growable_bloom_filter/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
#![deny(unsafe_code)]
#![cfg_attr(feature = "nightly", feature(test))]
///! Impl of Scalable Bloom Filters
///! http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.62.7953&rep=rep1&type=pdf
#[cfg(feature = "nightly")]
extern crate test;
use serde_derive::{Deserialize, Serialize};
use std::{
hash::{Hash, Hasher},
iter::Iterator,
num::NonZeroU64,
};
mod stable_hasher;
/// Base Bloom Filter
#[derive(Deserialize, Serialize, PartialEq, Clone, Debug)]
struct Bloom {
/// The actual bit field. Set to 0 with `Bloom::new`.
#[serde(rename = "b", with = "serde_bytes")]
buffer: Box<[u8]>,
/// The number of slices in the partitioned bloom filter.
/// Equivalent to the number of hash function in the classic bloom filter.
/// An insertion will result in a bit being set in each slice.
#[serde(rename = "k")]
num_slices: NonZeroU64,
}
impl Bloom {
/// Create a new Bloom filter (specifically, a Partitioned Bloom filter)
///
/// # Arguments
///
/// * `capacity` - target capacity. Panics if `capacity` is zero.
/// * `error_ratio` - false positive ratio (0..1.0).
fn new(capacity: usize, error_ratio: f64) -> Bloom {
// Directly from paper:
// k = log2(1/P) (num_slices)
// n ≈ −m ln(1−p) (slice_len_bits)
// M = k * m (total_bits)
// for optimal filter p = 0.5, which gives:
// n ≈ −m ln(0.5), rearranging: m = -n / ln(0.5) = n / ln(2)
debug_assert!(capacity >= 1);
debug_assert!(0.0 < error_ratio && error_ratio < 1.0);
// We're using ceil instead of round in order to get an error rate <= the desired.
// Using round can result in significantly higher error rates.
let num_slices = ((1.0 / error_ratio).log2()).ceil() as u64;
let slice_len_bits = (capacity as f64 / 2f64.ln()).ceil() as u64;
let total_bits = num_slices * slice_len_bits;
// round up to the next byte
let buffer_bytes = ((total_bits + 7) / 8) as usize;
let mut buffer = Vec::with_capacity(buffer_bytes);
buffer.resize(buffer_bytes, 0);
Bloom {
buffer: buffer.into_boxed_slice(),
num_slices: NonZeroU64::new(num_slices).unwrap(),
}
}
/// Create an index iterator for a given item.
///
/// This creates an iterator of pairs `(byte, mask)` indices in the buffer.
/// The iterator will return one pair of indexes for each slice in the bloom filter.
///
/// The pairs `(byte idx, byte mask)` are:
/// byte idx: byte idx in `self.buffer` to be extract for usage with the mask
/// byte mask: bit mask with a single bit set, can be ANDed (`&`) with
/// self.buffer[idx] to yield a number != 0 if the specified bit was set.
/// The mask can also be ORed (`|`) with the self.buffer[idx]
/// to set the corresponding bit.
///
/// # Arguments
///
/// * `item` - The item to hash.
#[inline]
fn index_iterator(&self, mut h1: u64, mut h2: u64) -> impl Iterator<Item = (usize, u8)> {
// The _bit_ length (thus buffer.len() multiplied by 8) of each slice within buffer.
// We'll use a NonZero type so that the compiler can avoid checking for
// division/modulus by 0 inside the iterator.
let slice_len = NonZeroU64::new(self.buffer.len() as u64 * 8 / self.num_slices).unwrap();
// Generate `self.num_slices` hashes from 2 hashes, using enhanced double hashing.
// See https://en.wikipedia.org/wiki/Double_hashing#Enhanced_double_hashing for details.
// We choose to use 2x64 bit hashes instead of 2x32 ones as it gives significant better false positive ratios.
debug_assert_ne!(h2, 0, "Second hash can't be 0 for double hashing");
(0..self.num_slices.get()).map(move |i| {
// Calculate hash(i)
let hi = h1 % slice_len + i * slice_len.get();
// Advance enhanced double hashing state
h1 = h1.wrapping_add(h2);
h2 = h2.wrapping_add(i);
// Resulting index/mask based on hash(i)
let idx = (hi / 8) as usize;
let mask = 1u8 << (hi % 8);
(idx, mask)
})
}
/// Insert an item identified by two hashes is in the Bloom.
