vodozemac/sas.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
// Copyright 2021 Damir Jelić, Denis Kasak
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! User-friendly key verification using short authentication strings (SAS).
//!
//! The verification process is heavily inspired by Phil Zimmermann’s [ZRTP]
//! key agreement handshake. A core part of key agreement in [ZRTP] is the
//! *hash commitment*: the party that begins the key sharing process sends
//! a *hash* of their part of the Diffie-Hellman exchange but does not send the
//! part itself exchange until they had received the other party’s part.
//!
//! The verification process can be used to verify the Ed25519 identity key of
//! an [`Account`].
//!
//! # Examples
//!
//! ```rust
//! use vodozemac::sas::Sas;
//! # use anyhow::Result;
//! # fn main() -> Result<()> {
//! let alice = Sas::new();
//! let bob = Sas::new();
//!
//! let bob_public_key = bob.public_key();
//!
//! let bob = bob.diffie_hellman(alice.public_key())?;
//! let alice = alice.diffie_hellman(bob_public_key)?;
//!
//! let alice_bytes = alice.bytes("AGREED_INFO");
//! let bob_bytes = bob.bytes("AGREED_INFO");
//!
//! let alice_emojis = alice_bytes.emoji_indices();
//! let bob_emojis = bob_bytes.emoji_indices();
//!
//! assert_eq!(alice_emojis, bob_emojis);
//! # Ok(())
//! # }
//! ```
//!
//! [`Account`]: crate::olm::Account
//! [ZRTP]: https://tools.ietf.org/html/rfc6189#section-4.4.1
use hkdf::Hkdf;
use hmac::{digest::MacError, Hmac, Mac as _};
use rand::thread_rng;
use sha2::Sha256;
use thiserror::Error;
use x25519_dalek::{EphemeralSecret, SharedSecret};
use crate::{
utilities::{base64_decode, base64_encode},
Curve25519PublicKey, KeyError,
};
type HmacSha256Key = Box<[u8; 32]>;
/// The output type for the SAS MAC calculation.
pub struct Mac(Vec<u8>);
impl Mac {
/// Convert the MAC to a base64 encoded string.
pub fn to_base64(&self) -> String {
base64_encode(&self.0)
}
/// Get the byte slice of the MAC.
pub fn as_bytes(&self) -> &[u8] {
&self.0
}
/// Create a new `Mac` object from a byte slice.
pub fn from_slice(bytes: &[u8]) -> Self {
Self(bytes.to_vec())
}
/// Create a new `Mac` object from a base64 encoded string.
pub fn from_base64(mac: &str) -> Result<Self, base64::DecodeError> {
let bytes = base64_decode(mac)?;
Ok(Self(bytes))
}
}
/// Error type for the case when we try to generate too many SAS bytes.
#[derive(Debug, Clone, Error)]
#[error("The given count of bytes was too large")]
pub struct InvalidCount;
/// Error type describing failures that can happen during the key verification.
#[derive(Debug, Error)]
pub enum SasError {
/// The MAC failed to be validated.
#[error("The SAS MAC validation didn't succeed: {0}")]
Mac(#[from] MacError),
}
/// A struct representing a short auth string verification object.
///
/// This object can be used to establish a shared secret to perform the short
/// auth string based key verification.
pub struct Sas {
secret_key: EphemeralSecret,
public_key: Curve25519PublicKey,
}
/// A struct representing a short auth string verification object where the
/// shared secret has been established.
///
/// This object can be used to generate the short auth string and calculate and
/// verify a MAC that protects information about the keys being verified.
pub struct EstablishedSas {
shared_secret: SharedSecret,
our_public_key: Curve25519PublicKey,
their_public_key: Curve25519PublicKey,
}
impl std::fmt::Debug for EstablishedSas {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_struct("EstablishedSas")
.field("our_public_key", &self.our_public_key.to_base64())
.field("their_public_key", &self.their_public_key.to_base64())
.finish_non_exhaustive()
}
}
/// Bytes generated from an shared secret that can be used as the short auth
/// string.
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct SasBytes {
bytes: [u8; 6],
}
impl SasBytes {
/// Get the index of 7 emojis that can be presented to users to perform the
/// key verification
///
/// The table that maps the index to an emoji can be found in the [spec].
