1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
// Copyright 2015 Google Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
//! Utility functions for HTML escaping. Only useful when building your own
//! HTML renderer.
use std::fmt::{self, Arguments};
use std::io::{self, Write};
use std::str::from_utf8;
#[rustfmt::skip]
static HREF_SAFE: [u8; 128] = [
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1,
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0,
];
static HEX_CHARS: &[u8] = b"0123456789ABCDEF";
static AMP_ESCAPE: &str = "&";
static SINGLE_QUOTE_ESCAPE: &str = "'";
/// This wrapper exists because we can't have both a blanket implementation
/// for all types implementing `Write` and types of the for `&mut W` where
/// `W: StrWrite`. Since we need the latter a lot, we choose to wrap
/// `Write` types.
#[derive(Debug)]
pub struct IoWriter<W>(pub W);
/// Trait that allows writing string slices. This is basically an extension
/// of `std::io::Write` in order to include `String`.
pub trait StrWrite {
type Error;
fn write_str(&mut self, s: &str) -> Result<(), Self::Error>;
fn write_fmt(&mut self, args: Arguments) -> Result<(), Self::Error>;
}
impl<W> StrWrite for IoWriter<W>
where
W: Write,
{
type Error = io::Error;
#[inline]
fn write_str(&mut self, s: &str) -> io::Result<()> {
self.0.write_all(s.as_bytes())
}
#[inline]
fn write_fmt(&mut self, args: Arguments) -> io::Result<()> {
self.0.write_fmt(args)
}
}
/// This wrapper exists because we can't have both a blanket implementation
/// for all types implementing `io::Write` and types of the form `&mut W` where
/// `W: StrWrite`. Since we need the latter a lot, we choose to wrap
/// `Write` types.
#[derive(Debug)]
pub struct FmtWriter<W>(pub W);
impl<W> StrWrite for FmtWriter<W>
where
W: fmt::Write,
{
type Error = fmt::Error;
#[inline]
fn write_str(&mut self, s: &str) -> fmt::Result {
self.0.write_str(s)
}
#[inline]
fn write_fmt(&mut self, args: Arguments) -> fmt::Result {
self.0.write_fmt(args)
}
}
impl StrWrite for String {
type Error = fmt::Error;
#[inline]
fn write_str(&mut self, s: &str) -> fmt::Result {
self.push_str(s);
Ok(())
}
#[inline]
fn write_fmt(&mut self, args: Arguments) -> fmt::Result {
fmt::Write::write_fmt(self, args)
}
}
impl<W> StrWrite for &'_ mut W
where
W: StrWrite,
{
type Error = W::Error;
#[inline]
fn write_str(&mut self, s: &str) -> Result<(), Self::Error> {
(**self).write_str(s)
}
#[inline]
fn write_fmt(&mut self, args: Arguments) -> Result<(), Self::Error> {
(**self).write_fmt(args)
}
}
/// Writes an href to the buffer, escaping href unsafe bytes.
pub fn escape_href<W>(mut w: W, s: &str) -> Result<(), W::Error>
where
W: StrWrite,
{
let bytes = s.as_bytes();
let mut mark = 0;
for i in 0..bytes.len() {
let c = bytes[i];
if c >= 0x80 || HREF_SAFE[c as usize] == 0 {
// character needing escape
// write partial substring up to mark
if mark < i {
w.write_str(&s[mark..i])?;
}
match c {
b'&' => {
w.write_str(AMP_ESCAPE)?;
}
b'\'' => {
w.write_str(SINGLE_QUOTE_ESCAPE)?;
}
_ => {
let mut buf = [0u8; 3];
buf[0] = b'%';
buf[1] = HEX_CHARS[((c as usize) >> 4) & 0xF];
buf[2] = HEX_CHARS[(c as usize) & 0xF];
let escaped = from_utf8(&buf).unwrap();
w.write_str(escaped)?;
}
}
mark = i + 1; // all escaped characters are ASCII
}
}
w.write_str(&s[mark..])
}
const fn create_html_escape_table(body: bool) -> [u8; 256] {
let mut table = [0; 256];
table[b'&' as usize] = 1;
table[b'<' as usize] = 2;
table[b'>' as usize] = 3;
if !body {
table[b'"' as usize] = 4;
table[b'\'' as usize] = 5;
}
table
}
static HTML_ESCAPE_TABLE: [u8; 256] = create_html_escape_table(false);
static HTML_BODY_TEXT_ESCAPE_TABLE: [u8; 256] = create_html_escape_table(true);
static HTML_ESCAPES: [&str; 6] = ["", "&", "<", ">", """, "'"];
/// Writes the given string to the Write sink, replacing special HTML bytes
/// (<, >, &, ", ') by escape sequences.
///
/// Use this function to write output to quoted HTML attributes.
/// Since this function doesn't escape spaces, unquoted attributes
/// cannot be used. For example:
///
/// ```rust
/// let mut value = String::new();
/// pulldown_cmark_escape::escape_html(&mut value, "two words")
/// .expect("writing to a string is infallible");
/// // This is okay.
