curve25519_dalek/backend/serial/u64/
field.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
// -*- mode: rust; -*-
//
// This file is part of curve25519-dalek.
// Copyright (c) 2016-2021 isis lovecruft
// Copyright (c) 2016-2019 Henry de Valence
// See LICENSE for licensing information.
//
// Authors:
// - isis agora lovecruft <isis@patternsinthevoid.net>
// - Henry de Valence <hdevalence@hdevalence.ca>

//! Field arithmetic modulo \\(p = 2\^{255} - 19\\), using \\(64\\)-bit
//! limbs with \\(128\\)-bit products.

use core::fmt::Debug;
use core::ops::Neg;
use core::ops::{Add, AddAssign};
use core::ops::{Mul, MulAssign};
use core::ops::{Sub, SubAssign};

use subtle::Choice;
use subtle::ConditionallySelectable;

#[cfg(feature = "zeroize")]
use zeroize::Zeroize;

/// A `FieldElement51` represents an element of the field
/// \\( \mathbb Z / (2\^{255} - 19)\\).
///
/// In the 64-bit implementation, a `FieldElement` is represented in
/// radix \\(2\^{51}\\) as five `u64`s; the coefficients are allowed to
/// grow up to \\(2\^{54}\\) between reductions modulo \\(p\\).
///
/// # Note
///
/// The `curve25519_dalek::field` module provides a type alias
/// `curve25519_dalek::field::FieldElement` to either `FieldElement51`
/// or `FieldElement2625`.
///
/// The backend-specific type `FieldElement51` should not be used
/// outside of the `curve25519_dalek::field` module.
#[derive(Copy, Clone)]
pub struct FieldElement51(pub(crate) [u64; 5]);

impl Debug for FieldElement51 {
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
        write!(f, "FieldElement51({:?})", &self.0[..])
    }
}

#[cfg(feature = "zeroize")]
impl Zeroize for FieldElement51 {
    fn zeroize(&mut self) {
        self.0.zeroize();
    }
}

impl<'b> AddAssign<&'b FieldElement51> for FieldElement51 {
    fn add_assign(&mut self, _rhs: &'b FieldElement51) {
        for i in 0..5 {
            self.0[i] += _rhs.0[i];
        }
    }
}

impl<'a, 'b> Add<&'b FieldElement51> for &'a FieldElement51 {
    type Output = FieldElement51;
    fn add(self, _rhs: &'b FieldElement51) -> FieldElement51 {
        let mut output = *self;
        output += _rhs;
        output
    }
}

impl<'b> SubAssign<&'b FieldElement51> for FieldElement51 {
    fn sub_assign(&mut self, _rhs: &'b FieldElement51) {
        let result = (self as &FieldElement51) - _rhs;
        self.0 = result.0;
    }
}

impl<'a, 'b> Sub<&'b FieldElement51> for &'a FieldElement51 {
    type Output = FieldElement51;
    fn sub(self, _rhs: &'b FieldElement51) -> FieldElement51 {
        // To avoid underflow, first add a multiple of p.
        // Choose 16*p = p << 4 to be larger than 54-bit _rhs.
        //
        // If we could statically track the bitlengths of the limbs
        // of every FieldElement51, we could choose a multiple of p
        // just bigger than _rhs and avoid having to do a reduction.
        //
        // Since we don't yet have type-level integers to do this, we
        // have to add an explicit reduction call here.
        FieldElement51::reduce([
            (self.0[0] + 36028797018963664u64) - _rhs.0[0],
            (self.0[1] + 36028797018963952u64) - _rhs.0[1],
            (self.0[2] + 36028797018963952u64) - _rhs.0[2],
            (self.0[3] + 36028797018963952u64) - _rhs.0[3],
            (self.0[4] + 36028797018963952u64) - _rhs.0[4],
        ])
    }
}

impl<'b> MulAssign<&'b FieldElement51> for FieldElement51 {
    fn mul_assign(&mut self, _rhs: &'b FieldElement51) {
        let result = (self as &FieldElement51) * _rhs;
        self.0 = result.0;
    }
}

impl<'a, 'b> Mul<&'b FieldElement51> for &'a FieldElement51 {
    type Output = FieldElement51;

