ring/ec/curve25519/
ops.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
// Copyright 2015-2017 Brian Smith.
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY
// SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
// OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
// CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

//! Elliptic curve operations on the birationally equivalent curves Curve25519
//! and Edwards25519.

pub use super::scalar::{MaskedScalar, Scalar, SCALAR_LEN};
use crate::{
    bssl, c, cpu, error,
    limb::{Limb, LIMB_BITS},
};
use core::marker::PhantomData;

// Elem<T>` is `fe` in curve25519/internal.h.
// Elem<L> is `fe_loose` in curve25519/internal.h.
// Keep this in sync with curve25519/internal.h.
#[repr(C)]
pub struct Elem<E: Encoding> {
    limbs: [Limb; ELEM_LIMBS], // This is called `v` in the C code.
    encoding: PhantomData<E>,
}

pub trait Encoding {}
pub struct T;
impl Encoding for T {}

const ELEM_LIMBS: usize = 5 * 64 / LIMB_BITS;

impl<E: Encoding> Elem<E> {
    fn zero() -> Self {
        Self {
            limbs: Default::default(),
            encoding: PhantomData,
        }
    }
}

impl Elem<T> {
    fn negate(&mut self) {
        unsafe {
            x25519_fe_neg(self);
        }
    }
}

// An encoding of a curve point. If on Curve25519, it should be encoded as
// described in Section 5 of [RFC 7748]. If on Edwards25519, it should be
// encoded as described in section 5.1.2 of [RFC 8032].
//
// [RFC 7748] https://tools.ietf.org/html/rfc7748#section-5
// [RFC 8032] https://tools.ietf.org/html/rfc8032#section-5.1.2
pub type EncodedPoint = [u8; ELEM_LEN];
pub const ELEM_LEN: usize = 32;

// Keep this in sync with `ge_p3` in curve25519/internal.h.
#[repr(C)]
pub struct ExtPoint {
    x: Elem<T>,
    y: Elem<T>,
    z: Elem<T>,
    t: Elem<T>,
}

impl ExtPoint {
    // Returns the result of multiplying the base point by the scalar in constant time.
    pub(super) fn from_scalarmult_base_consttime(scalar: &Scalar, cpu: cpu::Features) -> Self {
        let mut r = Self {
            x: Elem::zero(),
            y: Elem::zero(),
            z: Elem::zero(),
            t: Elem::zero(),
        };
        prefixed_extern! {
            fn x25519_ge_scalarmult_base(h: &mut ExtPoint, a: &Scalar, has_fe25519_adx: c::int);
        }
        unsafe {
            x25519_ge_scalarmult_base(&mut r, scalar, has_fe25519_adx(cpu).into());
        }
        r
    }

    pub fn from_encoded_point_vartime(encoded: &EncodedPoint) -> Result<Self, error::Unspecified> {
        let mut point = Self {
            x: Elem::zero(),
            y: Elem::zero(),
            z: Elem::zero(),
            t: Elem::zero(),
        };

        Result::from(unsafe { x25519_ge_frombytes_vartime(&mut point, encoded) }).map(|()| point)
    }

    pub fn into_encoded_point(self) -> EncodedPoint {
        encode_point(self.x, self.y, self.z)
    }

    pub fn invert_vartime(&mut self) {
        self.x.negate();
        self.t.negate();
    }
}

// Keep this in sync with `ge_p2` in curve25519/internal.h.
#[repr(C)]
pub struct Point {
    x: Elem<T>,
    y: Elem<T>,
    z: Elem<T>,
}

impl Point {
    pub fn new_at_infinity() -> Self {
        Self {
            x: Elem::zero(),
            y: Elem::zero(),
            z: Elem::zero(),
        }
    }

    pub fn into_encoded_point(self) -> EncodedPoint {
        encode_point(self.x, self.y, self.z)
    }
}

fn encode_point(x: Elem<T>, y: Elem<T>, z: Elem<T>) -> EncodedPoint {
    let mut bytes = [0; ELEM_LEN];

    let sign_bit: u8 = unsafe {
        let mut recip = Elem::zero();
        x25519_fe_invert(&mut recip, &z);

        let mut x_over_z = Elem::zero();
        x25519_fe_mul_ttt(&mut x_over_z, &x, &recip);

        let mut y_over_z = Elem::zero();
        x25519_fe_mul_ttt(&mut y_over_z, &y, &recip);
        x25519_fe_tobytes(&mut bytes, &y_over_z);

        x25519_fe_isnegative(&x_over_z)
    };

    // The preceding computations must execute in constant time, but this
    // doesn't need to.
    bytes[ELEM_LEN - 1] ^= sign_bit << 7;

    bytes
}

cfg_if::cfg_if! {
    if #[cfg(all(target_arch = "x86_64", not(target_os = "windows")))] {
        #[inline(always)]
        pub(super) fn has_fe25519_adx(cpu: cpu::Features) -> bool {
            cpu::intel::ADX.available(cpu)
            && cpu::intel::BMI1.available(cpu)
            && cpu::intel::BMI2.available(cpu)
        }
    } else {
        #[inline(always)]
        pub (super) fn has_fe25519_adx(_cpu: cpu::Features) -> bool {
            false
        }
    }
}

prefixed_extern! {
    fn x25519_fe_invert(out: &mut Elem<T>, z: &Elem<T>);
    fn x25519_fe_isnegative(elem: &Elem<T>) -> u8;
    fn x25519_fe_mul_ttt(h: &mut Elem<T>, f: &Elem<T>, g: &Elem<T>);
    fn x25519_fe_neg(f: &mut Elem<T>);
    fn x25519_fe_tobytes(bytes: &mut EncodedPoint, elem: &Elem<T>);
    fn x25519_ge_frombytes_vartime(h: &mut ExtPoint, s: &EncodedPoint) -> bssl::Result;
}