1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
#![no_std]
#![cfg_attr(docsrs, feature(doc_auto_cfg))]
#![doc = include_str!("../README.md")]
#![doc(html_logo_url = "https://raw.githubusercontent.com/RustCrypto/meta/master/logo_small.png")]
#![allow(non_snake_case)]
#![forbid(unsafe_code)]
#![warn(
clippy::unwrap_used,
missing_docs,
rust_2018_idioms,
unused_lifetimes,
unused_qualifications
)]
//! # Using Ed25519 generically over algorithm implementations/providers
//!
//! By using the `ed25519` crate, you can write code which signs and verifies
//! messages using the Ed25519 signature algorithm generically over any
//! supported Ed25519 implementation (see the next section for available
//! providers).
//!
//! This allows consumers of your code to plug in whatever implementation they
//! want to use without having to add all potential Ed25519 libraries you'd
//! like to support as optional dependencies.
//!
//! ## Example
//!
//! ```
//! use ed25519::signature::{Signer, Verifier};
//!
//! pub struct HelloSigner<S>
//! where
//! S: Signer<ed25519::Signature>
//! {
//! pub signing_key: S
//! }
//!
//! impl<S> HelloSigner<S>
//! where
//! S: Signer<ed25519::Signature>
//! {
//! pub fn sign(&self, person: &str) -> ed25519::Signature {
//! // NOTE: use `try_sign` if you'd like to be able to handle
//! // errors from external signing services/devices (e.g. HSM/KMS)
//! // <https://docs.rs/signature/latest/signature/trait.Signer.html#tymethod.try_sign>
//! self.signing_key.sign(format_message(person).as_bytes())
//! }
//! }
//!
//! pub struct HelloVerifier<V> {
//! pub verifying_key: V
//! }
//!
//! impl<V> HelloVerifier<V>
//! where
//! V: Verifier<ed25519::Signature>
//! {
//! pub fn verify(
//! &self,
//! person: &str,
//! signature: &ed25519::Signature
//! ) -> Result<(), ed25519::Error> {
//! self.verifying_key.verify(format_message(person).as_bytes(), signature)
//! }
//! }
//!
//! fn format_message(person: &str) -> String {
//! format!("Hello, {}!", person)
//! }
//! ```
//!
//! ## Using above example with `ed25519-dalek`
//!
//! The [`ed25519-dalek`] crate natively supports the [`ed25519::Signature`][`Signature`]
//! type defined in this crate along with the [`signature::Signer`] and
//! [`signature::Verifier`] traits.
//!
//! Below is an example of how a hypothetical consumer of the code above can
//! instantiate and use the previously defined `HelloSigner` and `HelloVerifier`
//! types with [`ed25519-dalek`] as the signing/verification provider:
//!
//! *NOTE: requires [`ed25519-dalek`] v2 or newer for compatibility with
//! `ed25519` v2.2+*.
//!
//! ```
//! use ed25519_dalek::{Signer, Verifier, Signature};
//! #
//! # pub struct HelloSigner<S>
//! # where
//! # S: Signer<Signature>
//! # {
//! # pub signing_key: S
//! # }
//! #
//! # impl<S> HelloSigner<S>
//! # where
//! # S: Signer<Signature>
//! # {
//! # pub fn sign(&self, person: &str) -> Signature {
//! # // NOTE: use `try_sign` if you'd like to be able to handle
//! # // errors from external signing services/devices (e.g. HSM/KMS)
//! # // <https://docs.rs/signature/latest/signature/trait.Signer.html#tymethod.try_sign>
//! # self.signing_key.sign(format_message(person).as_bytes())
//! # }
//! # }
//! #
//! # pub struct HelloVerifier<V> {
//! # pub verifying_key: V
//! # }
//! #
//! # impl<V> HelloVerifier<V>
//! # where
//! # V: Verifier<Signature>
//! # {
//! # pub fn verify(
//! # &self,
//! # person: &str,
//! # signature: &Signature
//! # ) -> Result<(), ed25519::Error> {
//! # self.verifying_key.verify(format_message(person).as_bytes(), signature)
//! # }
//! # }
//! #
//! # fn format_message(person: &str) -> String {
//! # format!("Hello, {}!", person)
//! # }
//! use rand_core::OsRng; // Requires the `std` feature of `rand_core`
//!
//! /// `HelloSigner` defined above instantiated with `ed25519-dalek` as
//! /// the signing provider.
//! pub type DalekHelloSigner = HelloSigner<ed25519_dalek::SigningKey>;
//!
//! let signing_key = ed25519_dalek::SigningKey::generate(&mut OsRng);
//! let signer = DalekHelloSigner { signing_key };
//! let person = "Joe"; // Message to sign
//! let signature = signer.sign(person);
//!
