vodozemac/
sas.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
// Copyright 2021 Damir Jelić, Denis Kasak
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! User-friendly key verification using short authentication strings (SAS).
//!
//! The verification process is heavily inspired by Phil Zimmermann’s [ZRTP]
//! key agreement handshake. A core part of key agreement in [ZRTP] is the
//! *hash commitment*: the party that begins the key sharing process sends
//! a *hash* of their part of the Diffie-Hellman exchange but does not send the
//! part itself exchange until they had received the other party’s part.
//!
//! The verification process can be used to verify the Ed25519 identity key of
//! an [`Account`].
//!
//! # Examples
//!
//! ```rust
//! use vodozemac::sas::Sas;
//! # use anyhow::Result;
//! # fn main() -> Result<()> {
//! let alice = Sas::new();
//! let bob = Sas::new();
//!
//! let bob_public_key = bob.public_key();
//!
//! let bob = bob.diffie_hellman(alice.public_key())?;
//! let alice = alice.diffie_hellman(bob_public_key)?;
//!
//! let alice_bytes = alice.bytes("AGREED_INFO");
//! let bob_bytes = bob.bytes("AGREED_INFO");
//!
//! let alice_emojis = alice_bytes.emoji_indices();
//! let bob_emojis = bob_bytes.emoji_indices();
//!
//! assert_eq!(alice_emojis, bob_emojis);
//! # Ok(())
//! # }
//! ```
//!
//! [`Account`]: crate::olm::Account
//! [ZRTP]: https://tools.ietf.org/html/rfc6189#section-4.4.1

use hkdf::Hkdf;
use hmac::{digest::MacError, Hmac, Mac as _};
use rand::thread_rng;
use sha2::Sha256;
use thiserror::Error;
use x25519_dalek::{EphemeralSecret, SharedSecret};

use crate::{
    utilities::{base64_decode, base64_encode},
    Curve25519PublicKey, KeyError,
};

type HmacSha256Key = Box<[u8; 32]>;

/// The output type for the SAS MAC calculation.
pub struct Mac(Vec<u8>);

impl Mac {
    /// Convert the MAC to a base64 encoded string.
    pub fn to_base64(&self) -> String {
        base64_encode(&self.0)
    }

    /// Get the byte slice of the MAC.
    pub fn as_bytes(&self) -> &[u8] {
        &self.0
    }

    /// Create a new `Mac` object from a byte slice.
    pub fn from_slice(bytes: &[u8]) -> Self {
        Self(bytes.to_vec())
    }

    /// Create a new `Mac` object from a base64 encoded string.
    pub fn from_base64(mac: &str) -> Result<Self, base64::DecodeError> {
        let bytes = base64_decode(mac)?;

        Ok(Self(bytes))
    }
}

/// Error type for the case when we try to generate too many SAS bytes.
#[derive(Debug, Clone, Error)]
#[error("The given count of bytes was too large")]
pub struct InvalidCount;

/// Error type describing failures that can happen during the key verification.
#[derive(Debug, Error)]
pub enum SasError {
    /// The MAC failed to be validated.
    #[error("The SAS MAC validation didn't succeed: {0}")]
    Mac(#[from] MacError),
}

/// A struct representing a short auth string verification object.
///
/// This object can be used to establish a shared secret to perform the short
/// auth string based key verification.
pub struct Sas {
    secret_key: EphemeralSecret,
    public_key: Curve25519PublicKey,
}

/// A struct representing a short auth string verification object where the
/// shared secret has been established.
///
/// This object can be used to generate the short auth string and calculate and
/// verify a MAC that protects information about the keys being verified.
pub struct EstablishedSas {
    shared_secret: SharedSecret,
    our_public_key: Curve25519PublicKey,
    their_public_key: Curve25519PublicKey,
}

impl std::fmt::Debug for EstablishedSas {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        f.debug_struct("EstablishedSas")
            .field("our_public_key", &self.our_public_key.to_base64())
            .field("their_public_key", &self.their_public_key.to_base64())
            .finish_non_exhaustive()
    }
}