    #[rustfmt::skip] // keep alignment of c* calculations
    fn mul(self, _rhs: &'b FieldElement51) -> FieldElement51 {
        /// Helper function to multiply two 64-bit integers with 128
        /// bits of output.
        #[inline(always)]
        fn m(x: u64, y: u64) -> u128 { (x as u128) * (y as u128) }

        // Alias self, _rhs for more readable formulas
        let a: &[u64; 5] = &self.0;
        let b: &[u64; 5] = &_rhs.0;

        // Precondition: assume input limbs a[i], b[i] are bounded as
        //
        // a[i], b[i] < 2^(51 + b)
        //
        // where b is a real parameter measuring the "bit excess" of the limbs.

        // 64-bit precomputations to avoid 128-bit multiplications.
        //
        // This fits into a u64 whenever 51 + b + lg(19) < 64.
        //
        // Since 51 + b + lg(19) < 51 + 4.25 + b
        //                       = 55.25 + b,
        // this fits if b < 8.75.
        let b1_19 = b[1] * 19;
        let b2_19 = b[2] * 19;
        let b3_19 = b[3] * 19;
        let b4_19 = b[4] * 19;

        // Multiply to get 128-bit coefficients of output
        let     c0: u128 = m(a[0], b[0]) + m(a[4], b1_19) + m(a[3], b2_19) + m(a[2], b3_19) + m(a[1], b4_19);
        let mut c1: u128 = m(a[1], b[0]) + m(a[0],  b[1]) + m(a[4], b2_19) + m(a[3], b3_19) + m(a[2], b4_19);
        let mut c2: u128 = m(a[2], b[0]) + m(a[1],  b[1]) + m(a[0],  b[2]) + m(a[4], b3_19) + m(a[3], b4_19);
        let mut c3: u128 = m(a[3], b[0]) + m(a[2],  b[1]) + m(a[1],  b[2]) + m(a[0],  b[3]) + m(a[4], b4_19);
        let mut c4: u128 = m(a[4], b[0]) + m(a[3],  b[1]) + m(a[2],  b[2]) + m(a[1],  b[3]) + m(a[0] , b[4]);

        // How big are the c[i]? We have
        //
        //    c[i] < 2^(102 + 2*b) * (1+i + (4-i)*19)
        //         < 2^(102 + lg(1 + 4*19) + 2*b)
        //         < 2^(108.27 + 2*b)
        //
        // The carry (c[i] >> 51) fits into a u64 when
        //    108.27 + 2*b - 51 < 64
        //    2*b < 6.73
        //    b < 3.365.
        //
        // So we require b < 3 to ensure this fits.
        debug_assert!(a[0] < (1 << 54)); debug_assert!(b[0] < (1 << 54));
        debug_assert!(a[1] < (1 << 54)); debug_assert!(b[1] < (1 << 54));
        debug_assert!(a[2] < (1 << 54)); debug_assert!(b[2] < (1 << 54));
        debug_assert!(a[3] < (1 << 54)); debug_assert!(b[3] < (1 << 54));
        debug_assert!(a[4] < (1 << 54)); debug_assert!(b[4] < (1 << 54));

        // Casting to u64 and back tells the compiler that the carry is
        // bounded by 2^64, so that the addition is a u128 + u64 rather
        // than u128 + u128.

        const LOW_51_BIT_MASK: u64 = (1u64 << 51) - 1;
        let mut out = [0u64; 5];

        c1 += ((c0 >> 51) as u64) as u128;
        out[0] = (c0 as u64) & LOW_51_BIT_MASK;

        c2 += ((c1 >> 51) as u64) as u128;
        out[1] = (c1 as u64) & LOW_51_BIT_MASK;

        c3 += ((c2 >> 51) as u64) as u128;
        out[2] = (c2 as u64) & LOW_51_BIT_MASK;

        c4 += ((c3 >> 51) as u64) as u128;
        out[3] = (c3 as u64) & LOW_51_BIT_MASK;

        let carry: u64 = (c4 >> 51) as u64;
        out[4] = (c4 as u64) & LOW_51_BIT_MASK;