/// # Arguments
///
/// * `h1` - The main hash
/// * `h2` - The second hash (must be != 0)
///
/// # Example
///
///
/// use growable_bloom_filter::Bloom;
/// let bloom = Bloom::new(2, 128);
///
/// let (h1, h2) = double_hashing_hashes("my-item");
/// bloom.insert(h1, h2);
///
#[inline]
fn insert(&mut self, h1: u64, h2: u64) {
// Set all bits (one per slice) corresponding to this item.
//
// Setting the bit:
// 1000 0011 (self.buffer[idx])
// 0001 0000 (mask)
// |---------
// 1001 0011
//
for (byte, mask) in self.index_iterator(h1, h2) {
self.buffer[byte] |= mask;
}
}
/// Test if item identified by two hashes is in the Bloom.
///
/// # Arguments
///
/// * `h1` - The main hash
/// * `h2` - The second hash (must be != 0)
///
/// # Example
///
/// let bloom = Bloom:new(2, 128);
///
/// let (h1, h2) = double_hashing_hashes("my-item");
/// bloom.insert(h1, h2);
///
/// assert!(bloom.contains(h1, h2));
///
#[inline]
fn contains(&self, h1: u64, h2: u64) -> bool {
// Check if all bits (one per slice) corresponding to this item are set.
// See index_iterator comments for a detailed explanation.
//
// Potentially found case:
// 0111 1111 (self.buffer[idx])
// 0001 0000 (mask)
// &---------
// 0001 0000 != 0
//
// Definitely not found case:
// 1110 1111 (self.buffer[idx])
// 0001 0000 (mask)
// &---------
// 0000 0000 == 0
//
self.index_iterator(h1, h2)
.all(|(byte, mask)| self.buffer[byte] & mask != 0)
}
}
/// Return 2 hashes for `item` that can be used as h1 and h2 fordouble hashing.
/// See https://en.wikipedia.org/wiki/Double_hashing#Enhanced_double_hashing for details.
#[inline]
fn double_hashing_hashes<T: Hash>(item: T) -> (u64, u64) {
let mut hasher = stable_hasher::StableHasher::new();
item.hash(&mut hasher);
let h1 = hasher.finish();
// Write a nul byte to the existing state and get another hash.
// This is appropriate when using a very high quality hasher,
// which we know is the case.
0u8.hash(&mut hasher);
// h2 hash shouldn't be 0 for double hashing
let h2 = hasher.finish().max(1);
(h1, h2)
}
// From the paper:
// Considering the choice of s (GROWTH_FACTOR) = 2 for small expected growth and s = 4
// for larger growth, one can see that r (TIGHTENING_RATIO) around 0.8 – 0.9 is a sensible choice.
// Here we select good defaults for 10~1000x growth.
const DEFAULT_GROWTH_FACTOR: usize = 2;
const DEFAULT_TIGHTENING_RATIO: f64 = 0.8515625; // ~0.85 but has exact representation in f32/f64
const fn default_growth_factor() -> usize {
DEFAULT_GROWTH_FACTOR
}
const fn default_tightening_ratio() -> f64 {
DEFAULT_TIGHTENING_RATIO
}
/// A Growable Bloom Filter
///
/// # Overview
///
/// Implementation of [Scalable Bloom Filters](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.62.7953&rep=rep1&type=pdf)
/// which also provides serde serialization and deserialize.
///
/// A bloom filter lets you `insert` items, and then test association with `contains`.
/// It's space and time efficient, at the cost of false positives.
/// In particular, if `contains` returns `true`, it may be in filter.
/// But if `contains` returns false, it's definitely not in the bloom filter.
///
/// You can control the failure rate by setting `desired_error_prob` and `est_insertions` appropriately.
///
/// # Applications
///
/// Bloom filters are typically used as a pre-cache to avoid expensive operations.
/// For example, if you need to ask ten thousand servers if they have data XYZ,
/// you could use GrowableBloom to figure out which ones do NOT have XYZ.