/// Bytes generated from an shared secret that can be used as the short auth
/// string.
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct SasBytes {
    bytes: [u8; 6],
}

impl SasBytes {
    /// Get the index of 7 emojis that can be presented to users to perform the
    /// key verification
    ///
    /// The table that maps the index to an emoji can be found in the [spec].
    ///
    /// [spec]: https://spec.matrix.org/unstable/client-server-api/#sas-method-emoji
    pub fn emoji_indices(&self) -> [u8; 7] {
        Self::bytes_to_emoji_index(&self.bytes)
    }

    /// Get the three decimal numbers that can be presented to users to perform
    /// the key verification, as described in the [spec]
    ///
    /// [spec]: https://spec.matrix.org/unstable/client-server-api/#sas-method-emoji
    pub fn decimals(&self) -> (u16, u16, u16) {
        Self::bytes_to_decimal(&self.bytes)
    }

    /// Get the raw bytes of the short auth string that can be converted to an
    /// emoji, or decimal representation.
    pub const fn as_bytes(&self) -> &[u8; 6] {
        &self.bytes
    }

    /// Split the first 42 bits of our 6 bytes into 7 groups of 6 bits. The 7
    /// groups of 6 bits represent an emoji index from the [spec].
    ///
    /// [spec]: https://spec.matrix.org/unstable/client-server-api/#sas-method-emoji
    fn bytes_to_emoji_index(bytes: &[u8; 6]) -> [u8; 7] {
        let bytes: Vec<u64> = bytes.iter().map(|b| *b as u64).collect();
        // Join the 6 bytes into one 64 bit unsigned int. This u64 will contain 48
        // bits from our 6 bytes.
        let mut num: u64 = bytes[0] << 40;
        num += bytes[1] << 32;
        num += bytes[2] << 24;
        num += bytes[3] << 16;
        num += bytes[4] << 8;
        num += bytes[5];

        // Take the top 42 bits of our 48 bits from the u64 and convert each 6 bits
        // into a 6 bit number.
        [
            ((num >> 42) & 63) as u8,
            ((num >> 36) & 63) as u8,
            ((num >> 30) & 63) as u8,
            ((num >> 24) & 63) as u8,
            ((num >> 18) & 63) as u8,
            ((num >> 12) & 63) as u8,
            ((num >> 6) & 63) as u8,
        ]
    }

    /// Convert the given bytes into three decimals. The 6th byte is ignored,
    /// it's used for the emoji index conversion.
    fn bytes_to_decimal(bytes: &[u8; 6]) -> (u16, u16, u16) {
        let bytes: Vec<u16> = bytes.iter().map(|b| *b as u16).collect();

        // This bitwise operation is taken from the [spec]
        // [spec]: https://matrix.org/docs/spec/client_server/latest#sas-method-decimal
        let first = bytes[0] << 5 | bytes[1] >> 3;
        let second = (bytes[1] & 0x7) << 10 | bytes[2] << 2 | bytes[3] >> 6;
        let third = (bytes[3] & 0x3F) << 7 | bytes[4] >> 1;

        (first + 1000, second + 1000, third + 1000)
    }
}

impl Default for Sas {
    fn default() -> Self {
        Self::new()
    }
}

impl Sas {
    /// Create a new random verification object
    ///
    /// This creates an ephemeral curve25519 keypair that can be used to
    /// establish a shared secret.
    pub fn new() -> Self {
        let rng = thread_rng();

        let secret_key = EphemeralSecret::random_from_rng(rng);
        let public_key = Curve25519PublicKey::from(&secret_key);

        Self { secret_key, public_key }
    }

    /// Get the public key that can be used to establish a shared secret.
    pub const fn public_key(&self) -> Curve25519PublicKey {
        self.public_key
    }

