoke the case for x even and y odd because the difference of two odd numbers is an even number.
Source§impl<Ul, B: Bit, Ur: Unsigned> Mul<UInt<Ur, B>> for UInt<Ul, B0>
UInt<Ul, B0> * UInt<Ur, B> = UInt<(Ul * UInt<Ur, B>), B0>
impl<Ul, B: Bit, Ur: Unsigned> Mul<UInt<Ur, B>> for UInt<Ul, B0>
UInt<Ul, B0> * UInt<Ur, B> = UInt<(Ul * UInt<Ur, B>), B0>
Source§impl<Ul, B: Bit, Ur: Unsigned> Mul<UInt<Ur, B>> for UInt<Ul, B1>
UInt<Ul, B1> * UInt<Ur, B> = UInt<(Ul * UInt<Ur, B>), B0> + UInt<Ur, B>
impl<Ul, B: Bit, Ur: Unsigned> Mul<UInt<Ur, B>> for UInt<Ul, B1>
UInt<Ul, B1> * UInt<Ur, B> = UInt<(Ul * UInt<Ur, B>), B0> + UInt<Ur, B>
Source§impl<U: Ord, B: Ord> Ord for UInt<U, B>
impl<U: Ord, B: Ord> Ord for UInt<U, B>
1.21.0 · Source§fn max(self, other: Self) -> Selfwhere
Self: Sized,
fn max(self, other: Self) -> Selfwhere
Self: Sized,
Source§impl<U: PartialOrd, B: PartialOrd> PartialOrd for UInt<U, B>
impl<U: PartialOrd, B: PartialOrd> PartialOrd for UInt<U, B>
Source§impl<U: Unsigned, B: Bit> Shl<B0> for UInt<U, B>
Shifting left any unsigned by a zero bit: U << B0 = U
impl<U: Unsigned, B: Bit> Shl<B0> for UInt<U, B>
Shifting left any unsigned by a zero bit: U << B0 = U
Source§impl<U: Unsigned, B: Bit> Shl<B1> for UInt<U, B>
Shifting left a UInt
by a one bit: UInt<U, B> << B1 = UInt<UInt<U, B>, B0>
impl<U: Unsigned, B: Bit> Shl<B1> for UInt<U, B>
Shifting left a UInt
by a one bit: UInt<U, B> << B1 = UInt<UInt<U, B>, B0>
Source§impl<U: Unsigned, B: Bit, Ur: Unsigned, Br: Bit> Shl<UInt<Ur, Br>> for UInt<U, B>
Shifting left UInt
by UInt
: X << Y
= UInt(X, B0) << (Y - 1)
impl<U: Unsigned, B: Bit, Ur: Unsigned, Br: Bit> Shl<UInt<Ur, Br>> for UInt<U, B>
Shifting left UInt
by UInt
: X << Y
= UInt(X, B0) << (Y - 1)
Source§impl<U: Unsigned, B: Bit> Shl<UTerm> for UInt<U, B>
Shifting left UInt
by UTerm
: UInt<U, B> << UTerm = UInt<U, B>
impl<U: Unsigned, B: Bit> Shl<UTerm> for UInt<U, B>
Shifting left UInt
by UTerm
: UInt<U, B> << UTerm = UInt<U, B>
Source§impl<U: Unsigned, B: Bit> Shr<B0> for UInt<U, B>
Shifting right any unsigned by a zero bit: U >> B0 = U
impl<U: Unsigned, B: Bit> Shr<B0> for UInt<U, B>
Shifting right any unsigned by a zero bit: U >> B0 = U
Source§impl<U: Unsigned, B: Bit> Shr<B1> for UInt<U, B>
Shifting right a UInt
by a 1 bit: UInt<U, B> >> B1 = U
impl<U: Unsigned, B: Bit> Shr<B1> for UInt<U, B>
Shifting right a UInt
by a 1 bit: UInt<U, B> >> B1 = U
Source§impl<U, B: Bit, Ur: Unsigned, Br: Bit> Shr<UInt<Ur, Br>> for UInt<U, B>
Shifting right UInt
by UInt
: UInt(U, B) >> Y
= U >> (Y - 1)
impl<U, B: Bit, Ur: Unsigned, Br: Bit> Shr<UInt<Ur, Br>> for UInt<U, B>
Shifting right UInt
by UInt
: UInt(U, B) >> Y
= U >> (Y - 1)
Source§impl<U: Unsigned, B: Bit> Shr<UTerm> for UInt<U, B>
Shifting right UInt
by UTerm
: UInt<U, B> >> UTerm = UInt<U, B>
impl<U: Unsigned, B: Bit> Shr<UTerm> for UInt<U, B>
Shifting right UInt
by UTerm
: UInt<U, B> >> UTerm = UInt<U, B>
Source§impl<Ul: Unsigned, Bl: Bit, Ur: Unsigned> Sub<Ur> for UInt<Ul, Bl>
Subtracting unsigned integers. We just do our PrivateSub
and then Trim
the output.
impl<Ul: Unsigned, Bl: Bit, Ur: Unsigned> Sub<Ur> for UInt<Ul, Bl>
Subtracting unsigned integers. We just do our PrivateSub
and then Trim
the output.