scc/
hash_set.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
//! [`HashSet`] is a concurrent and asynchronous hash set.

use super::{Equivalent, HashMap};
use std::collections::hash_map::RandomState;
use std::fmt::{self, Debug};
use std::hash::{BuildHasher, Hash};
use std::ops::RangeInclusive;

/// Scalable concurrent hash set.
///
/// [`HashSet`] is a concurrent and asynchronous hash set based on [`HashMap`].
pub struct HashSet<K, H = RandomState>
where
    H: BuildHasher,
{
    map: HashMap<K, (), H>,
}

/// [`Reserve`] keeps the capacity of the associated [`HashSet`] higher than a certain level.
///
/// The [`HashSet`] does not shrink the capacity below the reserved capacity.
pub type Reserve<'h, K, H = RandomState> = super::hash_map::Reserve<'h, K, (), H>;

impl<K, H> HashSet<K, H>
where
    H: BuildHasher,
{
    /// Creates an empty [`HashSet`] with the given [`BuildHasher`].
    ///
    /// # Examples
    ///
    /// ```
    /// use scc::HashSet;
    /// use std::collections::hash_map::RandomState;
    ///
    /// let hashset: HashSet<u64, RandomState> = HashSet::with_hasher(RandomState::new());
    /// ```
    #[cfg(not(feature = "loom"))]
    #[inline]
    pub const fn with_hasher(build_hasher: H) -> Self {
        Self {
            map: HashMap::with_hasher(build_hasher),
        }
    }

    /// Creates an empty [`HashSet`] with the given [`BuildHasher`].
    #[cfg(feature = "loom")]
    #[inline]
    pub fn with_hasher(build_hasher: H) -> Self {
        Self {
            map: HashMap::with_hasher(build_hasher),
        }
    }

    /// Creates an empty [`HashSet`] with the specified capacity and [`BuildHasher`].
    ///
    /// The actual capacity is equal to or greater than the specified capacity.
    ///
    /// # Examples
    ///
    /// ```
    /// use scc::HashSet;
    /// use std::collections::hash_map::RandomState;
    ///
    /// let hashset: HashSet<u64, RandomState> =
    ///     HashSet::with_capacity_and_hasher(1000, RandomState::new());
    ///
    /// let result = hashset.capacity();
    /// assert_eq!(result, 1024);
    /// ```
    #[inline]
    pub fn with_capacity_and_hasher(capacity: usize, build_hasher: H) -> Self {
        Self {
            map: HashMap::with_capacity_and_hasher(capacity, build_hasher),
        }
    }
}

impl<K, H> HashSet<K, H>
where
    K: Eq + Hash,
    H: BuildHasher,
{
    /// Temporarily increases the minimum capacity of the [`HashSet`].
    ///
    /// A [`Reserve`] is returned if the [`HashSet`] could increase the minimum capacity while the
    /// increased capacity is not exclusively owned by the returned [`Reserve`], allowing others to
    /// benefit from it. The memory for the additional space may not be immediately allocated if
    /// the [`HashSet`] is empty or currently being resized, however once the memory is reserved
    /// eventually, the capacity will not shrink below the additional capacity until the returned
    /// [`Reserve`] is dropped.
    ///
    /// # Errors
    ///
    /// Returns `None` if a too large number is given.
    ///
    /// # Examples
    ///
    /// ```
    /// use scc::HashSet;
    ///
    /// let hashset: HashSet<usize> = HashSet::with_capacity(1000);
    /// assert_eq!(hashset.capacity(), 1024);
    ///
    /// let reserved = hashset.reserve(10000);
    /// assert!(reserved.is_some());
    /// assert_eq!(hashset.capacity(), 16384);
    ///
    /// assert!(hashset.reserve(usize::MAX).is_none());
    /// assert_eq!(hashset.capacity(), 16384);
    ///
    /// for i in 0..16 {
    ///     assert!(hashset.insert(i).is_ok());
    /// }
    /// drop(reserved);
    ///
    /// assert_eq!(hashset.capacity(), 1024);
    /// ```
    #[inline]
    pub fn reserve(&self, capacity: usize) -> Option<Reserve<K, H>> {
        self.map.reserve(capacity)
    }