///
/// # Example
///
/// ```rust
/// use growable_bloom_filter::GrowableBloom;
///
/// // Create and insert into the bloom filter
/// let mut gbloom = GrowableBloom::new(0.05, 1000);
/// gbloom.insert(&0);
/// assert!(gbloom.contains(&0));
///
/// // Serialize and Deserialize the bloom filter
/// use serde_json;
///
/// let s = serde_json::to_string(&gbloom).unwrap();
/// let des_gbloom: GrowableBloom = serde_json::from_str(&s).unwrap();
/// assert!(des_gbloom.contains(&0));
///
/// // Builder API
/// use growable_bloom_filter::GrowableBloomBuilder;
/// let mut gbloom = GrowableBloomBuilder::new()
/// .estimated_insertions(100)
/// .desired_error_ratio(0.05)
/// .build();
/// gbloom.insert(&0);
/// assert!(gbloom.contains(&0));
/// ```
#[derive(Deserialize, Serialize, PartialEq, Clone, Debug)]
pub struct GrowableBloom {
/// The constituent bloom filters
#[serde(rename = "b")]
blooms: Vec<Bloom>,
#[serde(rename = "e")]
desired_error_prob: f64,
#[serde(rename = "t")]
est_insertions: usize,
/// Number of items successfully inserted
#[serde(rename = "i")]
inserts: usize,
/// Item capacity
#[serde(rename = "c")]
capacity: usize,
/// Growth factor
#[serde(rename = "g", default = "default_growth_factor")]
growth_factor: usize,
#[serde(rename = "r", default = "default_tightening_ratio")]
tightening_ratio: f64,
}
impl GrowableBloom {
/// Create a new GrowableBloom filter.
///
/// # Arguments
///
/// * `desired_error_prob` - The desired error probability (eg. 0.05, 0.01)
/// * `est_insertions` - The estimated number of insertions (eg. 100, 1000).
///
/// Note: You really don't need to be accurate with est_insertions.
/// Power of 10 granularity should be fine (~1000 is decent).
///
/// # Example
///
/// ```rust
/// // 5% failure rate, estimated 100 elements to insert
/// use growable_bloom_filter::GrowableBloom;
/// let mut gbloom = GrowableBloom::new(0.05, 100);
/// ```
///
/// # Panics
///
/// * Panics if desired_error_prob is less then 0 or greater than 1.
/// * Panics if capacity is zero. If you're unsure, set it to 1000.
///
/// # Builder API
/// An alternative way to construct a GrowableBloom.
///
/// See [`GrowableBloomBuilder`] for documentation. It allows you to specify
/// other constants to control bloom filter behaviour.
///
/// ```rust
/// use growable_bloom_filter::GrowableBloomBuilder;
/// let mut gbloom = GrowableBloomBuilder::new()
/// .estimated_insertions(100)
/// .desired_error_ratio(0.05)
/// .build();
/// ```
#[inline]
pub fn new(desired_error_prob: f64, est_insertions: usize) -> GrowableBloom {
Self::new_with_internals(
desired_error_prob,
est_insertions,
DEFAULT_GROWTH_FACTOR,
DEFAULT_TIGHTENING_RATIO,
)
}
pub(crate) fn new_with_internals(
desired_error_prob: f64,
est_insertions: usize,
growth_factor: usize,
tightening_ratio: f64,
) -> GrowableBloom {
assert!(0.0 < desired_error_prob && desired_error_prob < 1.0);
assert!(growth_factor > 1);
GrowableBloom {
blooms: vec![],
desired_error_prob,
est_insertions,
inserts: 0,
capacity: 0,
growth_factor,
tightening_ratio,
}
}
/// Test if `item` in the Bloom filter.
///
/// If `true` is returned, it _may_ be in the filter.
/// If `false` is returned, it's NOT in the filter.
///
/// # Arguments
///
/// * `item` - The item to test
///
/// # Example
///
/// ```rust
/// use growable_bloom_filter::GrowableBloom;
/// let mut bloom = GrowableBloom::new(0.05, 10);
/// let item = 0;
///
/// bloom.insert(&item);
/// assert!(bloom.contains(&item));
/// ```
pub fn contains<T: Hash>(&self, item: T) -> bool {
let (h1, h2) = double_hashing_hashes(item);
self.blooms.iter().any(|bloom| bloom.contains(h1, h2))
}
/// Insert `item` into the filter.