    /// Establishes a SAS secret by performing a DH handshake with another
    /// public key.
    ///
    /// Returns an [`EstablishedSas`] object which can be used to generate
    /// [`SasBytes`] if the given public key was valid, otherwise `None`.
    pub fn diffie_hellman(
        self,
        their_public_key: Curve25519PublicKey,
    ) -> Result<EstablishedSas, KeyError> {
        let shared_secret = self.secret_key.diffie_hellman(&their_public_key.inner);

        if shared_secret.was_contributory() {
            Ok(EstablishedSas { shared_secret, our_public_key: self.public_key, their_public_key })
        } else {
            Err(KeyError::NonContributoryKey)
        }
    }

    /// Establishes a SAS secret by performing a DH handshake with another
    /// public key in "raw", base64-encoded form.
    ///
    /// Returns an [`EstablishedSas`] object which can be used to generate
    /// [`SasBytes`] if the received public key is valid, otherwise `None`.
    pub fn diffie_hellman_with_raw(
        self,
        other_public_key: &str,
    ) -> Result<EstablishedSas, KeyError> {
        let other_public_key = Curve25519PublicKey::from_base64(other_public_key)?;
        self.diffie_hellman(other_public_key)
    }
}

impl EstablishedSas {
    /// Generate [`SasBytes`] using HKDF with the shared secret as the input key
    /// material.
    ///
    /// The info string should be agreed upon beforehand, both parties need to
    /// use the same info string.
    pub fn bytes(&self, info: &str) -> SasBytes {
        let mut bytes = [0u8; 6];
        let byte_vec =
            self.bytes_raw(info, 6).expect("HKDF should always be able to generate 6 bytes");

        bytes.copy_from_slice(&byte_vec);

        SasBytes { bytes }
    }

    /// Generate the given number of bytes using HKDF with the shared secret
    /// as the input key material.
    ///
    /// The info string should be agreed upon beforehand, both parties need to
    /// use the same info string.
    ///
    /// The number of bytes we can generate is limited, we can generate up to
    /// 32 * 255 bytes. The function will not fail if the given count is smaller
    /// than the limit.
    pub fn bytes_raw(&self, info: &str, count: usize) -> Result<Vec<u8>, InvalidCount> {
        let mut output = vec![0u8; count];
        let hkdf = self.get_hkdf();

        hkdf.expand(info.as_bytes(), &mut output[0..count]).map_err(|_| InvalidCount)?;

        Ok(output)
    }

    /// Calculate a MAC for the given input using the info string as additional
    /// data.
    ///
    ///
    /// This should be used to calculate a MAC of the ed25519 identity key of an
    /// [`Account`]
    ///
    /// The MAC is returned as a base64 encoded string.
    ///
    /// [`Account`]: crate::olm::Account
    pub fn calculate_mac(&self, input: &str, info: &str) -> Mac {
        let mut mac = self.get_mac(info);

        mac.update(input.as_ref());

        Mac(mac.finalize().into_bytes().to_vec())
    }

    /// Calculate a MAC for the given input using the info string as additional
    /// data, the MAC is returned as an invalid base64 encoded string.
    ///
    /// **Warning**: This method should never be used unless you require libolm
    /// compatibility. Libolm used to incorrectly encode their MAC because the
    /// input buffer was reused as the output buffer. This method replicates the
    /// buggy behaviour.
    #[cfg(feature = "libolm-compat")]
    pub fn calculate_mac_invalid_base64(&self, input: &str, info: &str) -> String {
        // First calculate the MAC as usual.
        let mac = self.calculate_mac(input, info);

        // Since the input buffer is reused as an output buffer, and base64
        // operates on 3 input bytes to generate 4 output bytes, the input
        // buffer gets overrun by the output.
        //
        // Only 6 bytes of the MAC get to be used before the output overwrites
        // the input.