    /// Inserts a key into the [`HashSet`].
    ///
    /// # Errors
    ///
    /// Returns an error along with the supplied key if the key exists.
    ///
    /// # Examples
    ///
    /// ```
    /// use scc::HashSet;
    ///
    /// let hashset: HashSet<u64> = HashSet::default();
    ///
    /// assert!(hashset.insert(1).is_ok());
    /// assert_eq!(hashset.insert(1).unwrap_err(), 1);
    /// ```
    #[inline]
    pub fn insert(&self, key: K) -> Result<(), K> {
        if let Err((k, ())) = self.map.insert(key, ()) {
            return Err(k);
        }
        Ok(())
    }

    /// Inserts a key into the [`HashSet`].
    ///
    /// It is an asynchronous method returning an `impl Future` for the caller to await.
    ///
    /// # Errors
    ///
    /// Returns an error along with the supplied key if the key exists.
    ///
    /// function.
    /// # Examples
    ///
    /// ```
    /// use scc::HashSet;
    ///
    /// let hashset: HashSet<u64> = HashSet::default();
    /// let future_insert = hashset.insert_async(11);
    /// ```
    #[inline]
    pub async fn insert_async(&self, key: K) -> Result<(), K> {
        self.map.insert_async(key, ()).await.map_err(|(k, ())| k)
    }

    /// Removes a key if the key exists.
    ///
    /// Returns `None` if the key does not exist.
    ///
    /// # Examples
    ///
    /// ```
    /// use scc::HashSet;
    ///
    /// let hashset: HashSet<u64> = HashSet::default();
    ///
    /// assert!(hashset.remove(&1).is_none());
    /// assert!(hashset.insert(1).is_ok());
    /// assert_eq!(hashset.remove(&1).unwrap(), 1);
    /// ```
    #[inline]
    pub fn remove<Q>(&self, key: &Q) -> Option<K>
    where
        Q: Equivalent<K> + Hash + ?Sized,
    {
        self.map.remove(key).map(|(k, ())| k)
    }

    /// Removes a key if the key exists.
    ///
    /// Returns `None` if the key does not exist. It is an asynchronous method returning an
    /// `impl Future` for the caller to await.
    ///
    /// # Examples
    ///
    /// ```
    /// use scc::HashSet;
    ///
    /// let hashset: HashSet<u64> = HashSet::default();
    /// let future_insert = hashset.insert_async(11);
    /// let future_remove = hashset.remove_async(&11);
    /// ```
    #[inline]
    pub async fn remove_async<Q>(&self, key: &Q) -> Option<K>
    where
        Q: Equivalent<K> + Hash + ?Sized,
    {
        self.map
            .remove_if_async(key, |()| true)
            .await
            .map(|(k, ())| k)
    }

    /// Removes a key if the key exists and the given condition is met.
    ///
    /// Returns `None` if the key does not exist or the condition was not met.
    ///
    /// # Examples
    ///
    /// ```
    /// use scc::HashSet;
    ///
    /// let hashset: HashSet<u64> = HashSet::default();
    ///
    /// assert!(hashset.insert(1).is_ok());
    /// assert!(hashset.remove_if(&1, || false).is_none());
    /// assert_eq!(hashset.remove_if(&1, || true).unwrap(), 1);
    /// ```
    #[inline]
    pub fn remove_if<Q, F: FnOnce() -> bool>(&self, key: &Q, condition: F) -> Option<K>
    where
        Q: Equivalent<K> + Hash + ?Sized,
    {
        self.map.remove_if(key, |()| condition()).map(|(k, ())| k)
    }