/// let ok = format!("<a title='{value}'>test</a>");
/// // This is not okay.
/// //let not_ok = format!("<a title={value}>test</a>");
/// ````
pub fn escape_html<W: StrWrite>(w: W, s: &str) -> Result<(), W::Error> {
#[cfg(all(target_arch = "x86_64", feature = "simd"))]
{
simd::escape_html(w, s, &HTML_ESCAPE_TABLE)
}
#[cfg(not(all(target_arch = "x86_64", feature = "simd")))]
{
escape_html_scalar(w, s, &HTML_ESCAPE_TABLE)
}
}
/// For use in HTML body text, writes the given string to the Write sink,
/// replacing special HTML bytes (<, >, &) by escape sequences.
///
/// <div class="warning">
///
/// This function should be used for escaping text nodes, not attributes.
/// In the below example, the word "foo" is an attribute, and the word
/// "bar" is an text node. The word "bar" could be escaped by this function,
/// but the word "foo" must be escaped using [`escape_html`].
///
/// ```html
/// <span class="foo">bar</span>
/// ```
///
/// If you aren't sure what the difference is, use [`escape_html`].
/// It should always be correct, but will produce larger output.
///
/// </div>
pub fn escape_html_body_text<W: StrWrite>(w: W, s: &str) -> Result<(), W::Error> {
#[cfg(all(target_arch = "x86_64", feature = "simd"))]
{
simd::escape_html(w, s, &HTML_BODY_TEXT_ESCAPE_TABLE)
}
#[cfg(not(all(target_arch = "x86_64", feature = "simd")))]
{
escape_html_scalar(w, s, &HTML_BODY_TEXT_ESCAPE_TABLE)
}
}
fn escape_html_scalar<W: StrWrite>(
mut w: W,
s: &str,
table: &'static [u8; 256],
) -> Result<(), W::Error> {
let bytes = s.as_bytes();
let mut mark = 0;
let mut i = 0;
while i < s.len() {
match bytes[i..].iter().position(|&c| table[c as usize] != 0) {
Some(pos) => {
i += pos;
}
None => break,
}
let c = bytes[i];
let escape = table[c as usize];
let escape_seq = HTML_ESCAPES[escape as usize];
w.write_str(&s[mark..i])?;
w.write_str(escape_seq)?;
i += 1;
mark = i; // all escaped characters are ASCII
}
w.write_str(&s[mark..])
}
#[cfg(all(target_arch = "x86_64", feature = "simd"))]
mod simd {
use super::StrWrite;
use std::arch::x86_64::*;
use std::mem::size_of;
const VECTOR_SIZE: usize = size_of::<__m128i>();
pub(super) fn escape_html<W: StrWrite>(
mut w: W,
s: &str,
table: &'static [u8; 256],
) -> Result<(), W::Error> {
// The SIMD accelerated code uses the PSHUFB instruction, which is part
// of the SSSE3 instruction set. Further, we can only use this code if
// the buffer is at least one VECTOR_SIZE in length to prevent reading
// out of bounds. If either of these conditions is not met, we fall back
// to scalar code.
if is_x86_feature_detected!("ssse3") && s.len() >= VECTOR_SIZE {
let bytes = s.as_bytes();
let mut mark = 0;
unsafe {
foreach_special_simd(bytes, 0, |i| {
let escape_ix = *bytes.get_unchecked(i) as usize;
let entry = table[escape_ix] as usize;
w.write_str(s.get_unchecked(mark..i))?;
mark = i + 1; // all escaped characters are ASCII
if entry == 0 {
w.write_str(s.get_unchecked(i..mark))
} else {
let replacement = super::HTML_ESCAPES[entry];
w.write_str(replacement)
}
})?;
w.write_str(s.get_unchecked(mark..))
}
} else {
super::escape_html_scalar(w, s, table)
}
}
/// Creates the lookup table for use in `compute_mask`.
const fn create_lookup() -> [u8; 16] {
let mut table = [0; 16];
table[(b'<' & 0x0f) as usize] = b'<';
table[(b'>' & 0x0f) as usize] = b'>';
table[(b'&' & 0x0f) as usize] = b'&';
table[(b'"' & 0x0f) as usize] = b'"';
table[(b'\'' & 0x0f) as usize] = b'\'';
table[0] = 0b0111_1111;
table
}
#[target_feature(enable = "ssse3")]
/// Computes a byte mask at given offset in the byte buffer. Its first 16 (least significant)
/// bits correspond to whether there is an HTML special byte (&, <, ", >) at the 16 bytes
/// `bytes[offset..]`. For example, the mask `(1 << 3)` states that there is an HTML byte
/// at `offset + 3`. It is only safe to call this function when
/// `bytes.len() >= offset + VECTOR_SIZE`.
unsafe fn compute_mask(bytes: &[u8], offset: usize) -> i32 {
debug_assert!(bytes.len() >= offset + VECTOR_SIZE);
let table = create_lookup();
let lookup = _mm_loadu_si128(table.as_ptr() as *const __m128i);
let raw_ptr = bytes.as_ptr().add(offset) as *const __m128i;
// Load the vector from memory.
let vector = _mm_loadu_si128(raw_ptr);
// We take the least significant 4 bits of every byte and use them as indices
// to map into the lookup vector.