///
/// This may resize the GrowableBloom.
///
/// # Arguments
///
/// * `item` - The item to insert
///
/// # Example
///
/// ```rust
/// use growable_bloom_filter::GrowableBloom;
/// let mut bloom = GrowableBloom::new(0.05, 10);
/// let item = 0;
///
/// bloom.insert(&item);
/// bloom.insert(&-1);
/// bloom.insert(&vec![1, 2, 3]);
/// bloom.insert("hello");
/// ```
pub fn insert<T: Hash>(&mut self, item: T) -> bool {
let (h1, h2) = double_hashing_hashes(item);
// Step 1: Ask if we already have it
if self.blooms.iter().any(|bloom| bloom.contains(h1, h2)) {
return false;
}
// Step 2: Grow if necessary
if self.inserts >= self.capacity {
self.grow();
}
// Step 3: Insert it into the last
self.inserts += 1;
let curr_bloom = self.blooms.last_mut().unwrap();
curr_bloom.insert(h1, h2);
true
}
/// Clear the bloom filter.
///
/// This does not resize the filter.
///
/// # Example
///
/// ```rust
/// use growable_bloom_filter::GrowableBloom;
/// let mut bloom = GrowableBloom::new(0.05, 10);
/// let item = 0;
///
/// bloom.insert(&item);
/// assert!(bloom.contains(&item));
/// bloom.clear();
/// assert!(!bloom.contains(&item)); // No longer contains item
/// ```
pub fn clear(&mut self) {
self.blooms.clear();
self.inserts = 0;
self.capacity = 0;
}
/// Whether this bloom filter contain any items.
#[inline]
pub fn is_empty(&self) -> bool {
self.inserts == 0
}
/// The current estimated number of elements added to the filter.
/// This is an estimation, so it may or may not increase after
/// an insertion in the filter.
///
/// # Example
///
/// ```rust
/// use growable_bloom_filter::GrowableBloom;
/// let mut bloom = GrowableBloom::new(0.05, 10);
///
/// bloom.insert(0);
/// assert_eq!(bloom.len(), 1);
/// ```
#[inline]
pub fn len(&self) -> usize {
self.inserts
}
/// The current estimated capacity of the filter.
/// A filter starts with a small capacity and will expand to accommodate more items.
/// The actual ratio of increase depends on the values used to construct the bloom filter.
///
/// Note: An empty filter has capacity zero as we haven't calculated
/// the necessary bloom filter size. Subsequent inserts will result
/// in the capacity updating.
///
/// # Example
///
/// ```rust
/// use growable_bloom_filter::GrowableBloom;
/// let mut bloom = GrowableBloom::new(0.05, 10);
///
/// assert_eq!(bloom.capacity(), 0);
///
/// bloom.insert(0);
/// // After an insert, our capacity is no longer zero.
/// assert_ne!(bloom.capacity(), 0);
/// ```
#[inline]
pub fn capacity(&self) -> usize {
self.capacity
}
/// Record if `item` already exists in the filter, and insert it if it doesn't already exist.
///
/// Returns `true` if the item already existed in the filter.
///
/// Note: This isn't faster than just inserting.
///
/// # Example
///
/// ```rust
/// use growable_bloom_filter::GrowableBloom;
/// let mut bloom = GrowableBloom::new(0.05, 10);
/// let item = 0;
///
/// let existed_before = bloom.check_and_set(&item);
/// assert!(existed_before == false);
///
/// let existed_before = bloom.check_and_set(&item);
/// assert!(existed_before == true);
/// ```
pub fn check_and_set<T: Hash>(&mut self, item: T) -> bool {
!self.insert(item)
}
/// Grow the GrowableBloom
fn grow(&mut self) {
// The paper gives an upper bound formula for the fp rate: fpUB <= fp0 * / (1-r)
// This is because each sub bloom filter is created with an ever smaller
// false-positive ratio, forming a geometric progression.
// let r = TIGHTENING_RATIO
// fpUB ~= fp0 * fp0*r * fp0*r*r * fp0*r*r*r ...
