matrix_sdk/event_cache/
deduplicator.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
// Copyright 2024 The Matrix.org Foundation C.I.C.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! Simple but efficient types to find duplicated events. See [`Deduplicator`]
//! to learn more.

use std::{collections::BTreeSet, fmt, sync::Mutex};

use growable_bloom_filter::{GrowableBloom, GrowableBloomBuilder};
use matrix_sdk_base::{event_cache::store::EventCacheStoreLock, linked_chunk::Position};
use ruma::{OwnedEventId, OwnedRoomId};
use tracing::{debug, error};

use super::{
    room::events::{Event, RoomEvents},
    EventCacheError,
};

/// A `Deduplicator` helps to find duplicate events.
pub enum Deduplicator {
    InMemory(BloomFilterDeduplicator),
    PersistentStore(StoreDeduplicator),
}

impl Deduplicator {
    /// Create an empty deduplicator instance that uses an internal Bloom
    /// filter.
    ///
    /// Such a deduplicator is stateful, with no initial known events, and it
    /// will learn over time by using a Bloom filter which events are
    /// duplicates or not.
    ///
    /// When the persistent storage of the event cache is enabled by default,
    /// this constructor (and the associated variant) will be removed.
    pub fn new_memory_based() -> Self {
        Self::InMemory(BloomFilterDeduplicator::new())
    }

    /// Create new store-based deduplicator that will run queries against the
    /// store to find if any event is deduplicated or not.
    ///
    /// This deduplicator is stateless.
    ///
    /// When the persistent storage of the event cache is enabled by default,
    /// this will become the default, and [`Deduplicator`] will be replaced
    /// with [`StoreDeduplicator`].
    pub fn new_store_based(room_id: OwnedRoomId, store: EventCacheStoreLock) -> Self {
        Self::PersistentStore(StoreDeduplicator { room_id, store })
    }

    /// Find duplicates in the given collection of events, and return both
    /// valid events (those with an event id) as well as the event ids of
    /// duplicate events along with their position.
    pub async fn filter_duplicate_events(
        &self,
        mut events: Vec<Event>,
        room_events: &RoomEvents,
    ) -> Result<DeduplicationOutcome, EventCacheError> {
        // Remove all events with no ID, or that is duplicated inside `events`, i.e.
        // `events` contains duplicated events in itself, e.g. `[$e0, $e1, $e0]`, here
        // `$e0` is duplicated in within `events`.
        {
            let mut event_ids = BTreeSet::new();

            events.retain(|event| {
                let Some(event_id) = event.event_id() else {
                    // No event ID? Bye bye.
                    return false;
                };

                // Already seen this event in `events`? Bye bye.
                if event_ids.contains(&event_id) {
                    return false;
                }

                event_ids.insert(event_id);

                // Let's keep this event!
                true
            });
        }

        Ok(match self {
            Deduplicator::InMemory(dedup) => dedup.filter_duplicate_events(events, room_events),
            Deduplicator::PersistentStore(dedup) => {
                dedup.filter_duplicate_events(events, room_events).await?
            }
        })
    }
}

/// A deduplication mechanism based on the persistent storage associated to the
/// event cache.
///
/// It will use queries to the persistent storage to figure when events are
/// duplicates or not, making it entirely stateless.
pub struct StoreDeduplicator {
    /// The room this deduplicator applies to.
    room_id: OwnedRoomId,
    /// The actual event cache store implementation used to query events.
    store: EventCacheStoreLock,
}

impl StoreDeduplicator {
    async fn filter_duplicate_events(
        &self,
        events: Vec<Event>,
        room_events: &RoomEvents,
    ) -> Result<DeduplicationOutcome, EventCacheError> {
        let store = self.store.lock().await?;

        // Let the store do its magic ✨
        let duplicated_event_ids = store
            .filter_duplicated_events(
                &self.room_id,
                events.iter().filter_map(|event| event.event_id()).collect(),
            )
            .await?;

        // Separate duplicated events in two collections: ones that are in-memory, ones
        // that are in the store.
        let (in_memory_duplicated_event_ids, in_store_duplicated_event_ids) = {
            // Collect all in-memory chunk identifiers.
            let in_memory_chunk_identifiers =
                room_events.chunks().map(|chunk| chunk.identifier()).collect::<Vec<_>>();

            let mut in_memory = vec![];
            let mut in_store = vec![];

            for (duplicated_event_id, position) in duplicated_event_ids {
                if in_memory_chunk_identifiers.contains(&position.chunk_identifier()) {
                    in_memory.push((duplicated_event_id, position));
                } else {
                    in_store.push((duplicated_event_id, position));
                }
            }

