Expand description
This crate provides abstractions for creating type witnesses.
The inciting motivation for this crate is emulating trait polymorphism in const fn
(as of 2023-10-01, it’s not possible to call trait methods in const contexts on stable).
§What are type witnesses
Type witnesses are enums that allow coercing between a type parameter and a range of possible types (one per variant).
The simplest type witness is TypeEq<L, R>
,
which only allows coercing between L
and R
.
Most type witnesses are enums with TypeEq
fields,
which can coerce between a type parameter and as many types as there are variants.
§Examples
§Polymorphic function
This demonstrates how one can write a return-type-polymorphic const fn
(as of 2023-10-01, trait methods can’t be called in const fns on stable)
use typewit::{MakeTypeWitness, TypeEq};
assert_eq!(returnal::<u8>(), 3);
assert_eq!(returnal::<&str>(), "hello");
const fn returnal<'a, R>() -> R
where
RetWitness<'a, R>: MakeTypeWitness,
{
match MakeTypeWitness::MAKE {
RetWitness::U8(te) => {
// `te` (a `TypeEq<R, u8>`) allows coercing between `R` and `u8`,
// because `TypeEq` is a value-level proof that both types are the same.
// `te.to_left(...)` goes from `u8` to `R`.
te.to_left(3u8)
}
RetWitness::Str(te) => {
// `te` is a `TypeEq<R, &'a str>`
// `te.to_left(...)` goes from `&'a str` to `R`.
te.to_left("hello")
}
}
}
// This macro declares a type witness enum
typewit::simple_type_witness! {
// Declares `enum RetWitness<'a, __Wit>`
// (the `__Wit` type parameter is implicitly added after all generics)
enum RetWitness<'a> {
// This variant requires `__Wit == u8`
U8 = u8,
// This variant requires `__Wit == &'a str`
Str = &'a str,
}
}
§Indexing polymorphism
This function demonstrates const fn polymorphism
and projecting TypeEq
by implementing TypeFn
.
(this example requires Rust 1.71.0, because it uses <[T]>::split_at
in a const context.
use std::ops::Range;
use typewit::{HasTypeWitness, TypeEq};
fn main() {
let array = [3, 5, 8, 13, 21, 34, 55, 89];
assert_eq!(index(&array, 0), &3);
assert_eq!(index(&array, 3), &13);
assert_eq!(index(&array, 0..4), [3, 5, 8, 13]);
assert_eq!(index(&array, 3..5), [13, 21]);
}
const fn index<T, I>(slice: &[T], idx: I) -> &SliceIndexRet<I, T>
where
I: SliceIndex<T>,
{
// `I::WITNESS` is `<I as HasTypeWitness<IndexWitness<I>>>::WITNESS`,
match I::WITNESS {
IndexWitness::Usize(arg_te) => {
// `arg_te` (a `TypeEq<I, usize>`) allows coercing between `I` and `usize`,
// because `TypeEq` is a value-level proof that both types are the same.
let idx: usize = arg_te.to_right(idx);
// using the `TypeFn` impl for `FnSliceIndexRet<T>` to
// map `TypeEq<I, usize>`
// to `TypeEq<SliceIndexRet<I, T>, SliceIndexRet<usize, T>>`
arg_te.project::<FnSliceIndexRet<T>>()
// converts`TypeEq<SliceIndexRet<I, T>, T>`
// to `TypeEq<&SliceIndexRet<I, T>, &T>`
.in_ref()
.to_left(&slice[idx])
}
IndexWitness::Range(arg_te) => {
let range: Range<usize> = arg_te.to_right(idx);
let ret: &[T] = slice_range(slice, range);
arg_te.project::<FnSliceIndexRet<T>>().in_ref().to_left(ret)
}
}
}
// This macro declares a type witness enum
typewit::simple_type_witness! {
// Declares `enum IndexWitness<__Wit>`
// (the `__Wit` type parameter is implicitly added after all generics)
enum IndexWitness {
// This variant requires `__Wit == usize`
Usize = usize,
// This variant requires `__Wit == Range<usize>`
Range = Range<usize>,
}
}
/// Trait for all types that can be used as slice indices
///
/// The `HasTypeWitness` supertrait allows getting a `IndexWitness<Self>`
/// with its `WITNESS` associated constant.