//! /// `HelloVerifier` defined above instantiated with `ed25519-dalek`
//! /// as the signature verification provider.
//! pub type DalekHelloVerifier = HelloVerifier<ed25519_dalek::VerifyingKey>;
//!
//! let verifying_key: ed25519_dalek::VerifyingKey = signer.signing_key.verifying_key();
//! let verifier = DalekHelloVerifier { verifying_key };
//! assert!(verifier.verify(person, &signature).is_ok());
//! ```
//!
//! ## Using above example with `ring-compat`
//!
//! The [`ring-compat`] crate provides wrappers for [*ring*] which implement
//! the [`signature::Signer`] and [`signature::Verifier`] traits for
//! [`ed25519::Signature`][`Signature`].
//!
//! Below is an example of how a hypothetical consumer of the code above can
//! instantiate and use the previously defined `HelloSigner` and `HelloVerifier`
//! types with [`ring-compat`] as the signing/verification provider:
//!
//! ```
//! use ring_compat::signature::{
//! ed25519::{Signature, SigningKey, VerifyingKey},
//! Signer, Verifier
//! };
//! #
//! # pub struct HelloSigner<S>
//! # where
//! # S: Signer<Signature>
//! # {
//! # pub signing_key: S
//! # }
//! #
//! # impl<S> HelloSigner<S>
//! # where
//! # S: Signer<Signature>
//! # {
//! # pub fn sign(&self, person: &str) -> Signature {
//! # // NOTE: use `try_sign` if you'd like to be able to handle
//! # // errors from external signing services/devices (e.g. HSM/KMS)
//! # // <https://docs.rs/signature/latest/signature/trait.Signer.html#tymethod.try_sign>
//! # self.signing_key.sign(format_message(person).as_bytes())
//! # }
//! # }
//! #
//! # pub struct HelloVerifier<V> {
//! # pub verifying_key: V
//! # }
//! #
//! # impl<V> HelloVerifier<V>
//! # where
//! # V: Verifier<Signature>
//! # {
//! # pub fn verify(
//! # &self,
//! # person: &str,
//! # signature: &Signature
//! # ) -> Result<(), ed25519::Error> {
//! # self.verifying_key.verify(format_message(person).as_bytes(), signature)
//! # }
//! # }
//! #
//! # fn format_message(person: &str) -> String {
//! # format!("Hello, {}!", person)
//! # }
//! use rand_core::{OsRng, RngCore}; // Requires the `std` feature of `rand_core`
//!
//! /// `HelloSigner` defined above instantiated with *ring* as
//! /// the signing provider.
//! pub type RingHelloSigner = HelloSigner<SigningKey>;
//!
//! let mut ed25519_seed = [0u8; 32];
//! OsRng.fill_bytes(&mut ed25519_seed);
//!
//! let signing_key = SigningKey::from_bytes(&ed25519_seed);
//! let verifying_key = signing_key.verifying_key();
//!
//! let signer = RingHelloSigner { signing_key };
//! let person = "Joe"; // Message to sign
//! let signature = signer.sign(person);
//!
//! /// `HelloVerifier` defined above instantiated with *ring*
//! /// as the signature verification provider.
//! pub type RingHelloVerifier = HelloVerifier<VerifyingKey>;
//!
//! let verifier = RingHelloVerifier { verifying_key };
//! assert!(verifier.verify(person, &signature).is_ok());
//! ```
//!
//! # Available Ed25519 providers
//!
//! The following libraries support the types/traits from the `ed25519` crate:
//!
//! - [`ed25519-dalek`] - mature pure Rust implementation of Ed25519
//! - [`ring-compat`] - compatibility wrapper for [*ring*]
//! - [`yubihsm`] - host-side client library for YubiHSM2 devices from Yubico
//!
//! [`ed25519-dalek`]: https://docs.rs/ed25519-dalek
//! [`ring-compat`]: https://docs.rs/ring-compat
//! [*ring*]: https://github.com/briansmith/ring
//! [`yubihsm`]: https://github.com/iqlusioninc/yubihsm.rs/blob/develop/README.md
//!
//! # Features
//!
//! The following features are presently supported:
//!
//! - `pkcs8`: support for decoding/encoding PKCS#8-formatted private keys using the
//! [`KeypairBytes`] type.
//! - `std` *(default)*: Enable `std` support in [`signature`], which currently only affects whether
//! [`signature::Error`] implements `std::error::Error`.
//! - `serde`: Implement `serde::Deserialize` and `serde::Serialize` for [`Signature`]. Signatures
//! are serialized as their bytes.
//! - `serde_bytes`: Implement `serde_bytes::Deserialize` and `serde_bytes::Serialize` for
//! [`Signature`]. This enables more compact representations for formats with an efficient byte
//! array representation. As per the `serde_bytes` documentation, this can most easily be realised
//! using the `#[serde(with = "serde_bytes")]` annotation, e.g.:
//!