            (in_memory, in_store)
        };

        Ok(DeduplicationOutcome {
            all_events: events,
            in_memory_duplicated_event_ids,
            in_store_duplicated_event_ids,
        })
    }
}

/// `BloomFilterDeduplicator` is an efficient type to find duplicated events,
/// using an in-memory cache.
///
/// It uses a [bloom filter] to provide a memory efficient probabilistic answer
/// to: “has event E been seen already?”. False positives are possible, while
/// false negatives are impossible. In the case of a positive reply, we fallback
/// to a linear (backward) search on all events to check whether it's a false
/// positive or not
///
/// [bloom filter]: https://en.wikipedia.org/wiki/Bloom_filter
pub struct BloomFilterDeduplicator {
    bloom_filter: Mutex<GrowableBloom>,
}

impl fmt::Debug for BloomFilterDeduplicator {
    fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
        formatter.debug_struct("Deduplicator").finish_non_exhaustive()
    }
}

impl BloomFilterDeduplicator {
    // Note: don't use too high numbers here, or the amount of allocated memory will
    // explode. See https://github.com/matrix-org/matrix-rust-sdk/pull/4231 for details.
    const APPROXIMATED_MAXIMUM_NUMBER_OF_EVENTS: usize = 1_000;
    const DESIRED_FALSE_POSITIVE_RATE: f64 = 0.01;

    /// Create a new `Deduplicator` with no prior knowledge of known events.
    fn new() -> Self {
        let bloom_filter = GrowableBloomBuilder::new()
            .estimated_insertions(Self::APPROXIMATED_MAXIMUM_NUMBER_OF_EVENTS)
            .desired_error_ratio(Self::DESIRED_FALSE_POSITIVE_RATE)
            .build();
        Self { bloom_filter: Mutex::new(bloom_filter) }
    }

    /// Find duplicates in the given collection of events, and return both
    /// valid events (those with an event id) as well as the event ids of
    /// duplicate events along with their position.
    fn filter_duplicate_events(
        &self,
        events: Vec<Event>,
        room_events: &RoomEvents,
    ) -> DeduplicationOutcome {
        let mut duplicated_event_ids = Vec::new();

        let events = self
            .scan_and_learn(events.into_iter(), room_events)
            .map(|decorated_event| match decorated_event {
                Decoration::Unique(event) => event,
                Decoration::Duplicated((event, position)) => {
                    debug!(event_id = ?event.event_id(), "Found a duplicated event");

                    let event_id = event
                        .event_id()
                        // SAFETY: An event with no ID is not possible, as invalid events are
                        // already filtered out. Thus, it's safe to unwrap the
                        // `Option<OwnedEventId>` here.
                        .expect("The event has no ID");

                    duplicated_event_ids.push((event_id, position));

                    // Keep the new event!
                    event
                }
            })
            .collect::<Vec<_>>();

        DeduplicationOutcome {
            all_events: events,
            in_memory_duplicated_event_ids: duplicated_event_ids,
            in_store_duplicated_event_ids: vec![],
        }
    }

    /// Scan a collection of events and detect duplications.
    ///
    /// This method takes a collection of events `new_events_to_scan` and
    /// returns a new collection of events, where each event is decorated by
    /// a [`Decoration`], so that the caller can decide what to do with
    /// these events.
    ///
    /// Each scanned event will update `Self`'s internal state.
    ///
    /// `existing_events` represents all events of a room that already exist.
    fn scan_and_learn<'a, I>(
        &'a self,
        new_events_to_scan: I,
        existing_events: &'a RoomEvents,
    ) -> impl Iterator<Item = Decoration<I::Item>> + 'a
    where
        I: Iterator<Item = Event> + 'a,
    {
        new_events_to_scan.filter_map(move |event| {
            let Some(event_id) = event.event_id() else {
                // The event has no `event_id`. This is normally unreachable as event with no ID
                // are already filtered out.
                error!(?event, "Found an event with no ID");
                return None;
            };

            Some(if self.bloom_filter.lock().unwrap().check_and_set(&event_id) {
                // Oh oh, it looks like we have found a duplicate!
                //
                // However, bloom filters have false positives. We are NOT sure the event is NOT
                // present. Even if the false positive rate is low, we need to
                // iterate over all events to ensure it isn't present.
                //
                // We can iterate over all events to ensure `event` is not present in
                // `existing_events`.
                let position_of_the_duplicated_event =
                    existing_events.revents().find_map(|(position, other_event)| {
                        (other_event.event_id().as_ref() == Some(&event_id)).then_some(position)
                    });

                if let Some(position) = position_of_the_duplicated_event {
                    Decoration::Duplicated((event, position))
                } else {
                    Decoration::Unique(event)
                }
            } else {
                // Bloom filter has no false negatives. We are sure the event is NOT present: we
                // can keep it in the iterator.
                Decoration::Unique(event)
            })
        })
    }
}