trait SliceIndex<T>: HasTypeWitness<IndexWitness<Self>> + Sized {
type Returns: ?Sized;
}
impl<T> SliceIndex<T> for usize {
type Returns = T;
}
impl<T> SliceIndex<T> for Range<usize> {
type Returns = [T];
}
type SliceIndexRet<I, T> = <I as SliceIndex<T>>::Returns;
// Declares `struct FnSliceIndexRet<T>`
// a type-level function (TypeFn implementor) from `I` to `SliceIndexRet<I, T>`
typewit::type_fn! {
struct FnSliceIndexRet<T>;
impl<I: SliceIndex<T>> I => SliceIndexRet<I, T>
}
const fn slice_range<T>(slice: &[T], range: Range<usize>) -> &[T] {
let suffix = slice.split_at(range.start).1;
suffix.split_at(range.end - range.start).0
}
When the wrong type is passed for the index, the compile-time error is the same as with normal generic functions:
error[E0277]: the trait bound `RangeFull: SliceIndex<{integer}>` is not satisfied
--> src/main.rs:43:30
|
13 | assert_eq!(index(&array, ..), [13, 21]);
| ----- ^^ the trait `SliceIndex<{integer}>` is not implemented for `RangeFull`
| |
| required by a bound introduced by this call
|
= help: the following other types implement trait `SliceIndex<T>`:
std::ops::Range<usize>
usize
§Downcasting const generic type
This example demonstrates “downcasting” from a type with a const parameter to a concrete instance of that type.
use typewit::{const_marker::Usize, TypeCmp, TypeEq};
assert_eq!(*mutate(&mut Arr([])), Arr([]));
assert_eq!(*mutate(&mut Arr([1])), Arr([1]));
assert_eq!(*mutate(&mut Arr([1, 2])), Arr([1, 2]));
assert_eq!(*mutate(&mut Arr([1, 2, 3])), Arr([1, 3, 6])); // this is different!
assert_eq!(*mutate(&mut Arr([1, 2, 3, 4])), Arr([1, 2, 3, 4]));
#[derive(Debug, PartialEq)]
struct Arr<const N: usize>([u8; N]);
fn mutate<const N: usize>(arr: &mut Arr<N>) -> &mut Arr<N> {
if let TypeCmp::Eq(te) = Usize::<N>.equals(Usize::<3>) {
let tem = te // `te` is a `TypeEq<Usize<N>, Usize<3>>`
.project::<GArr>() // returns `TypeEq<Arr<N>, Arr<3>>`
.in_mut(); // returns `TypeEq<&mut Arr<N>, &mut Arr<3>>`
// `tem.to_right(arr)` downcasts `arr` to `&mut Arr<3>`
tetra_sum(tem.to_right(arr));
}
arr
}
fn tetra_sum(arr: &mut Arr<3>) {
arr.0[1] += arr.0[0];
arr.0[2] += arr.0[1];
}
// Declares `struct GArr`
// a type-level function (TypeFn implementor) from `Usize<N>` to `Arr<N>`
typewit::type_fn!{
struct GArr;
impl<const N: usize> Usize<N> => Arr<N>
}
§Builder
Using a type witness to help encode a type-level enum, and to match on that type-level enum inside of a function.
The type-level enum is used to track the initialization of fields in a builder.
This example requires Rust 1.65.0, because it uses Generic Associated Types.
use typewit::HasTypeWitness;
fn main() {
// all default fields
assert_eq!(
StructBuilder::new().build(),
Struct{foo: "default value".into(), bar: vec![3, 5, 8]},
);
// defaulted bar field
assert_eq!(
StructBuilder::new().foo("hello").build(),
Struct{foo: "hello".into(), bar: vec![3, 5, 8]},
);
// defaulted foo field
assert_eq!(
StructBuilder::new().bar([13, 21, 34]).build(),
Struct{foo: "default value".into(), bar: vec![13, 21, 34]},
);
// all initialized fields
assert_eq!(
StructBuilder::new().foo("world").bar([55, 89]).build(),
Struct{foo: "world".into(), bar: vec![55, 89]},
);
}
#[derive(Debug, PartialEq, Eq)]
struct Struct {
foo: String,
bar: Vec<u32>,
}
struct StructBuilder<FooInit: InitState, BarInit: InitState> {
// If `FooInit` is `Uninit`, then this field is a `()`
// If `FooInit` is `Init`, then this field is a `String`
foo: BuilderField<FooInit, String>,
// If `BarInit` is `Uninit`, then this field is a `()`
// If `BarInit` is `Init`, then this field is a `Vec<u32>`
bar: BuilderField<BarInit, Vec<u32>>,
}
impl StructBuilder<Uninit, Uninit> {
pub const fn new() -> Self {
Self {
foo: (),
bar: (),
}
}
}
impl<FooInit: InitState, BarInit: InitState> StructBuilder<FooInit, BarInit> {
/// Sets the `foo` field
pub fn foo(self, foo: impl Into<String>) -> StructBuilder<Init, BarInit> {
StructBuilder {
foo: foo.into(),
bar: self.bar,
}
}
/// Sets the `bar` field
pub fn bar(self, bar: impl Into<Vec<u32>>) -> StructBuilder<FooInit, Init> {
StructBuilder {
foo: self.foo,
bar: bar.into(),
}
}
/// Builds `Struct`,
/// providing default values for fields that haven't been set.
pub fn build(self) -> Struct {
Struct {
foo: init_or_else::<FooInit, _, _>(self.foo, || "default value".to_string()),
bar: init_or_else::<BarInit, _, _>(self.bar, || vec![3, 5, 8]),
}
}
}
// Emulates a type-level `enum InitState { Init, Uninit }`
trait InitState: Sized + HasTypeWitness<InitWit<Self>> {
// How a builder represents an initialized/uninitialized field.