// fp(x) = fp0 * (r**x)
let error_ratio =
self.desired_error_prob * self.tightening_ratio.powi(self.blooms.len() as _);
// In order to have relatively small space overhead compared to a single appropriately sized bloom filter
// the sub filters should be created with increasingly bigger sizes.
// let s = GROWTH_FACTOR
// cap(x) = cap0 * (s**x)
let capacity = self.est_insertions * self.growth_factor.pow(self.blooms.len() as _);
let new_bloom = Bloom::new(capacity, error_ratio);
self.blooms.push(new_bloom);
self.capacity += capacity;
}
}
/// Builder API for GrowableBloom.
///
/// ```rust
/// use growable_bloom_filter::GrowableBloomBuilder;
/// let mut gbloom = GrowableBloomBuilder::new()
/// .estimated_insertions(100)
/// .desired_error_ratio(0.05)
/// .build();
/// ```
pub struct GrowableBloomBuilder {
desired_error_ratio: f64,
est_insertions: usize,
growth_factor: usize,
tightening_ratio: f64,
}
impl GrowableBloomBuilder {
/// Create a new GrowableBloomBuilder.
///
/// Builder API for GrowableBloom.
///
/// ```rust
/// use growable_bloom_filter::GrowableBloomBuilder;
/// let mut gbloom = GrowableBloomBuilder::new()
/// .estimated_insertions(1000)
/// .desired_error_ratio(0.01)
/// .growth_factor(2)
/// .tightening_ratio(0.85)
/// .build();
/// gbloom.insert("hello world");
/// assert!(gbloom.contains(&"hello world"));
/// ```
pub fn new() -> Self {
Self {
est_insertions: 1000,
desired_error_ratio: 0.01,
growth_factor: DEFAULT_GROWTH_FACTOR,
tightening_ratio: DEFAULT_TIGHTENING_RATIO,
}
}
/// Estimated number of insertions. A power of ten accuracy is good enough.
///
/// # Panics
///
/// This will panic in debug mode if count is zero.
pub fn estimated_insertions(self, count: usize) -> Self {
Self {
est_insertions: count,
..self
}
}
/// Desired error ratio (i.e. false positive rate).
///
/// Smaller error ratios will use more memory and might be a bit slower.
///
/// # Panics
///
/// This will panic if the error ratio is outside of (0, 1.0).
pub fn desired_error_ratio(self, ratio: f64) -> Self {
Self {
desired_error_ratio: ratio,
..self
}
}
/// Base for the exponential growth factor.
///
/// As more items are inserted into a GrowableBloom this growth_factor
/// number is used to exponentially grow the capacity of newly added
/// internal bloom filters. So this number is raised to some exponent proportional
/// to the number of bloom filters held internally.
///
/// Basically it'll control how quickly the bloom filter grows in capacity.
/// By default it's set to two.
pub fn growth_factor(self, factor: usize) -> Self {
Self {
growth_factor: factor,
..self
}
}
/// Control the downwards adjustment on the error ratio when growing.
///
/// When GrowableBloom adds a new internal bloom filter it uses
/// the tightening_ratio to adjust the desired_error_ratio on these
/// new, larger internal bloom filters. This is necessary to achieve decent
/// accuracy on the user's desired error_ratio while using larger and larger
/// bloom filters internally.
///
/// By default this library sets it to ~0.85, but for smaller growth factors
/// any number around 0.8 - 0.9 should be fine.
pub fn tightening_ratio(self, ratio: f64) -> Self {
assert!(0.0 < ratio && ratio < 1.0);
Self {
tightening_ratio: ratio,
..self
}
}
/// Consume the builder to create a GrowableBloom.