///
/// [spec]: https://spec.matrix.org/unstable/client-server-api/#sas-method-emoji
pub fn emoji_indices(&self) -> [u8; 7] {
Self::bytes_to_emoji_index(&self.bytes)
}
/// Get the three decimal numbers that can be presented to users to perform
/// the key verification, as described in the [spec]
///
/// [spec]: https://spec.matrix.org/unstable/client-server-api/#sas-method-emoji
pub fn decimals(&self) -> (u16, u16, u16) {
Self::bytes_to_decimal(&self.bytes)
}
/// Get the raw bytes of the short auth string that can be converted to an
/// emoji, or decimal representation.
pub const fn as_bytes(&self) -> &[u8; 6] {
&self.bytes
}
/// Split the first 42 bits of our 6 bytes into 7 groups of 6 bits. The 7
/// groups of 6 bits represent an emoji index from the [spec].
///
/// [spec]: https://spec.matrix.org/unstable/client-server-api/#sas-method-emoji
fn bytes_to_emoji_index(bytes: &[u8; 6]) -> [u8; 7] {
let bytes: Vec<u64> = bytes.iter().map(|b| *b as u64).collect();
// Join the 6 bytes into one 64 bit unsigned int. This u64 will contain 48
// bits from our 6 bytes.
let mut num: u64 = bytes[0] << 40;
num += bytes[1] << 32;
num += bytes[2] << 24;
num += bytes[3] << 16;
num += bytes[4] << 8;
num += bytes[5];
// Take the top 42 bits of our 48 bits from the u64 and convert each 6 bits
// into a 6 bit number.
[
((num >> 42) & 63) as u8,
((num >> 36) & 63) as u8,
((num >> 30) & 63) as u8,
((num >> 24) & 63) as u8,
((num >> 18) & 63) as u8,
((num >> 12) & 63) as u8,
((num >> 6) & 63) as u8,
]
}
/// Convert the given bytes into three decimals. The 6th byte is ignored,
/// it's used for the emoji index conversion.
fn bytes_to_decimal(bytes: &[u8; 6]) -> (u16, u16, u16) {
let bytes: Vec<u16> = bytes.iter().map(|b| *b as u16).collect();
// This bitwise operation is taken from the [spec]
// [spec]: https://matrix.org/docs/spec/client_server/latest#sas-method-decimal
let first = bytes[0] << 5 | bytes[1] >> 3;
let second = (bytes[1] & 0x7) << 10 | bytes[2] << 2 | bytes[3] >> 6;
let third = (bytes[3] & 0x3F) << 7 | bytes[4] >> 1;
(first + 1000, second + 1000, third + 1000)
}
}
impl Default for Sas {
fn default() -> Self {
Self::new()
}
}
impl Sas {
/// Create a new random verification object
///
/// This creates an ephemeral curve25519 keypair that can be used to
/// establish a shared secret.
pub fn new() -> Self {
let rng = thread_rng();
let secret_key = EphemeralSecret::random_from_rng(rng);
let public_key = Curve25519PublicKey::from(&secret_key);
Self { secret_key, public_key }
}
/// Get the public key that can be used to establish a shared secret.
pub const fn public_key(&self) -> Curve25519PublicKey {
self.public_key
}
/// Establishes a SAS secret by performing a DH handshake with another
/// public key.
///
/// Returns an [`EstablishedSas`] object which can be used to generate
/// [`SasBytes`] if the given public key was valid, otherwise `None`.
pub fn diffie_hellman(
self,
their_public_key: Curve25519PublicKey,
) -> Result<EstablishedSas, KeyError> {
let shared_secret = self.secret_key.diffie_hellman(&their_public_key.inner);
if shared_secret.was_contributory() {
Ok(EstablishedSas { shared_secret, our_public_key: self.public_key, their_public_key })
} else {
Err(KeyError::NonContributoryKey)
}
}
/// Establishes a SAS secret by performing a DH handshake with another
/// public key in "raw", base64-encoded form.
///
/// Returns an [`EstablishedSas`] object which can be used to generate
/// [`SasBytes`] if the received public key is valid, otherwise `None`.
pub fn diffie_hellman_with_raw(
self,
other_public_key: &str,
) -> Result<EstablishedSas, KeyError> {
let other_public_key = Curve25519PublicKey::from_base64(other_public_key)?;
self.diffie_hellman(other_public_key)
}
}
impl EstablishedSas {
/// Generate [`SasBytes`] using HKDF with the shared secret as the input key
/// material.