    /// Removes a key if the key exists and the given condition is met.
    ///
    /// Returns `None` if the key does not exist or the condition was not met. It is an
    /// asynchronous method returning an `impl Future` for the caller to await.
    ///
    /// # Examples
    ///
    /// ```
    /// use scc::HashSet;
    ///
    /// let hashset: HashSet<u64> = HashSet::default();
    /// let future_insert = hashset.insert_async(11);
    /// let future_remove = hashset.remove_if_async(&11, || true);
    /// ```
    #[inline]
    pub async fn remove_if_async<Q, F: FnOnce() -> bool>(&self, key: &Q, condition: F) -> Option<K>
    where
        Q: Equivalent<K> + Hash + ?Sized,
    {
        self.map
            .remove_if_async(key, |()| condition())
            .await
            .map(|(k, ())| k)
    }

    /// Reads a key.
    ///
    /// Returns `None` if the key does not exist.
    ///
    /// # Examples
    ///
    /// ```
    /// use scc::HashSet;
    ///
    /// let hashset: HashSet<u64> = HashSet::default();
    ///
    /// assert!(hashset.read(&1, |_| true).is_none());
    /// assert!(hashset.insert(1).is_ok());
    /// assert!(hashset.read(&1, |_| true).unwrap());
    /// ```
    #[inline]
    pub fn read<Q, R, F: FnOnce(&K) -> R>(&self, key: &Q, reader: F) -> Option<R>
    where
        Q: Equivalent<K> + Hash + ?Sized,
    {
        self.map.read(key, |k, ()| reader(k))
    }

    /// Reads a key.
    ///
    /// Returns `None` if the key does not exist. It is an asynchronous method returning an
    /// `impl Future` for the caller to await.
    ///
    /// # Examples
    ///
    /// ```
    /// use scc::HashSet;
    ///
    /// let hashset: HashSet<u64> = HashSet::default();
    /// let future_insert = hashset.insert_async(11);
    /// let future_read = hashset.read_async(&11, |k| *k);
    /// ```
    #[inline]
    pub async fn read_async<Q, R, F: FnOnce(&K) -> R>(&self, key: &Q, reader: F) -> Option<R>
    where
        Q: Equivalent<K> + Hash + ?Sized,
    {
        self.map.read_async(key, |k, ()| reader(k)).await
    }

    /// Returns `true` if the [`HashSet`] contains the specified key.
    ///
    /// # Examples
    ///
    /// ```
    /// use scc::HashSet;
    ///
    /// let hashset: HashSet<u64> = HashSet::default();
    ///
    /// assert!(!hashset.contains(&1));
    /// assert!(hashset.insert(1).is_ok());
    /// assert!(hashset.contains(&1));
    /// ```
    #[inline]
    pub fn contains<Q>(&self, key: &Q) -> bool
    where
        Q: Equivalent<K> + Hash + ?Sized,
    {
        self.read(key, |_| ()).is_some()
    }

    /// Returns `true` if the [`HashSet`] contains the specified key.
    ///
    /// It is an asynchronous method returning an `impl Future` for the caller to await.
    ///
    /// # Examples
    ///
    /// ```
    /// use scc::HashSet;
    ///
    /// let hashset: HashSet<u64> = HashSet::default();
    ///
    /// let future_contains = hashset.contains_async(&1);
    /// ```
    #[inline]
    pub async fn contains_async<Q>(&self, key: &Q) -> bool
    where
        Q: Equivalent<K> + Hash + ?Sized,
    {
        self.map.contains_async(key).await
    }

    /// Scans all the keys.
    ///
    /// Keys that have existed since the invocation of the method are guaranteed to be visited if
    /// they are not removed, however the same key can be visited more than once if the [`HashSet`]
    /// gets resized by another thread.
    ///
    /// # Examples
    ///
    /// ```
    /// use scc::HashSet;
    ///
    /// let hashset: HashSet<usize> = HashSet::default();
    ///
    /// assert!(hashset.insert(1).is_ok());
    /// assert!(hashset.insert(2).is_ok());
    ///
    /// let mut sum = 0;
    /// hashset.scan(|k| { sum += *k; });
    /// assert_eq!(sum, 3);
    /// ```
    #[inline]
    pub fn scan<F: FnMut(&K)>(&self, mut scanner: F) {
        self.map.scan(|k, ()| scanner(k));
    }