///
/// # Panics
///
/// This will panic if an invalid value is specified.
pub fn build(self) -> GrowableBloom {
GrowableBloom::new_with_internals(
self.desired_error_ratio,
self.est_insertions,
self.growth_factor,
self.tightening_ratio,
)
}
}
#[cfg(test)]
mod growable_bloom_tests {
mod test_bloom {
use crate::{double_hashing_hashes, Bloom};
#[test]
fn can_insert_bloom() {
let mut b = Bloom::new(100, 0.01);
let (h1, h2) = double_hashing_hashes(123);
b.insert(h1, h2);
assert!(b.contains(h1, h2))
}
#[test]
fn can_insert_string_bloom() {
let mut b = Bloom::new(100, 0.01);
let (h1, h2) = double_hashing_hashes("hello world".to_string());
b.insert(h1, h2);
assert!(b.contains(h1, h2))
}
#[test]
fn does_not_contain() {
let mut b = Bloom::new(100, 0.01);
let upper = 100;
for i in (0..upper).step_by(2) {
let (h1, h2) = double_hashing_hashes(i);
b.insert(h1, h2);
assert!(b.contains(h1, h2))
}
for i in (1..upper).step_by(2) {
let (h1, h2) = double_hashing_hashes(i);
assert!(!b.contains(h1, h2))
}
}
#[test]
fn can_insert_lots() {
let mut b = Bloom::new(100, 0.01);
for i in 0..1024 {
let (h1, h2) = double_hashing_hashes(i);
b.insert(h1, h2);
assert!(b.contains(h1, h2))
}
}
#[test]
fn test_refs() {
let item = String::from("Hello World");
let mut b = Bloom::new(100, 0.01);
let (h1, h2) = double_hashing_hashes(&item);
b.insert(h1, h2);
assert!(b.contains(h1, h2))
}
}
mod test_growable {
use crate::{GrowableBloom, DEFAULT_TIGHTENING_RATIO};
use serde_json;
#[test]
fn can_insert() {
let mut b = GrowableBloom::new(0.05, 1000);
let item = 20;
b.insert(&item);
assert!(b.contains(&item))
}
#[test]
fn len_capacity_clear() {
let mut b = GrowableBloom::new(0.05, 100);
assert_eq!(b.len(), 0);
assert_eq!(b.capacity(), 0);
let item = 20;
b.insert(&item);
assert_ne!(b.len(), 0);
assert_ne!(b.capacity(), 0);
b.clear();
assert_eq!(b.len(), 0);
assert_eq!(b.capacity(), 0);
}
#[test]
fn ensure_capacity() {
let mut b = GrowableBloom::new(0.05, 1);
assert_eq!(b.capacity(), 0);
b.insert("abc");
assert_eq!(b.capacity(), 1);
for i in 0..100 {
b.insert(i);
}
assert_eq!(b.capacity(), 127);
}
#[test]
fn can_insert_string() {
let mut b = GrowableBloom::new(0.05, 1000);
let item: String = "hello world".to_owned();
b.insert(&item);
assert!(b.contains(&item))
}
#[test]
fn does_not_contain() {
let mut b = GrowableBloom::new(0.05, 1000);
assert_eq!(b.contains(&"hello"), false);
b.insert(&0);
assert_eq!(b.contains(&"hello"), false);
b.insert(&1);
assert_eq!(b.contains(&"hello"), false);
b.insert(&2);
assert_eq!(b.contains(&"hello"), false);
}
#[test]
fn can_insert_a_lot_of_elements() {
let mut b = GrowableBloom::new(0.05, 1000);
for i in 0..1000 {
b.insert(&i);
assert!(b.contains(&i));
}
}
#[test]
fn can_serialize_deserialize() {
let mut b = GrowableBloom::new(0.05, 1000);
b.insert(&0);
let s = serde_json::to_string(&b).unwrap();
let b_s: GrowableBloom = serde_json::from_str(&s).unwrap();
assert!(b_s.contains(&0));
assert_ne!(b_s.contains(&1), true);
assert_ne!(b_s.contains(&1000), true);
}
#[test]
fn verify_saturation() {
for &fp in &[0.01, 0.001] {
// The paper gives an upper bound formula for the fp rate: fpUB <= fp0*/(1-r)
let fp_ub = fp / (1.0 - DEFAULT_TIGHTENING_RATIO);
let initial_cap = 100u64;
let growth = 1000u64;