///
/// The info string should be agreed upon beforehand, both parties need to
/// use the same info string.
pub fn bytes(&self, info: &str) -> SasBytes {
let mut bytes = [0u8; 6];
let byte_vec =
self.bytes_raw(info, 6).expect("HKDF should always be able to generate 6 bytes");
bytes.copy_from_slice(&byte_vec);
SasBytes { bytes }
}
/// Generate the given number of bytes using HKDF with the shared secret
/// as the input key material.
///
/// The info string should be agreed upon beforehand, both parties need to
/// use the same info string.
///
/// The number of bytes we can generate is limited, we can generate up to
/// 32 * 255 bytes. The function will not fail if the given count is smaller
/// than the limit.
pub fn bytes_raw(&self, info: &str, count: usize) -> Result<Vec<u8>, InvalidCount> {
let mut output = vec![0u8; count];
let hkdf = self.get_hkdf();
hkdf.expand(info.as_bytes(), &mut output[0..count]).map_err(|_| InvalidCount)?;
Ok(output)
}
/// Calculate a MAC for the given input using the info string as additional
/// data.
///
///
/// This should be used to calculate a MAC of the ed25519 identity key of an
/// [`Account`]
///
/// The MAC is returned as a base64 encoded string.
///
/// [`Account`]: crate::olm::Account
pub fn calculate_mac(&self, input: &str, info: &str) -> Mac {
let mut mac = self.get_mac(info);
mac.update(input.as_ref());
Mac(mac.finalize().into_bytes().to_vec())
}
/// Calculate a MAC for the given input using the info string as additional
/// data, the MAC is returned as an invalid base64 encoded string.
///
/// **Warning**: This method should never be used unless you require libolm
/// compatibility. Libolm used to incorrectly encode their MAC because the
/// input buffer was reused as the output buffer. This method replicates the
/// buggy behaviour.
#[cfg(feature = "libolm-compat")]
pub fn calculate_mac_invalid_base64(&self, input: &str, info: &str) -> String {
// First calculate the MAC as usual.
let mac = self.calculate_mac(input, info);
// Since the input buffer is reused as an output buffer, and base64
// operates on 3 input bytes to generate 4 output bytes, the input
// buffer gets overrun by the output.
//
// Only 6 bytes of the MAC get to be used before the output overwrites
// the input.
// All three bytes of the first input chunk are used successfully.
let mut out = base64_encode(&mac.as_bytes()[0..3]);
// For the next input chunk, only two bytes are sourced from the actual
// MAC, since the first byte gets overwritten by the output.
let mut bytes_from_mac = 2;
// Subsequent input chunks get progressively more overwritten by the
// output, so that after two iterations, none of the original input
// bytes remain.
for i in (6..10).step_by(3) {
let from_mac = &mac.as_bytes()[i - bytes_from_mac..i];
let from_out = &out.as_bytes()[out.len() - (3 - bytes_from_mac)..];
let bytes = [from_out, from_mac].concat();
let encoded = base64_encode(bytes);
bytes_from_mac -= 1;
out = out + &encoded;
}
// At this point, the rest of our input will be completely sourced from
// the previous output. The MAC has a size of 32, so we abort before we
// get to the remainder calculation.
for i in (9..30).step_by(3) {
let next = &out.as_bytes()[i..i + 3];
let next_four = base64_encode(next);
out = out + &next_four;
}
// Finally, use the remainder to get the last 3 bytes of output. No
// padding is used.
let next = &out.as_bytes()[30..32];
let next = base64_encode(next);
out + &next
}
/// Verify a MAC that was previously created using the
/// [`EstablishedSas::calculate_mac()`] method.
///
/// Users should calculate a MAC and send it to the other side, they should
/// then verify each other's MAC using this method.
pub fn verify_mac(&self, input: &str, info: &str, tag: &Mac) -> Result<(), SasError> {
let mut mac = self.get_mac(info);
mac.update(input.as_bytes());
Ok(mac.verify_slice(&tag.0)?)
}
/// Get the public key that was created by us, that was used to establish
/// the shared secret.
pub const fn our_public_key(&self) -> Curve25519PublicKey {
self.our_public_key
}
/// Get the public key that was created by the other party, that was used to
/// establish the shared secret.