    /// Scans all the keys.
    ///
    /// Keys that have existed since the invocation of the method are guaranteed to be visited if
    /// they are not removed, however the same key can be visited more than once if the [`HashSet`]
    /// gets resized by another task.
    ///
    /// # Examples
    ///
    /// ```
    /// use scc::HashSet;
    ///
    /// let hashset: HashSet<usize> = HashSet::default();
    ///
    /// let future_insert = hashset.insert_async(1);
    /// let future_scan = hashset.scan_async(|k| println!("{k}"));
    /// ```
    #[inline]
    pub async fn scan_async<F: FnMut(&K)>(&self, mut scanner: F) {
        self.map.scan_async(|k, ()| scanner(k)).await;
    }

    /// Searches for any key that satisfies the given predicate.
    ///
    /// Keys that have existed since the invocation of the method are guaranteed to be visited if
    /// they are not removed, however the same key can be visited more than once if the [`HashSet`]
    /// gets resized by another task.
    ///
    /// Returns `true` if a key satisfying the predicate is found.
    ///
    /// # Examples
    ///
    /// ```
    /// use scc::HashSet;
    ///
    /// let hashset: HashSet<u64> = HashSet::default();
    ///
    /// assert!(hashset.insert(1).is_ok());
    /// assert!(hashset.insert(2).is_ok());
    /// assert!(hashset.insert(3).is_ok());
    ///
    /// assert!(hashset.any(|k| *k == 1));
    /// assert!(!hashset.any(|k| *k == 4));
    /// ```
    #[inline]
    pub fn any<P: FnMut(&K) -> bool>(&self, mut pred: P) -> bool {
        self.map.any(|k, ()| pred(k))
    }

    /// Searches for any key that satisfies the given predicate.
    ///
    /// Keys that have existed since the invocation of the method are guaranteed to be visited if
    /// they are not removed, however the same key can be visited more than once if the [`HashSet`]
    /// gets resized by another task.
    ///
    /// It is an asynchronous method returning an `impl Future` for the caller to await.
    ///
    /// Returns `true` if a key satisfying the predicate is found.
    ///
    /// # Examples
    ///
    /// ```
    /// use scc::HashSet;
    ///
    /// let hashset: HashSet<u64> = HashSet::default();
    ///
    /// let future_insert = hashset.insert(1);
    /// let future_any = hashset.any_async(|k| *k == 1);
    /// ```
    #[inline]
    pub async fn any_async<P: FnMut(&K) -> bool>(&self, mut pred: P) -> bool {
        self.map.any_async(|k, ()| pred(k)).await
    }

    /// Retains keys that satisfy the given predicate.
    ///
    /// Keys that have existed since the invocation of the method are guaranteed to be visited if
    /// they are not removed, however the same key can be visited more than once if the [`HashSet`]
    /// gets resized by another thread.
    ///
    /// # Examples
    ///
    /// ```
    /// use scc::HashSet;
    ///
    /// let hashset: HashSet<u64> = HashSet::default();
    ///
    /// assert!(hashset.insert(1).is_ok());
    /// assert!(hashset.insert(2).is_ok());
    /// assert!(hashset.insert(3).is_ok());
    ///
    /// hashset.retain(|k| *k == 1);
    ///
    /// assert!(hashset.contains(&1));
    /// assert!(!hashset.contains(&2));
    /// assert!(!hashset.contains(&3));
    /// ```
    #[inline]
    pub fn retain<F: FnMut(&K) -> bool>(&self, mut filter: F) {
        self.map.retain(|k, ()| filter(k));
    }

