ring/ec/curve25519/ops.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
// Copyright 2015-2017 Brian Smith.
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY
// SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
// OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
// CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
//! Elliptic curve operations on the birationally equivalent curves Curve25519
//! and Edwards25519.
pub use super::scalar::{MaskedScalar, Scalar, SCALAR_LEN};
use crate::{
bssl, c, cpu, error,
limb::{Limb, LIMB_BITS},
};
use core::marker::PhantomData;
// Elem<T>` is `fe` in curve25519/internal.h.
// Elem<L> is `fe_loose` in curve25519/internal.h.
// Keep this in sync with curve25519/internal.h.
#[repr(C)]
pub struct Elem<E: Encoding> {
limbs: [Limb; ELEM_LIMBS], // This is called `v` in the C code.
encoding: PhantomData<E>,
}
pub trait Encoding {}
pub struct T;
impl Encoding for T {}
const ELEM_LIMBS: usize = 5 * 64 / LIMB_BITS;
impl<E: Encoding> Elem<E> {
fn zero() -> Self {
Self {
limbs: Default::default(),
encoding: PhantomData,
}
}
}
impl Elem<T> {
fn negate(&mut self) {
unsafe {
x25519_fe_neg(self);
}
}
}
// An encoding of a curve point. If on Curve25519, it should be encoded as
// described in Section 5 of [RFC 7748]. If on Edwards25519, it should be
// encoded as described in section 5.1.2 of [RFC 8032].
//
// [RFC 7748] https://tools.ietf.org/html/rfc7748#section-5
// [RFC 8032] https://tools.ietf.org/html/rfc8032#section-5.1.2
pub type EncodedPoint = [u8; ELEM_LEN];
pub const ELEM_LEN: usize = 32;
// Keep this in sync with `ge_p3` in curve25519/internal.h.
#[repr(C)]
pub struct ExtPoint {
x: Elem<T>,
y: Elem<T>,
z: Elem<T>,
t: Elem<T>,
}
impl ExtPoint {
// Returns the result of multiplying the base point by the scalar in constant time.
pub(super) fn from_scalarmult_base_consttime(scalar: &Scalar, cpu: cpu::Features) -> Self {
let mut r = Self {
x: Elem::zero(),
y: Elem::zero(),
z: Elem::zero(),
t: Elem::zero(),
};
prefixed_extern! {
fn x25519_ge_scalarmult_base(h: &mut ExtPoint, a: &Scalar, has_fe25519_adx: c::int);
}
unsafe {
x25519_ge_scalarmult_base(&mut r, scalar, has_fe25519_adx(cpu).into());
}
r
}
pub fn from_encoded_point_vartime(encoded: &EncodedPoint) -> Result<Self, error::Unspecified> {
let mut point = Self {
x: Elem::zero(),
y: Elem::zero(),
z: Elem::zero(),
t: Elem::zero(),
};
Result::from(unsafe { x25519_ge_frombytes_vartime(&mut point, encoded) }).map(|()| point)
}
pub fn into_encoded_point(self) -> EncodedPoint {
encode_point(self.x, self.y, self.z)
}
pub fn invert_vartime(&mut self) {
self.x.negate();
self.t.negate();
}
}
// Keep this in sync with `ge_p2` in curve25519/internal.h.
#[repr(C)]
pub struct Point {
x: Elem<T>,
y: Elem<T>,
z: Elem<T>,
}
impl Point {
pub fn new_at_infinity() -> Self {
Self {
x: Elem::zero(),
y: Elem::zero(),
z: Elem::zero(),
}
}
pub fn into_encoded_point(self) -> EncodedPoint {
encode_point(self.x, self.y, self.z)
}
}
fn encode_point(x: Elem<T>, y: Elem<T>, z: Elem<T>) -> EncodedPoint {
let mut bytes = [0; ELEM_LEN];
let sign_bit: u8 = unsafe {
let mut recip = Elem::zero();
x25519_fe_invert(&mut recip, &z);
let mut x_over_z = Elem::zero();
x25519_fe_mul_ttt(&mut x_over_z, &x, &recip);
let mut y_over_z = Elem::zero();
x25519_fe_mul_ttt(&mut y_over_z, &y, &recip);
x25519_fe_tobytes(&mut bytes, &y_over_z);
x25519_fe_isnegative(&x_over_z)
};
// The preceding computations must execute in constant time, but this
// doesn't need to.
bytes[ELEM_LEN - 1] ^= sign_bit << 7;
bytes
}
cfg_if::cfg_if! {
if #[cfg(all(target_arch = "x86_64", not(target_os = "windows")))] {
#[inline(always)]
pub(super) fn has_fe25519_adx(cpu: cpu::Features) -> bool {
cpu::intel::ADX.available(cpu)
&& cpu::intel::BMI1.available(cpu)
&& cpu::intel::BMI2.available(cpu)
}
} else {
#[inline(always)]
pub (super) fn has_fe25519_adx(_cpu: cpu::Features) -> bool {
false
}
}
}
prefixed_extern! {
fn x25519_fe_invert(out: &mut Elem<T>, z: &Elem<T>);
fn x25519_fe_isnegative(elem: &Elem<T>) -> u8;
fn x25519_fe_mul_ttt(h: &mut Elem<T>, f: &Elem<T>, g: &Elem<T>);
fn x25519_fe_neg(f: &mut Elem<T>);
fn x25519_fe_tobytes(bytes: &mut EncodedPoint, elem: &Elem<T>);
fn x25519_ge_frombytes_vartime(h: &mut ExtPoint, s: &EncodedPoint) -> bssl::Result;
}