/// Information about the scanned collection of events.
#[derive(Debug)]
enum Decoration<I> {
    /// This event is not duplicated.
    Unique(I),

    /// This event is duplicated.
    Duplicated((I, Position)),
}

pub(super) struct DeduplicationOutcome {
    /// All events passed to the deduplicator.
    ///
    /// All events in this collection have a valid event ID.
    ///
    /// This collection does not contain duplicated events in itself.
    pub all_events: Vec<Event>,

    /// Events in [`Self::all_events`] that are duplicated and present in
    /// memory. It means they have been loaded from the store if any.
    ///
    /// Events are sorted by their position, from the newest to the oldest
    /// (position is descending).
    pub in_memory_duplicated_event_ids: Vec<(OwnedEventId, Position)>,

    /// Events in [`Self::all_events`] that are duplicated and present in
    /// the store. It means they have **NOT** been loaded from the store into
    /// memory yet.
    ///
    /// Events are sorted by their position, from the newest to the oldest
    /// (position is descending).
    pub in_store_duplicated_event_ids: Vec<(OwnedEventId, Position)>,
}

#[cfg(test)]
mod tests {
    use assert_matches2::{assert_let, assert_matches};
    use matrix_sdk_base::{deserialized_responses::TimelineEvent, linked_chunk::ChunkIdentifier};
    use matrix_sdk_test::{async_test, event_factory::EventFactory};
    use ruma::{owned_event_id, serde::Raw, user_id, EventId};

    use super::*;

    fn timeline_event(event_id: &EventId) -> TimelineEvent {
        EventFactory::new()
            .text_msg("")
            .sender(user_id!("@mnt_io:matrix.org"))
            .event_id(event_id)
            .into_event()
    }

    #[async_test]
    async fn test_filter_find_duplicates_in_the_input() {
        let event_id_0 = owned_event_id!("$ev0");
        let event_id_1 = owned_event_id!("$ev1");

        let event_0 = timeline_event(&event_id_0);
        let event_1 = timeline_event(&event_id_1);

        // It doesn't matter which deduplicator we peak, the feature is ensured by the
        // “frontend”, not the “backend” of the deduplicator.
        let deduplicator = Deduplicator::new_memory_based();
        let room_events = RoomEvents::new();

        let outcome = deduplicator
            .filter_duplicate_events(
                vec![
                    event_0.clone(), // Ok
                    event_1,         // Ok
                    event_0,         // Duplicated
                ],
                &room_events,
            )
            .await
            .unwrap();

        // We get 2 events, not 3, because one was duplicated.
        assert_eq!(outcome.all_events.len(), 2);
        assert_eq!(outcome.all_events[0].event_id(), Some(event_id_0));
        assert_eq!(outcome.all_events[1].event_id(), Some(event_id_1));
    }

    #[async_test]
    async fn test_filter_exclude_invalid_events_from_the_input() {
        let event_id_0 = owned_event_id!("$ev0");
        let event_id_1 = owned_event_id!("$ev1");

        let event_0 = timeline_event(&event_id_0);
        let event_1 = timeline_event(&event_id_1);
        // An event with no ID.
        let event_2 = TimelineEvent::new(Raw::from_json_string("{}".to_owned()).unwrap());

        // It doesn't matter which deduplicator we peak, the feature is ensured by the
        // “frontend”, not the “backend” of the deduplicator.
        let deduplicator = Deduplicator::new_memory_based();
        let room_events = RoomEvents::new();

        let outcome = deduplicator
            .filter_duplicate_events(
                vec![
                    event_0.clone(), // Ok
                    event_1,         // Ok
                    event_2,         // Invalid
                ],
                &room_events,
            )
            .await
            .unwrap();

        // We get 2 events, not 3, because one was invalid.
        assert_eq!(outcome.all_events.len(), 2);
        assert_eq!(outcome.all_events[0].event_id(), Some(event_id_0));
        assert_eq!(outcome.all_events[1].event_id(), Some(event_id_1));
    }