pub const fn their_public_key(&self) -> Curve25519PublicKey {
self.their_public_key
}
fn get_hkdf(&self) -> Hkdf<Sha256> {
Hkdf::new(None, self.shared_secret.as_bytes())
}
fn get_mac_key(&self, info: &str) -> HmacSha256Key {
let mut mac_key = Box::new([0u8; 32]);
let hkdf = self.get_hkdf();
hkdf.expand(info.as_bytes(), mac_key.as_mut_slice()).expect("Can't expand the MAC key");
mac_key
}
fn get_mac(&self, info: &str) -> Hmac<Sha256> {
let mac_key = self.get_mac_key(info);
Hmac::<Sha256>::new_from_slice(mac_key.as_slice()).expect("Can't create a HMAC object")
}
}
#[cfg(test)]
mod test {
use olm_rs::sas::OlmSas;
use proptest::prelude::*;
use super::{Mac, Sas, SasBytes};
const ALICE_MXID: &str = "@alice:example.com";
const ALICE_DEVICE_ID: &str = "AAAAAAAAAA";
const BOB_MXID: &str = "@bob:example.com";
const BOB_DEVICE_ID: &str = "BBBBBBBBBB";
#[test]
fn as_bytes_is_identity() {
let bytes = [0u8, 1, 2, 3, 4, 5];
assert_eq!(SasBytes { bytes }.as_bytes(), &bytes);
}
#[test]
fn mac_from_slice_as_bytes_is_identity() {
let bytes = "ABCDEFGH".as_bytes();
assert_eq!(
Mac::from_slice(bytes).as_bytes(),
bytes,
"as_bytes() after from_slice() is not identity"
);
}
#[test]
fn libolm_and_vodozemac_generate_same_bytes() {
let mut olm = OlmSas::new();
let dalek = Sas::new();
olm.set_their_public_key(dalek.public_key().to_base64())
.expect("Couldn't set the public key for libolm");
let established = dalek
.diffie_hellman_with_raw(&olm.public_key())
.expect("Couldn't establish SAS secret");
assert_eq!(
olm.generate_bytes("TEST", 10).expect("libolm couldn't generate SAS bytes"),
established.bytes_raw("TEST", 10).expect("vodozemac couldn't generate SAS bytes")
);
}
#[test]
fn vodozemac_and_vodozemac_generate_same_bytes() {
let alice = Sas::default();
let bob = Sas::default();
let alice_public_key_encoded = alice.public_key().to_base64();
let alice_public_key = alice.public_key().to_owned();
let bob_public_key_encoded = bob.public_key().to_base64();
let bob_public_key = bob.public_key();
let alice_established = alice
.diffie_hellman_with_raw(&bob_public_key_encoded)
.expect("Couldn't establish SAS secret for Alice");
let bob_established = bob
.diffie_hellman_with_raw(&alice_public_key_encoded)
.expect("Couldn't establish SAS secret for Bob");
assert_eq!(alice_established.our_public_key(), alice_public_key);
assert_eq!(alice_established.their_public_key(), bob_public_key);
assert_eq!(bob_established.our_public_key(), bob_public_key);
assert_eq!(bob_established.their_public_key(), alice_public_key);
let alice_bytes = alice_established.bytes("TEST");
let bob_bytes = bob_established.bytes("TEST");
assert_eq!(alice_bytes, bob_bytes, "The two sides calculated different bytes.");
assert_eq!(
alice_bytes.emoji_indices(),
bob_bytes.emoji_indices(),
"The two sides calculated different emoji indices."
);
assert_eq!(
alice_bytes.decimals(),
bob_bytes.decimals(),
"The two sides calculated different decimals."
);
assert_eq!(alice_bytes.as_bytes(), bob_bytes.as_bytes());
}
#[test]
fn calculate_mac_vodozemac_vodozemac() {
let alice = Sas::new();
let bob = Sas::new();
let alice_public_key = alice.public_key().to_base64();
let bob_public_key = bob.public_key().to_base64();
let message = format!("ed25519:{BOB_DEVICE_ID}");
let extra_info = format!(
"MATRIX_KEY_VERIFICATION_MAC\
{BOB_MXID}{BOB_DEVICE_ID}\
{ALICE_MXID}{ALICE_DEVICE_ID}\
$1234567890\
KEY_IDS",
);
let alice_established = alice
.diffie_hellman_with_raw(&bob_public_key)
.expect("Couldn't establish SAS secret for Alice");
let bob_established = bob
.diffie_hellman_with_raw(&alice_public_key)
.expect("Couldn't establish SAS secret for Bob");
let alice_mac = alice_established.calculate_mac(&message, &extra_info);
let bob_mac = bob_established.calculate_mac(&message, &extra_info);
assert_eq!(
alice_mac.to_base64(),
bob_mac.to_base64(),
"Two vodozemac devices calculated different SAS MACs."