//! ```ignore
//! # use ed25519::Signature;
//! # use serde::{Deserialize, Serialize};
//! #[derive(Deserialize, Serialize)]
//! #[serde(transparent)]
//! struct SignatureAsBytes(#[serde(with = "serde_bytes")] Signature);
//! ```
#[cfg(feature = "alloc")]
extern crate alloc;
mod hex;
#[cfg(feature = "pkcs8")]
pub mod pkcs8;
#[cfg(feature = "serde")]
mod serde;
pub use signature::{self, Error, SignatureEncoding};
#[cfg(feature = "pkcs8")]
pub use crate::pkcs8::{KeypairBytes, PublicKeyBytes};
use core::fmt;
#[cfg(feature = "alloc")]
use alloc::vec::Vec;
/// Size of a single component of an Ed25519 signature.
const COMPONENT_SIZE: usize = 32;
/// Size of an `R` or `s` component of an Ed25519 signature when serialized
/// as bytes.
pub type ComponentBytes = [u8; COMPONENT_SIZE];
/// Ed25519 signature serialized as a byte array.
pub type SignatureBytes = [u8; Signature::BYTE_SIZE];
/// Ed25519 signature.
///
/// This type represents a container for the byte serialization of an Ed25519
/// signature, and does not necessarily represent well-formed field or curve
/// elements.
///
/// Signature verification libraries are expected to reject invalid field
/// elements at the time a signature is verified.
#[derive(Copy, Clone, Eq, PartialEq)]
#[repr(C)]
pub struct Signature {
R: ComponentBytes,
s: ComponentBytes,
}
impl Signature {
/// Size of an encoded Ed25519 signature in bytes.
pub const BYTE_SIZE: usize = COMPONENT_SIZE * 2;
/// Parse an Ed25519 signature from a byte slice.
pub fn from_bytes(bytes: &SignatureBytes) -> Self {
let mut R = ComponentBytes::default();
let mut s = ComponentBytes::default();
let components = bytes.split_at(COMPONENT_SIZE);
R.copy_from_slice(components.0);
s.copy_from_slice(components.1);
Self { R, s }
}
/// Parse an Ed25519 signature from its `R` and `s` components.
pub fn from_components(R: ComponentBytes, s: ComponentBytes) -> Self {
Self { R, s }
}
/// Parse an Ed25519 signature from a byte slice.
///
/// # Returns
/// - `Ok` on success
/// - `Err` if the input byte slice is not 64-bytes
pub fn from_slice(bytes: &[u8]) -> signature::Result<Self> {
SignatureBytes::try_from(bytes)
.map(Into::into)
.map_err(|_| Error::new())
}
/// Bytes for the `R` component of a signature.
pub fn r_bytes(&self) -> &ComponentBytes {
&self.R
}
/// Bytes for the `s` component of a signature.
pub fn s_bytes(&self) -> &ComponentBytes {
&self.s
}
/// Return the inner byte array.
pub fn to_bytes(&self) -> SignatureBytes {
let mut ret = [0u8; Self::BYTE_SIZE];
let (R, s) = ret.split_at_mut(COMPONENT_SIZE);
R.copy_from_slice(&self.R);
s.copy_from_slice(&self.s);
ret
}
/// Convert this signature into a byte vector.
#[cfg(feature = "alloc")]
pub fn to_vec(&self) -> Vec<u8> {
self.to_bytes().to_vec()
}
}
impl SignatureEncoding for Signature {
type Repr = SignatureBytes;
fn to_bytes(&self) -> SignatureBytes {
self.to_bytes()
}
}
impl From<Signature> for SignatureBytes {
fn from(sig: Signature) -> SignatureBytes {
sig.to_bytes()
}
}
impl From<&Signature> for SignatureBytes {
fn from(sig: &Signature) -> SignatureBytes {
sig.to_bytes()
}
}
impl From<SignatureBytes> for Signature {
fn from(bytes: SignatureBytes) -> Self {
Signature::from_bytes(&bytes)
}
}
impl From<&SignatureBytes> for Signature {
fn from(bytes: &SignatureBytes) -> Self {
Signature::from_bytes(bytes)
}
}
impl TryFrom<&[u8]> for Signature {
type Error = Error;
fn try_from(bytes: &[u8]) -> signature::Result<Self> {
Self::from_slice(bytes)
}
}
impl fmt::Debug for Signature {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("ed25519::Signature")
.field("R", &hex::ComponentFormatter(self.r_bytes()))
.field("s", &hex::ComponentFormatter(self.s_bytes()))
.finish()
}
}
impl fmt::Display for Signature {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "{:X}", self)
}
}