        // To see that this does not overflow, we need out[0] + carry * 19 < 2^64.
        //
        // c4 < a0*b4 + a1*b3 + a2*b2 + a3*b1 + a4*b0 + (carry from c3)
        //    < 5*(2^(51 + b) * 2^(51 + b)) + (carry from c3)
        //    < 2^(102 + 2*b + lg(5)) + 2^64.
        //
        // When b < 3 we get
        //
        // c4 < 2^110.33  so that carry < 2^59.33
        //
        // so that
        //
        // out[0] + carry * 19 < 2^51 + 19 * 2^59.33 < 2^63.58
        //
        // and there is no overflow.
        out[0] += carry * 19;

        // Now out[1] < 2^51 + 2^(64 -51) = 2^51 + 2^13 < 2^(51 + epsilon).
        out[1] += out[0] >> 51;
        out[0] &= LOW_51_BIT_MASK;

        // Now out[i] < 2^(51 + epsilon) for all i.
        FieldElement51(out)
    }
}

impl<'a> Neg for &'a FieldElement51 {
    type Output = FieldElement51;
    fn neg(self) -> FieldElement51 {
        let mut output = *self;
        output.negate();
        output
    }
}

impl ConditionallySelectable for FieldElement51 {
    fn conditional_select(
        a: &FieldElement51,
        b: &FieldElement51,
        choice: Choice,
    ) -> FieldElement51 {
        FieldElement51([
            u64::conditional_select(&a.0[0], &b.0[0], choice),
            u64::conditional_select(&a.0[1], &b.0[1], choice),
            u64::conditional_select(&a.0[2], &b.0[2], choice),
            u64::conditional_select(&a.0[3], &b.0[3], choice),
            u64::conditional_select(&a.0[4], &b.0[4], choice),
        ])
    }

    fn conditional_swap(a: &mut FieldElement51, b: &mut FieldElement51, choice: Choice) {
        u64::conditional_swap(&mut a.0[0], &mut b.0[0], choice);
        u64::conditional_swap(&mut a.0[1], &mut b.0[1], choice);
        u64::conditional_swap(&mut a.0[2], &mut b.0[2], choice);
        u64::conditional_swap(&mut a.0[3], &mut b.0[3], choice);
        u64::conditional_swap(&mut a.0[4], &mut b.0[4], choice);
    }

    fn conditional_assign(&mut self, other: &FieldElement51, choice: Choice) {
        self.0[0].conditional_assign(&other.0[0], choice);
        self.0[1].conditional_assign(&other.0[1], choice);
        self.0[2].conditional_assign(&other.0[2], choice);
        self.0[3].conditional_assign(&other.0[3], choice);
        self.0[4].conditional_assign(&other.0[4], choice);
    }
}

impl FieldElement51 {
    pub(crate) const fn from_limbs(limbs: [u64; 5]) -> FieldElement51 {
        FieldElement51(limbs)
    }

    /// The scalar \\( 0 \\).
    pub const ZERO: FieldElement51 = FieldElement51::from_limbs([0, 0, 0, 0, 0]);
    /// The scalar \\( 1 \\).
    pub const ONE: FieldElement51 = FieldElement51::from_limbs([1, 0, 0, 0, 0]);
    /// The scalar \\( -1 \\).
    pub const MINUS_ONE: FieldElement51 = FieldElement51::from_limbs([
        2251799813685228,
        2251799813685247,
        2251799813685247,
        2251799813685247,
        2251799813685247,
    ]);

    /// Invert the sign of this field element
    pub fn negate(&mut self) {
        // See commentary in the Sub impl
        let neg = FieldElement51::reduce([
            36028797018963664u64 - self.0[0],
            36028797018963952u64 - self.0[1],
            36028797018963952u64 - self.0[2],
            36028797018963952u64 - self.0[3],
            36028797018963952u64 - self.0[4],
        ]);
        self.0 = neg.0;
    }

    /// Given 64-bit input limbs, reduce to enforce the bound 2^(51 + epsilon).
    #[inline(always)]
    fn reduce(mut limbs: [u64; 5]) -> FieldElement51 {
        const LOW_51_BIT_MASK: u64 = (1u64 << 51) - 1;