// Note that shuffle maps bytes with their most significant bit set to lookup[0].
// Bytes that share their lower nibble with an HTML special byte get mapped to that
// corresponding special byte. Note that all HTML special bytes have distinct lower
// nibbles. Other bytes either get mapped to 0 or 127.
let expected = _mm_shuffle_epi8(lookup, vector);
// We compare the original vector to the mapped output. Bytes that shared a lower
// nibble with an HTML special byte match *only* if they are that special byte. Bytes
// that have either a 0 lower nibble or their most significant bit set were mapped to
// 127 and will hence never match. All other bytes have non-zero lower nibbles but
// were mapped to 0 and will therefore also not match.
let matches = _mm_cmpeq_epi8(expected, vector);
// Translate matches to a bitmask, where every 1 corresponds to a HTML special character
// and a 0 is a non-HTML byte.
_mm_movemask_epi8(matches)
}
/// Calls the given function with the index of every byte in the given byteslice
/// that is either ", &, <, or > and for no other byte.
/// Make sure to only call this when `bytes.len() >= 16`, undefined behaviour may
/// occur otherwise.
#[target_feature(enable = "ssse3")]
unsafe fn foreach_special_simd<E, F>(
bytes: &[u8],
mut offset: usize,
mut callback: F,
) -> Result<(), E>
where
F: FnMut(usize) -> Result<(), E>,
{
// The strategy here is to walk the byte buffer in chunks of VECTOR_SIZE (16)
// bytes at a time starting at the given offset. For each chunk, we compute a
// a bitmask indicating whether the corresponding byte is a HTML special byte.
// We then iterate over all the 1 bits in this mask and call the callback function
// with the corresponding index in the buffer.
// When the number of HTML special bytes in the buffer is relatively low, this
// allows us to quickly go through the buffer without a lookup and for every
// single byte.
debug_assert!(bytes.len() >= VECTOR_SIZE);
let upperbound = bytes.len() - VECTOR_SIZE;
while offset < upperbound {
let mut mask = compute_mask(bytes, offset);
while mask != 0 {
let ix = mask.trailing_zeros();
callback(offset + ix as usize)?;
mask ^= mask & -mask;
}
offset += VECTOR_SIZE;
}
// Final iteration. We align the read with the end of the slice and
// shift off the bytes at start we have already scanned.
let mut mask = compute_mask(bytes, upperbound);
mask >>= offset - upperbound;
while mask != 0 {
let ix = mask.trailing_zeros();
callback(offset + ix as usize)?;
mask ^= mask & -mask;
}
Ok(())
}
#[cfg(test)]
mod html_scan_tests {
#[test]
fn multichunk() {
let mut vec = Vec::new();
unsafe {
super::foreach_special_simd("&aXaaaa.a'aa9a<>aab&".as_bytes(), 0, |ix| {
#[allow(clippy::unit_arg)]
Ok::<_, std::fmt::Error>(vec.push(ix))
})
.unwrap();
}
assert_eq!(vec, vec![0, 9, 14, 15, 19]);
}
// only match these bytes, and when we match them, match them VECTOR_SIZE times
#[test]
fn only_right_bytes_matched() {
for b in 0..255u8 {
let right_byte = b == b'&' || b == b'<' || b == b'>' || b == b'"' || b == b'\'';
let vek = vec![b; super::VECTOR_SIZE];
let mut match_count = 0;
unsafe {
super::foreach_special_simd(&vek, 0, |_| {
match_count += 1;
Ok::<_, std::fmt::Error>(())
})
.unwrap();
}
assert!((match_count > 0) == (match_count == super::VECTOR_SIZE));
assert_eq!(
(match_count == super::VECTOR_SIZE),
right_byte,
"match_count: {}, byte: {:?}",
match_count,
b as char
);
}
}
}
}
#[cfg(test)]
mod test {
pub use super::{escape_href, escape_html, escape_html_body_text};
#[test]
fn check_href_escape() {
let mut s = String::new();
escape_href(&mut s, "&^_").unwrap();
assert_eq!(s.as_str(), "&^_");
}
#[test]
fn check_attr_escape() {
let mut s = String::new();
escape_html(&mut s, r##"&^"'_"##).unwrap();
assert_eq!(s.as_str(), "&^"'_");
}
#[test]
fn check_body_escape() {
let mut s = String::new();
escape_html_body_text(&mut s, r##"&^"'_"##).unwrap();
assert_eq!(s.as_str(), r##"&^"'_"##);
}
}