let mut b = GrowableBloom::new(fp, initial_cap as usize);
// insert 1000x more elements than initially allocated
for i in 1u64..=initial_cap * growth {
b.insert(&i);
if i % (initial_cap * growth / 10) == 0
|| [1, 2, 5, 10, 25].iter().any(|&g| i == initial_cap * g)
{
// A lot of tests are required to get a good estimate
let est_fp_rate = (i + 1..).take(50_000).filter(|i| b.contains(i)).count()
as f64
/ 50_000.0;
// Uncomment the following to get good output for experiments
// println!(
// "{}x cap: {}fp ({}x)",
// i / initial_cap,
// est_fp_rate,
// est_fp_rate / fp
// );
assert!(est_fp_rate <= fp_ub);
}
}
for i in 1u64..=initial_cap * growth {
assert!(b.contains(&i));
}
}
}
#[test]
fn test_types_saturation() {
let mut b = GrowableBloom::new(0.50, 100);
b.insert(&vec![1, 2, 3]);
b.insert("hello");
b.insert(&-1);
b.insert(&0);
}
#[test]
fn can_check_and_set() {
let mut b = GrowableBloom::new(0.05, 1000);
let item = 20;
assert!(!b.check_and_set(&item));
assert!(b.check_and_set(&item));
}
}
mod test_builder {
use crate::GrowableBloomBuilder;
#[test]
fn can_build_bloom() {
let mut gbloom = GrowableBloomBuilder::new().build();
gbloom.insert(3);
assert!(gbloom.contains(&3));
}
#[test]
#[should_panic]
fn should_panic_on_bad_error_ratio() {
GrowableBloomBuilder::new()
.estimated_insertions(1000)
.desired_error_ratio(99.9)
.build();
}
#[test]
#[should_panic]
fn should_panic_on_too_small_tightening_ratio() {
GrowableBloomBuilder::new().tightening_ratio(0.0).build();
}
#[test]
#[should_panic]
fn should_panic_on_too_large_tightening_ratio() {
GrowableBloomBuilder::new().tightening_ratio(10.0).build();
}
#[test]
fn can_specify_all_values() {
// From https://github.com/dpbriggs/growable-bloom-filters/issues/7
let mut gbloom = GrowableBloomBuilder::new()
.estimated_insertions(3)
.desired_error_ratio(0.00001)
.tightening_ratio(0.5)
.growth_factor(2)
.build();
for i in 0..100 {
gbloom.insert(i);
}
for i in 0..100 {
assert!(gbloom.contains(&i));
}
}
}
#[cfg(feature = "nightly")]
mod bench {
use crate::GrowableBloom;
use test::Bencher;
#[bench]
fn bench_new(b: &mut Bencher) {
b.iter(|| GrowableBloom::new(0.01, 1000));
}
#[bench]
fn bench_insert_normal_prob(b: &mut Bencher) {
let mut gbloom = GrowableBloom::new(0.01, 1000);
b.iter(|| gbloom.insert(10));
}
#[bench]
fn bench_insert_small_prob(b: &mut Bencher) {
let mut gbloom = GrowableBloom::new(0.001, 1000);
b.iter(|| gbloom.insert(10));
}
#[bench]
fn bench_many(b: &mut Bencher) {
let mut gbloom = GrowableBloom::new(0.01, 100000);
b.iter(|| gbloom.insert(10));
}
#[bench]
fn bench_insert_medium(b: &mut Bencher) {
let s: String = (0..100).map(|_| 'X').collect();
let mut gbloom = GrowableBloom::new(0.01, 100000);
b.iter(|| gbloom.insert(&s))
}
#[bench]
fn bench_insert_large(b: &mut Bencher) {
let s: String = (0..10000).map(|_| 'X').collect();
let mut gbloom = GrowableBloom::new(0.01, 100000);
b.iter(|| gbloom.insert(&s))
}
#[bench]
fn bench_insert_large_very_small_prob(b: &mut Bencher) {
let s: String = (0..10000).map(|_| 'X').collect();
let mut gbloom = GrowableBloom::new(0.0001, 100000);
b.iter(|| gbloom.insert(&s))
}
#[bench]
fn bench_grow(b: &mut Bencher) {
b.iter(|| {
let mut gbloom = GrowableBloom::new(0.01, 100);
for i in 0..1000 {
gbloom.insert(&i);
assert!(gbloom.contains(&i));
}
})
}
}
}