        // Since the input limbs are bounded by 2^64, the biggest
        // carry-out is bounded by 2^13.
        //
        // The biggest carry-in is c4 * 19, resulting in
        //
        // 2^51 + 19*2^13 < 2^51.0000000001
        //
        // Because we don't need to canonicalize, only to reduce the
        // limb sizes, it's OK to do a "weak reduction", where we
        // compute the carry-outs in parallel.

        let c0 = limbs[0] >> 51;
        let c1 = limbs[1] >> 51;
        let c2 = limbs[2] >> 51;
        let c3 = limbs[3] >> 51;
        let c4 = limbs[4] >> 51;

        limbs[0] &= LOW_51_BIT_MASK;
        limbs[1] &= LOW_51_BIT_MASK;
        limbs[2] &= LOW_51_BIT_MASK;
        limbs[3] &= LOW_51_BIT_MASK;
        limbs[4] &= LOW_51_BIT_MASK;

        limbs[0] += c4 * 19;
        limbs[1] += c0;
        limbs[2] += c1;
        limbs[3] += c2;
        limbs[4] += c3;

        FieldElement51(limbs)
    }

    /// Load a `FieldElement51` from the low 255 bits of a 256-bit
    /// input.
    ///
    /// # Warning
    ///
    /// This function does not check that the input used the canonical
    /// representative.  It masks the high bit, but it will happily
    /// decode 2^255 - 18 to 1.  Applications that require a canonical
    /// encoding of every field element should decode, re-encode to
    /// the canonical encoding, and check that the input was
    /// canonical.
    ///
    #[rustfmt::skip] // keep alignment of bit shifts
    pub fn from_bytes(bytes: &[u8; 32]) -> FieldElement51 {
        let load8 = |input: &[u8]| -> u64 {
               (input[0] as u64)
            | ((input[1] as u64) << 8)
            | ((input[2] as u64) << 16)
            | ((input[3] as u64) << 24)
            | ((input[4] as u64) << 32)
            | ((input[5] as u64) << 40)
            | ((input[6] as u64) << 48)
            | ((input[7] as u64) << 56)
        };

        let low_51_bit_mask = (1u64 << 51) - 1;
        FieldElement51(
        // load bits [  0, 64), no shift
        [  load8(&bytes[ 0..])        & low_51_bit_mask
        // load bits [ 48,112), shift to [ 51,112)
        , (load8(&bytes[ 6..]) >>  3) & low_51_bit_mask
        // load bits [ 96,160), shift to [102,160)
        , (load8(&bytes[12..]) >>  6) & low_51_bit_mask
        // load bits [152,216), shift to [153,216)
        , (load8(&bytes[19..]) >>  1) & low_51_bit_mask
        // load bits [192,256), shift to [204,112)
        , (load8(&bytes[24..]) >> 12) & low_51_bit_mask
        ])
    }

    /// Serialize this `FieldElement51` to a 32-byte array.  The
    /// encoding is canonical.
    #[rustfmt::skip] // keep alignment of s[*] calculations
    pub fn as_bytes(&self) -> [u8; 32] {
        // Let h = limbs[0] + limbs[1]*2^51 + ... + limbs[4]*2^204.
        //
        // Write h = pq + r with 0 <= r < p.
        //
        // We want to compute r = h mod p.
        //
        // If h < 2*p = 2^256 - 38,
        // then q = 0 or 1,
        //
        // with q = 0 when h < p
        //  and q = 1 when h >= p.
        //
        // Notice that h >= p <==> h + 19 >= p + 19 <==> h + 19 >= 2^255.
        // Therefore q can be computed as the carry bit of h + 19.