        // All three bytes of the first input chunk are used successfully.
        let mut out = base64_encode(&mac.as_bytes()[0..3]);

        // For the next input chunk, only two bytes are sourced from the actual
        // MAC, since the first byte gets overwritten by the output.
        let mut bytes_from_mac = 2;

        // Subsequent input chunks get progressively more overwritten by the
        // output, so that after two iterations, none of the original input
        // bytes remain.
        for i in (6..10).step_by(3) {
            let from_mac = &mac.as_bytes()[i - bytes_from_mac..i];
            let from_out = &out.as_bytes()[out.len() - (3 - bytes_from_mac)..];

            let bytes = [from_out, from_mac].concat();
            let encoded = base64_encode(bytes);
            bytes_from_mac -= 1;

            out = out + &encoded;
        }

        // At this point, the rest of our input will be completely sourced from
        // the previous output. The MAC has a size of 32, so we abort before we
        // get to the remainder calculation.
        for i in (9..30).step_by(3) {
            let next = &out.as_bytes()[i..i + 3];
            let next_four = base64_encode(next);
            out = out + &next_four;
        }

        // Finally, use the remainder to get the last 3 bytes of output. No
        // padding is used.
        let next = &out.as_bytes()[30..32];
        let next = base64_encode(next);

        out + &next
    }

    /// Verify a MAC that was previously created using the
    /// [`EstablishedSas::calculate_mac()`] method.
    ///
    /// Users should calculate a MAC and send it to the other side, they should
    /// then verify each other's MAC using this method.
    pub fn verify_mac(&self, input: &str, info: &str, tag: &Mac) -> Result<(), SasError> {
        let mut mac = self.get_mac(info);
        mac.update(input.as_bytes());

        Ok(mac.verify_slice(&tag.0)?)
    }

    /// Get the public key that was created by us, that was used to establish
    /// the shared secret.
    pub const fn our_public_key(&self) -> Curve25519PublicKey {
        self.our_public_key
    }

    /// Get the public key that was created by the other party, that was used to
    /// establish the shared secret.
    pub const fn their_public_key(&self) -> Curve25519PublicKey {
        self.their_public_key
    }

    fn get_hkdf(&self) -> Hkdf<Sha256> {
        Hkdf::new(None, self.shared_secret.as_bytes())
    }

    fn get_mac_key(&self, info: &str) -> HmacSha256Key {
        let mut mac_key = Box::new([0u8; 32]);
        let hkdf = self.get_hkdf();

        hkdf.expand(info.as_bytes(), mac_key.as_mut_slice()).expect("Can't expand the MAC key");

        mac_key
    }

    fn get_mac(&self, info: &str) -> Hmac<Sha256> {
        let mac_key = self.get_mac_key(info);
        Hmac::<Sha256>::new_from_slice(mac_key.as_slice()).expect("Can't create a HMAC object")
    }
}

#[cfg(test)]
mod test {
    use olm_rs::sas::OlmSas;
    use proptest::prelude::*;

    use super::{Mac, Sas, SasBytes};

    const ALICE_MXID: &str = "@alice:example.com";
    const ALICE_DEVICE_ID: &str = "AAAAAAAAAA";
    const BOB_MXID: &str = "@bob:example.com";
    const BOB_DEVICE_ID: &str = "BBBBBBBBBB";

    #[test]
    fn as_bytes_is_identity() {
        let bytes = [0u8, 1, 2, 3, 4, 5];
        assert_eq!(SasBytes { bytes }.as_bytes(), &bytes);
    }

    #[test]
    fn mac_from_slice_as_bytes_is_identity() {
        let bytes = "ABCDEFGH".as_bytes();
        assert_eq!(
            Mac::from_slice(bytes).as_bytes(),
            bytes,
            "as_bytes() after from_slice() is not identity"
        );
    }