    /// Retains keys that satisfy the given predicate.
    ///
    /// Keys that have existed since the invocation of the method are guaranteed to be visited if
    /// they are not removed, however the same key can be visited more than once if the [`HashSet`]
    /// gets resized by another task.
    ///
    /// It is an asynchronous method returning an `impl Future` for the caller to await.
    ///
    /// # Examples
    ///
    /// ```
    /// use scc::HashSet;
    ///
    /// let hashset: HashSet<u64> = HashSet::default();
    ///
    /// let future_insert = hashset.insert_async(1);
    /// let future_retain = hashset.retain_async(|k| *k == 1);
    /// ```
    #[inline]
    pub async fn retain_async<F: FnMut(&K) -> bool>(&self, mut filter: F) {
        self.map.retain_async(|k, ()| filter(k)).await;
    }

    /// Clears the [`HashSet`] by removing all keys.
    ///
    /// # Examples
    ///
    /// ```
    /// use scc::HashSet;
    ///
    /// let hashset: HashSet<u64> = HashSet::default();
    ///
    /// assert!(hashset.insert(1).is_ok());
    /// hashset.clear();
    ///
    /// assert!(!hashset.contains(&1));
    /// ```
    #[inline]
    pub fn clear(&self) {
        self.map.clear();
    }

    /// Clears the [`HashSet`] by removing all keys.
    ///
    /// It is an asynchronous method returning an `impl Future` for the caller to await.
    ///
    /// # Examples
    ///
    /// ```
    /// use scc::HashSet;
    ///
    /// let hashset: HashSet<u64> = HashSet::default();
    ///
    /// let future_insert = hashset.insert_async(1);
    /// let future_clear = hashset.clear_async();
    /// ```
    #[inline]
    pub async fn clear_async(&self) {
        self.map.clear_async().await;
    }

    /// Returns the number of entries in the [`HashSet`].
    ///
    /// It reads the entire metadata area of the bucket array to calculate the number of valid
    /// entries, making its time complexity `O(N)`. Furthermore, it may overcount entries if an old
    /// bucket array has yet to be dropped.
    ///
    /// # Examples
    ///
    /// ```
    /// use scc::HashSet;
    ///
    /// let hashset: HashSet<u64> = HashSet::default();
    ///
    /// assert!(hashset.insert(1).is_ok());
    /// assert_eq!(hashset.len(), 1);
    /// ```
    #[inline]
    pub fn len(&self) -> usize {
        self.map.len()
    }

    /// Returns `true` if the [`HashSet`] is empty.
    ///
    /// # Examples
    ///
    /// ```
    /// use scc::HashSet;
    ///
    /// let hashset: HashSet<u64> = HashSet::default();
    ///
    /// assert!(hashset.is_empty());
    /// assert!(hashset.insert(1).is_ok());
    /// assert!(!hashset.is_empty());
    /// ```
    #[inline]
    pub fn is_empty(&self) -> bool {
        self.map.is_empty()
    }

    /// Returns the capacity of the [`HashSet`].
    ///
    /// # Examples
    ///
    /// ```
    /// use scc::HashSet;
    ///
    /// let hashset_default: HashSet<u64> = HashSet::default();
    /// assert_eq!(hashset_default.capacity(), 0);
    ///
    /// assert!(hashset_default.insert(1).is_ok());
    /// assert_eq!(hashset_default.capacity(), 64);
    ///
    /// let hashset: HashSet<u64> = HashSet::with_capacity(1000);
    /// assert_eq!(hashset.capacity(), 1024);
    /// ```
    #[inline]
    pub fn capacity(&self) -> usize {
        self.map.capacity()
    }