        // First, reduce the limbs to ensure h < 2*p.
        let mut limbs = FieldElement51::reduce(self.0).0;

        let mut q = (limbs[0] + 19) >> 51;
        q = (limbs[1] + q) >> 51;
        q = (limbs[2] + q) >> 51;
        q = (limbs[3] + q) >> 51;
        q = (limbs[4] + q) >> 51;

        // Now we can compute r as r = h - pq = r - (2^255-19)q = r + 19q - 2^255q

        limbs[0] += 19 * q;

        // Now carry the result to compute r + 19q ...
        let low_51_bit_mask = (1u64 << 51) - 1;
        limbs[1] += limbs[0] >> 51;
        limbs[0] &= low_51_bit_mask;
        limbs[2] += limbs[1] >> 51;
        limbs[1] &= low_51_bit_mask;
        limbs[3] += limbs[2] >> 51;
        limbs[2] &= low_51_bit_mask;
        limbs[4] += limbs[3] >> 51;
        limbs[3] &= low_51_bit_mask;
        // ... but instead of carrying (limbs[4] >> 51) = 2^255q
        // into another limb, discard it, subtracting the value
        limbs[4] &= low_51_bit_mask;

        // Now arrange the bits of the limbs.
        let mut s = [0u8;32];
        s[ 0] =   limbs[0]                           as u8;
        s[ 1] =  (limbs[0] >>  8)                    as u8;
        s[ 2] =  (limbs[0] >> 16)                    as u8;
        s[ 3] =  (limbs[0] >> 24)                    as u8;
        s[ 4] =  (limbs[0] >> 32)                    as u8;
        s[ 5] =  (limbs[0] >> 40)                    as u8;
        s[ 6] = ((limbs[0] >> 48) | (limbs[1] << 3)) as u8;
        s[ 7] =  (limbs[1] >>  5)                    as u8;
        s[ 8] =  (limbs[1] >> 13)                    as u8;
        s[ 9] =  (limbs[1] >> 21)                    as u8;
        s[10] =  (limbs[1] >> 29)                    as u8;
        s[11] =  (limbs[1] >> 37)                    as u8;
        s[12] = ((limbs[1] >> 45) | (limbs[2] << 6)) as u8;
        s[13] =  (limbs[2] >>  2)                    as u8;
        s[14] =  (limbs[2] >> 10)                    as u8;
        s[15] =  (limbs[2] >> 18)                    as u8;
        s[16] =  (limbs[2] >> 26)                    as u8;
        s[17] =  (limbs[2] >> 34)                    as u8;
        s[18] =  (limbs[2] >> 42)                    as u8;
        s[19] = ((limbs[2] >> 50) | (limbs[3] << 1)) as u8;
        s[20] =  (limbs[3] >>  7)                    as u8;
        s[21] =  (limbs[3] >> 15)                    as u8;
        s[22] =  (limbs[3] >> 23)                    as u8;
        s[23] =  (limbs[3] >> 31)                    as u8;
        s[24] =  (limbs[3] >> 39)                    as u8;
        s[25] = ((limbs[3] >> 47) | (limbs[4] << 4)) as u8;
        s[26] =  (limbs[4] >>  4)                    as u8;
        s[27] =  (limbs[4] >> 12)                    as u8;
        s[28] =  (limbs[4] >> 20)                    as u8;
        s[29] =  (limbs[4] >> 28)                    as u8;
        s[30] =  (limbs[4] >> 36)                    as u8;
        s[31] =  (limbs[4] >> 44)                    as u8;

        // High bit should be zero.
        debug_assert!((s[31] & 0b1000_0000u8) == 0u8);

        s
    }

    /// Given `k > 0`, return `self^(2^k)`.
    #[rustfmt::skip] // keep alignment of c* calculations
    pub fn pow2k(&self, mut k: u32) -> FieldElement51 {

        debug_assert!( k > 0 );

        /// Multiply two 64-bit integers with 128 bits of output.
        #[inline(always)]
        fn m(x: u64, y: u64) -> u128 {
            (x as u128) * (y as u128)
        }

        let mut a: [u64; 5] = self.0;

        loop {
            // Precondition: assume input limbs a[i] are bounded as
            //
            // a[i] < 2^(51 + b)
            //
            // where b is a real parameter measuring the "bit excess" of the limbs.