    #[test]
    fn libolm_and_vodozemac_generate_same_bytes() {
        let mut olm = OlmSas::new();
        let dalek = Sas::new();

        olm.set_their_public_key(dalek.public_key().to_base64())
            .expect("Couldn't set the public key for libolm");
        let established = dalek
            .diffie_hellman_with_raw(&olm.public_key())
            .expect("Couldn't establish SAS secret");

        assert_eq!(
            olm.generate_bytes("TEST", 10).expect("libolm couldn't generate SAS bytes"),
            established.bytes_raw("TEST", 10).expect("vodozemac couldn't generate SAS bytes")
        );
    }

    #[test]
    fn vodozemac_and_vodozemac_generate_same_bytes() {
        let alice = Sas::default();
        let bob = Sas::default();

        let alice_public_key_encoded = alice.public_key().to_base64();
        let alice_public_key = alice.public_key().to_owned();
        let bob_public_key_encoded = bob.public_key().to_base64();
        let bob_public_key = bob.public_key();

        let alice_established = alice
            .diffie_hellman_with_raw(&bob_public_key_encoded)
            .expect("Couldn't establish SAS secret for Alice");
        let bob_established = bob
            .diffie_hellman_with_raw(&alice_public_key_encoded)
            .expect("Couldn't establish SAS secret for Bob");

        assert_eq!(alice_established.our_public_key(), alice_public_key);
        assert_eq!(alice_established.their_public_key(), bob_public_key);
        assert_eq!(bob_established.our_public_key(), bob_public_key);
        assert_eq!(bob_established.their_public_key(), alice_public_key);

        let alice_bytes = alice_established.bytes("TEST");
        let bob_bytes = bob_established.bytes("TEST");

        assert_eq!(alice_bytes, bob_bytes, "The two sides calculated different bytes.");
        assert_eq!(
            alice_bytes.emoji_indices(),
            bob_bytes.emoji_indices(),
            "The two sides calculated different emoji indices."
        );
        assert_eq!(
            alice_bytes.decimals(),
            bob_bytes.decimals(),
            "The two sides calculated different decimals."
        );
        assert_eq!(alice_bytes.as_bytes(), bob_bytes.as_bytes());
    }

    #[test]
    fn calculate_mac_vodozemac_vodozemac() {
        let alice = Sas::new();
        let bob = Sas::new();

        let alice_public_key = alice.public_key().to_base64();
        let bob_public_key = bob.public_key().to_base64();

        let message = format!("ed25519:{BOB_DEVICE_ID}");
        let extra_info = format!(
            "MATRIX_KEY_VERIFICATION_MAC\
             {BOB_MXID}{BOB_DEVICE_ID}\
             {ALICE_MXID}{ALICE_DEVICE_ID}\
             $1234567890\
             KEY_IDS",
        );

        let alice_established = alice
            .diffie_hellman_with_raw(&bob_public_key)
            .expect("Couldn't establish SAS secret for Alice");
        let bob_established = bob
            .diffie_hellman_with_raw(&alice_public_key)
            .expect("Couldn't establish SAS secret for Bob");

        let alice_mac = alice_established.calculate_mac(&message, &extra_info);
        let bob_mac = bob_established.calculate_mac(&message, &extra_info);

        assert_eq!(
            alice_mac.to_base64(),
            bob_mac.to_base64(),
            "Two vodozemac devices calculated different SAS MACs."
        );

        alice_established
            .verify_mac(&message, &extra_info, &bob_mac)
            .expect("Alice couldn't verify Bob's MAC");
        bob_established
            .verify_mac(&message, &extra_info, &alice_mac)
            .expect("Bob couldn't verify Alice's MAC");

        let invalid_mac = Mac::from_slice(&[
            0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
            1, 0, 1,
        ]);
        alice_established
            .verify_mac(&message, &extra_info, &invalid_mac)
            .expect_err("Alice verified an invalid MAC");
        bob_established
            .verify_mac(&message, &extra_info, &invalid_mac)
            .expect_err("Bob verified an invalid MAC");
    }