);
alice_established
.verify_mac(&message, &extra_info, &bob_mac)
.expect("Alice couldn't verify Bob's MAC");
bob_established
.verify_mac(&message, &extra_info, &alice_mac)
.expect("Bob couldn't verify Alice's MAC");
let invalid_mac = Mac::from_slice(&[
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
1, 0, 1,
]);
alice_established
.verify_mac(&message, &extra_info, &invalid_mac)
.expect_err("Alice verified an invalid MAC");
bob_established
.verify_mac(&message, &extra_info, &invalid_mac)
.expect_err("Bob verified an invalid MAC");
}
#[test]
fn calculate_mac_vodozemac_libolm() {
let alice_on_dalek = Sas::new();
let mut bob_on_libolm = OlmSas::new();
let alice_public_key = alice_on_dalek.public_key().to_base64();
let bob_public_key = bob_on_libolm.public_key();
let message = format!("ed25519:{BOB_DEVICE_ID}");
let extra_info = format!(
"MATRIX_KEY_VERIFICATION_MAC\
{BOB_MXID}{BOB_DEVICE_ID}\
{ALICE_MXID}{ALICE_DEVICE_ID}\
$1234567890\
KEY_IDS",
);
bob_on_libolm
.set_their_public_key(alice_public_key)
.expect("Couldn't set the public key for libolm");
let established = alice_on_dalek
.diffie_hellman_with_raw(&bob_public_key)
.expect("Couldn't establish SAS secret");
let olm_mac = bob_on_libolm
.calculate_mac_fixed_base64(&message, &extra_info)
.expect("libolm couldn't calculate SAS MAC.");
assert_eq!(olm_mac, established.calculate_mac(&message, &extra_info).to_base64());
let olm_mac =
Mac::from_base64(&olm_mac).expect("SAS MAC generated by libolm wasn't valid base64.");
established.verify_mac(&message, &extra_info, &olm_mac).expect("Couldn't verify MAC");
}
#[test]
#[cfg(feature = "libolm-compat")]
fn calculate_mac_invalid_base64() {
let mut olm = OlmSas::new();
let dalek = Sas::new();
olm.set_their_public_key(dalek.public_key().to_base64())
.expect("Couldn't set the public key for libolm");
let established = dalek
.diffie_hellman_with_raw(&olm.public_key())
.expect("Couldn't establish SAS secret");
let olm_mac = olm.calculate_mac("", "").expect("libolm couldn't calculate a MAC");
assert_eq!(olm_mac, established.calculate_mac_invalid_base64("", ""));
}
#[test]
fn emoji_generation() {
let bytes: [u8; 6] = [0, 0, 0, 0, 0, 0];
let index: [u8; 7] = [0, 0, 0, 0, 0, 0, 0];
assert_eq!(SasBytes::bytes_to_emoji_index(&bytes), index.as_ref());
assert_eq!(SasBytes { bytes }.emoji_indices(), index.as_ref());
let bytes: [u8; 6] = [0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF];
let index: [u8; 7] = [63, 63, 63, 63, 63, 63, 63];
assert_eq!(SasBytes::bytes_to_emoji_index(&bytes), index.as_ref());
assert_eq!(SasBytes { bytes }.emoji_indices(), index.as_ref());
}
#[test]
fn decimal_generation() {
let bytes: [u8; 6] = [0, 0, 0, 0, 0, 0];
let decimal: (u16, u16, u16) = (1000, 1000, 1000);
assert_eq!(SasBytes::bytes_to_decimal(&bytes), decimal);
assert_eq!(SasBytes { bytes }.decimals(), decimal);
let bytes: [u8; 6] = [0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF];
let decimal: (u16, u16, u16) = (9191, 9191, 9191);
assert_eq!(SasBytes::bytes_to_decimal(&bytes), decimal);
assert_eq!(SasBytes { bytes }.decimals(), decimal);
}
proptest! {
#[test]
fn proptest_emoji(bytes in prop::array::uniform6(0u8..)) {
let numbers = SasBytes::bytes_to_emoji_index(&bytes);
for number in numbers.iter() {
prop_assert!(*number < 64);
}
}
}
proptest! {
#[test]
fn proptest_decimals(bytes in prop::array::uniform6(0u8..)) {
let (first, second, third) = SasBytes::bytes_to_decimal(&bytes);
prop_assert!((1000..=9191).contains(&first));
prop_assert!((1000..=9191).contains(&second));
prop_assert!((1000..=9191).contains(&third));
}
}
}