// If `Self` is `Uninit`, then this is `()`.
// If `Self` is `Init`, then this is `T`.
type BuilderField<T>;
}
// If `I` is `Uninit`, then this evaluates to `()`
// If `I` is `Init`, then this evaluates to `T`
type BuilderField<I, T> = <I as InitState>::BuilderField::<T>;
/// Gets `T` out of `maybe_init` if it's actually initialized,
/// otherwise returns `else_()`.
fn init_or_else<I, T, F>(maybe_init: BuilderField<I, T>, else_: F) -> T
where
I: InitState,
F: FnOnce() -> T
{
typewit::type_fn! {
// Declares the `HelperFn` type-level function (TypeFn implementor)
// from `I` to `BuilderField<I, T>`
struct HelperFn<T>;
impl<I: InitState> I => BuilderField<I, T>
}
// matching on the type-level `InitState` enum by using `InitWit`.
// `WITNESS` comes from the `HasTypeWitness` trait
match I::WITNESS {
// `te: TypeEq<FooInit, Init>`
InitWit::InitW(te) => {
te.map(HelperFn::NEW) //: TypeEq<BuilderField<I, T>, T>
.to_right(maybe_init)
}
InitWit::UninitW(_) => else_(),
}
}
// Emulates a type-level `InitState::Init` variant.
// Marks a field as initialized.
enum Init {}
impl InitState for Init {
type BuilderField<T> = T;
}
// Emulates a type-level `InitState::Uninit` variant.
// Marks a field as uninitialized.
enum Uninit {}
impl InitState for Uninit {
type BuilderField<T> = ();
}
typewit::simple_type_witness! {
// Declares `enum InitWit<__Wit>`, a type witness.
// (the `__Wit` type parameter is implicitly added after all generics)
enum InitWit {
// This variant requires `__Wit == Init`
InitW = Init,
// This variant requires `__Wit == Uninit`
UninitW = Uninit,
}
}
§Cargo features
These are the features of this crate.
§Default-features
These features are enabled by default:
"proc_macros"
: uses proc macros to improve compile-errors involving macro-generated impls.
§Rust-versions and standard crates
These features enable items that have a minimum Rust version:
-
"rust_stable"
: enables all the"rust_1_*"
features. -
"rust_1_83"
: turns functions that take mutable references intoconst fn
s, and enables the"rust_1_65"
feature. -
"rust_1_65"
: enables thetype_constructors
module, themethods
module, and the"rust_1_61"
feature. -
"rust_1_61"
: enablesMetaBaseTypeWit
,BaseTypeWitness
, and the{TypeCmp, TypeNe}::{zip*, in_array}
methods.
These features enable items that require a non-core
standard crate:
"alloc"
: enable items that use anything from the standardalloc
crate.
§Nightly features
These features require the nightly Rust compiler:
"adt_const_marker"
: enables the"rust_stable"
crate feature, and marker types in theconst_marker
module that have non-primitiveconst
parameters.
§No-std support
typewit
is #![no_std]
, it can be used anywhere Rust can be used.
You need to enable the "alloc"
feature to enable items that use anything
from the standard alloc
crate.
§Minimum Supported Rust Version
typewit
supports Rust 1.57.0.
Features that require newer versions of Rust, or the nightly compiler, need to be explicitly enabled with crate features.
Re-exports§
pub use crate::type_fn::CallFn;
pub use crate::type_fn::CallInjFn;
pub use crate::type_fn::InjTypeFn;
pub use crate::type_fn::RevTypeFn;
pub use crate::type_fn::TypeFn;
pub use crate::type_fn::UncallFn;
Modules§
- Marker types for passing constants as type arguments.
- Type-level functions.
TypeNe
-related items
Macros§
- Declares an injective type-level function
- Match which expands top-level
|
patterns to multiple match arms. - Declares a type witness enum.
- Declares a type-level function (struct that implements
TypeFn
) - Constructs a
TypeNe
of types that are statically known to be different.
Structs§
- Value-level proof that
L
is the same type asR
- Value-level proof that
L
is a different type toR
Enums§
- The result of comparing two types for equality.
Traits§
- Gets a type witness for
Self
. - Emulation of
T == U
bounds. - Constructs this type witness.
- Gets the type argument that this type witness witnesses.
Functions§
- Constructs a
TypeEq<T, T>