    /// Returns the current capacity range of the [`HashSet`].
    ///
    /// # Examples
    ///
    /// ```
    /// use scc::HashSet;
    ///
    /// let hashset: HashSet<u64> = HashSet::default();
    ///
    /// assert_eq!(hashset.capacity_range(), 0..=(1_usize << (usize::BITS - 1)));
    ///
    /// let reserved = hashset.reserve(1000);
    /// assert_eq!(hashset.capacity_range(), 1000..=(1_usize << (usize::BITS - 1)));
    /// ```
    #[inline]
    pub fn capacity_range(&self) -> RangeInclusive<usize> {
        self.map.capacity_range()
    }

    /// Returns the index of the bucket that may contain the key.
    ///
    /// The method returns the index of the bucket associated with the key. The number of buckets
    /// can be calculated by dividing `32` into the capacity.
    ///
    /// # Examples
    ///
    /// ```
    /// use scc::HashSet;
    ///
    /// let hashset: HashSet<u64> = HashSet::with_capacity(1024);
    ///
    /// let bucket_index = hashset.bucket_index(&11);
    /// assert!(bucket_index < hashset.capacity() / 32);
    /// ```
    #[inline]
    pub fn bucket_index<Q>(&self, key: &Q) -> usize
    where
        Q: Equivalent<K> + Hash + ?Sized,
    {
        self.map.bucket_index(key)
    }
}

impl<K, H> Clone for HashSet<K, H>
where
    K: Clone + Eq + Hash,
    H: BuildHasher + Clone,
{
    #[inline]
    fn clone(&self) -> Self {
        Self {
            map: self.map.clone(),
        }
    }
}

impl<K, H> Debug for HashSet<K, H>
where
    K: Debug + Eq + Hash,
    H: BuildHasher,
{
    #[inline]
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        let mut d = f.debug_set();
        self.scan(|k| {
            d.entry(k);
        });
        d.finish()
    }
}

impl<K: Eq + Hash> HashSet<K, RandomState> {
    /// Creates an empty default [`HashSet`].
    ///
    /// # Examples
    ///
    /// ```
    /// use scc::HashSet;
    ///
    /// let hashset: HashSet<u64> = HashSet::new();
    ///
    /// let result = hashset.capacity();
    /// assert_eq!(result, 0);
    /// ```
    #[inline]
    #[must_use]
    pub fn new() -> Self {
        Self::default()
    }

    /// Creates an empty [`HashSet`] with the specified capacity.
    ///
    /// The actual capacity is equal to or greater than the specified capacity.
    ///
    /// # Examples
    ///
    /// ```
    /// use scc::HashSet;
    ///
    /// let hashset: HashSet<u64> = HashSet::with_capacity(1000);
    ///
    /// let result = hashset.capacity();
    /// assert_eq!(result, 1024);
    /// ```
    #[inline]
    #[must_use]
    pub fn with_capacity(capacity: usize) -> Self {
        Self {
            map: HashMap::with_capacity(capacity),
        }
    }
}

impl<K, H> Default for HashSet<K, H>
where
    H: BuildHasher + Default,
{
    /// Creates an empty default [`HashSet`].
    ///
    /// The default capacity is `64`.
    ///
    /// # Examples
    ///
    /// ```
    /// use scc::HashSet;
    ///
    /// let hashset: HashSet<u64> = HashSet::default();
    ///
    /// let result = hashset.capacity();
    /// assert_eq!(result, 0);
    /// ```
    #[inline]
    fn default() -> Self {
        Self {
            map: HashMap::default(),
        }
    }
}

impl<K, H> PartialEq for HashSet<K, H>
where
    K: Eq + Hash,
    H: BuildHasher,
{
    /// Compares two [`HashSet`] instances.
    ///
    /// ## Locking behavior
    ///
    /// Shared locks on buckets are acquired when comparing two instances of [`HashSet`], therefore
    /// it may lead to a deadlock if the instances are being modified by another thread.
    #[inline]
    fn eq(&self, other: &Self) -> bool {
        if !self.any(|k| !other.contains(k)) {
            return !other.any(|k| !self.contains(k));
        }
        false
    }
}