            // Precomputation: 64-bit multiply by 19.
            //
            // This fits into a u64 whenever 51 + b + lg(19) < 64.
            //
            // Since 51 + b + lg(19) < 51 + 4.25 + b
            //                       = 55.25 + b,
            // this fits if b < 8.75.
            let a3_19 = 19 * a[3];
            let a4_19 = 19 * a[4];

            // Multiply to get 128-bit coefficients of output.
            //
            // The 128-bit multiplications by 2 turn into 1 slr + 1 slrd each,
            // which doesn't seem any better or worse than doing them as precomputations
            // on the 64-bit inputs.
            let     c0: u128 = m(a[0],  a[0]) + 2*( m(a[1], a4_19) + m(a[2], a3_19) );
            let mut c1: u128 = m(a[3], a3_19) + 2*( m(a[0],  a[1]) + m(a[2], a4_19) );
            let mut c2: u128 = m(a[1],  a[1]) + 2*( m(a[0],  a[2]) + m(a[4], a3_19) );
            let mut c3: u128 = m(a[4], a4_19) + 2*( m(a[0],  a[3]) + m(a[1],  a[2]) );
            let mut c4: u128 = m(a[2],  a[2]) + 2*( m(a[0],  a[4]) + m(a[1],  a[3]) );

            // Same bound as in multiply:
            //    c[i] < 2^(102 + 2*b) * (1+i + (4-i)*19)
            //         < 2^(102 + lg(1 + 4*19) + 2*b)
            //         < 2^(108.27 + 2*b)
            //
            // The carry (c[i] >> 51) fits into a u64 when
            //    108.27 + 2*b - 51 < 64
            //    2*b < 6.73
            //    b < 3.365.
            //
            // So we require b < 3 to ensure this fits.
            debug_assert!(a[0] < (1 << 54));
            debug_assert!(a[1] < (1 << 54));
            debug_assert!(a[2] < (1 << 54));
            debug_assert!(a[3] < (1 << 54));
            debug_assert!(a[4] < (1 << 54));

            const LOW_51_BIT_MASK: u64 = (1u64 << 51) - 1;

            // Casting to u64 and back tells the compiler that the carry is bounded by 2^64, so
            // that the addition is a u128 + u64 rather than u128 + u128.
            c1 += ((c0 >> 51) as u64) as u128;
            a[0] = (c0 as u64) & LOW_51_BIT_MASK;

            c2 += ((c1 >> 51) as u64) as u128;
            a[1] = (c1 as u64) & LOW_51_BIT_MASK;

            c3 += ((c2 >> 51) as u64) as u128;
            a[2] = (c2 as u64) & LOW_51_BIT_MASK;

            c4 += ((c3 >> 51) as u64) as u128;
            a[3] = (c3 as u64) & LOW_51_BIT_MASK;

            let carry: u64 = (c4 >> 51) as u64;
            a[4] = (c4 as u64) & LOW_51_BIT_MASK;

            // To see that this does not overflow, we need a[0] + carry * 19 < 2^64.
            //
            // c4 < a2^2 + 2*a0*a4 + 2*a1*a3 + (carry from c3)
            //    < 2^(102 + 2*b + lg(5)) + 2^64.
            //
            // When b < 3 we get
            //
            // c4 < 2^110.33  so that carry < 2^59.33
            //
            // so that
            //
            // a[0] + carry * 19 < 2^51 + 19 * 2^59.33 < 2^63.58
            //
            // and there is no overflow.
            a[0] += carry * 19;

            // Now a[1] < 2^51 + 2^(64 -51) = 2^51 + 2^13 < 2^(51 + epsilon).
            a[1] += a[0] >> 51;
            a[0] &= LOW_51_BIT_MASK;

            // Now all a[i] < 2^(51 + epsilon) and a = self^(2^k).

            k -= 1;
            if k == 0 {
                break;
            }
        }

        FieldElement51(a)
    }

    /// Returns the square of this field element.
    pub fn square(&self) -> FieldElement51 {
        self.pow2k(1)
    }

    /// Returns 2 times the square of this field element.
    pub fn square2(&self) -> FieldElement51 {
        let mut square = self.pow2k(1);
        for i in 0..5 {
            square.0[i] *= 2;
        }

        square
    }
}