    #[test]
    fn calculate_mac_vodozemac_libolm() {
        let alice_on_dalek = Sas::new();
        let mut bob_on_libolm = OlmSas::new();

        let alice_public_key = alice_on_dalek.public_key().to_base64();
        let bob_public_key = bob_on_libolm.public_key();

        let message = format!("ed25519:{BOB_DEVICE_ID}");
        let extra_info = format!(
            "MATRIX_KEY_VERIFICATION_MAC\
             {BOB_MXID}{BOB_DEVICE_ID}\
             {ALICE_MXID}{ALICE_DEVICE_ID}\
             $1234567890\
             KEY_IDS",
        );

        bob_on_libolm
            .set_their_public_key(alice_public_key)
            .expect("Couldn't set the public key for libolm");
        let established = alice_on_dalek
            .diffie_hellman_with_raw(&bob_public_key)
            .expect("Couldn't establish SAS secret");

        let olm_mac = bob_on_libolm
            .calculate_mac_fixed_base64(&message, &extra_info)
            .expect("libolm couldn't calculate SAS MAC.");
        assert_eq!(olm_mac, established.calculate_mac(&message, &extra_info).to_base64());

        let olm_mac =
            Mac::from_base64(&olm_mac).expect("SAS MAC generated by libolm wasn't valid base64.");

        established.verify_mac(&message, &extra_info, &olm_mac).expect("Couldn't verify MAC");
    }

    #[test]
    #[cfg(feature = "libolm-compat")]
    fn calculate_mac_invalid_base64() {
        let mut olm = OlmSas::new();
        let dalek = Sas::new();

        olm.set_their_public_key(dalek.public_key().to_base64())
            .expect("Couldn't set the public key for libolm");
        let established = dalek
            .diffie_hellman_with_raw(&olm.public_key())
            .expect("Couldn't establish SAS secret");

        let olm_mac = olm.calculate_mac("", "").expect("libolm couldn't calculate a MAC");
        assert_eq!(olm_mac, established.calculate_mac_invalid_base64("", ""));
    }

    #[test]
    fn emoji_generation() {
        let bytes: [u8; 6] = [0, 0, 0, 0, 0, 0];
        let index: [u8; 7] = [0, 0, 0, 0, 0, 0, 0];
        assert_eq!(SasBytes::bytes_to_emoji_index(&bytes), index.as_ref());
        assert_eq!(SasBytes { bytes }.emoji_indices(), index.as_ref());

        let bytes: [u8; 6] = [0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF];
        let index: [u8; 7] = [63, 63, 63, 63, 63, 63, 63];
        assert_eq!(SasBytes::bytes_to_emoji_index(&bytes), index.as_ref());
        assert_eq!(SasBytes { bytes }.emoji_indices(), index.as_ref());
    }

    #[test]
    fn decimal_generation() {
        let bytes: [u8; 6] = [0, 0, 0, 0, 0, 0];
        let decimal: (u16, u16, u16) = (1000, 1000, 1000);
        assert_eq!(SasBytes::bytes_to_decimal(&bytes), decimal);
        assert_eq!(SasBytes { bytes }.decimals(), decimal);

        let bytes: [u8; 6] = [0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF];
        let decimal: (u16, u16, u16) = (9191, 9191, 9191);
        assert_eq!(SasBytes::bytes_to_decimal(&bytes), decimal);
        assert_eq!(SasBytes { bytes }.decimals(), decimal);
    }

    proptest! {
        #[test]
        fn proptest_emoji(bytes in prop::array::uniform6(0u8..)) {
            let numbers = SasBytes::bytes_to_emoji_index(&bytes);

            for number in numbers.iter() {
                prop_assert!(*number < 64);
            }
        }
    }

    proptest! {
        #[test]
        fn proptest_decimals(bytes in prop::array::uniform6(0u8..)) {
            let (first, second, third) = SasBytes::bytes_to_decimal(&bytes);

            prop_assert!((1000..=9191).contains(&first));
            prop_assert!((1000..=9191).contains(&second));
            prop_assert!((1000..=9191).contains(&third));
        }
    }
}