    #[async_test]
    async fn test_memory_based_duplicated_event_ids_from_in_memory_vs_in_store() {
        let event_id_0 = owned_event_id!("$ev0");
        let event_id_1 = owned_event_id!("$ev1");

        let event_0 = timeline_event(&event_id_0);
        let event_1 = timeline_event(&event_id_1);

        let mut deduplicator = Deduplicator::new_memory_based();
        let mut room_events = RoomEvents::new();
        // `event_0` is loaded in memory.
        // `event_1` is not loaded in memory, it's new.
        {
            let Deduplicator::InMemory(bloom_filter) = &mut deduplicator else {
                panic!("test is broken, but sky is beautiful");
            };
            bloom_filter.bloom_filter.lock().unwrap().insert(event_id_0.clone());
            room_events.push_events([event_0.clone()]);
        }

        let outcome = deduplicator
            .filter_duplicate_events(vec![event_0, event_1], &room_events)
            .await
            .unwrap();

        // The deduplication says 2 events are valid.
        assert_eq!(outcome.all_events.len(), 2);
        assert_eq!(outcome.all_events[0].event_id(), Some(event_id_0.clone()));
        assert_eq!(outcome.all_events[1].event_id(), Some(event_id_1));

        // From these 2 events, 1 is duplicated and has been loaded in memory.
        assert_eq!(outcome.in_memory_duplicated_event_ids.len(), 1);
        assert_eq!(
            outcome.in_memory_duplicated_event_ids[0],
            (event_id_0, Position::new(ChunkIdentifier::new(0), 0))
        );

        // From these 2 events, 0 are duplicated and live in the store.
        //
        // Note: with the Bloom filter, this value is always empty because there is no
        // store.
        assert!(outcome.in_store_duplicated_event_ids.is_empty());
    }

    #[cfg(not(target_arch = "wasm32"))] // This uses the cross-process lock, so needs time support.
    #[async_test]
    async fn test_store_based_duplicated_event_ids_from_in_memory_vs_in_store() {
        use std::sync::Arc;

        use matrix_sdk_base::{
            event_cache::store::{EventCacheStore, MemoryStore},
            linked_chunk::Update,
        };
        use ruma::room_id;

        let event_id_0 = owned_event_id!("$ev0");
        let event_id_1 = owned_event_id!("$ev1");
        let event_id_2 = owned_event_id!("$ev2");
        let event_id_3 = owned_event_id!("$ev3");
        let event_id_4 = owned_event_id!("$ev4");

        // `event_0` and `event_1` are in the store.
        // `event_2` and `event_3` is in the store, but also in memory: it's loaded in
        // memory from the store.
        // `event_4` is nowhere, it's new.
        let event_0 = timeline_event(&event_id_0);
        let event_1 = timeline_event(&event_id_1);
        let event_2 = timeline_event(&event_id_2);
        let event_3 = timeline_event(&event_id_3);
        let event_4 = timeline_event(&event_id_4);

        let event_cache_store = Arc::new(MemoryStore::new());
        let room_id = room_id!("!fondue:raclette.ch");

        // Prefill the store with ev1 and ev2.
        event_cache_store
            .handle_linked_chunk_updates(
                room_id,
                vec![
                    Update::NewItemsChunk {
                        previous: None,
                        new: ChunkIdentifier::new(42),
                        next: None,
                    },
                    Update::PushItems {
                        at: Position::new(ChunkIdentifier::new(42), 0),
                        items: vec![event_0.clone(), event_1.clone()],
                    },
                    Update::NewItemsChunk {
                        previous: Some(ChunkIdentifier::new(42)),
                        new: ChunkIdentifier::new(0), // must match the chunk in `RoomEvents`, so 0. It simulates a lazy-load for example.
                        next: None,
                    },
                    Update::PushItems {
                        at: Position::new(ChunkIdentifier::new(0), 0),
                        items: vec![event_2.clone(), event_3.clone()],
                    },
                ],
            )
            .await
            .unwrap();

        let event_cache_store = EventCacheStoreLock::new(event_cache_store, "hodor".to_owned());

        let deduplicator = Deduplicator::new_store_based(room_id.to_owned(), event_cache_store);
        let mut room_events = RoomEvents::new();
        room_events.push_events([event_2.clone(), event_3.clone()]);

        let outcome = deduplicator
            .filter_duplicate_events(
                vec![event_0, event_1, event_2, event_3, event_4],
                &room_events,
            )
            .await
            .unwrap();

        // The deduplication says 5 events are valid.
        assert_eq!(outcome.all_events.len(), 5);
        assert_eq!(outcome.all_events[0].event_id(), Some(event_id_0.clone()));
        assert_eq!(outcome.all_events[1].event_id(), Some(event_id_1.clone()));
        assert_eq!(outcome.all_events[2].event_id(), Some(event_id_2.clone()));
        assert_eq!(outcome.all_events[3].event_id(), Some(event_id_3.clone()));
        assert_eq!(outcome.all_events[4].event_id(), Some(event_id_4.clone()));

        // From these 5 events, 2 are duplicated and have been loaded in memory.
        //
        // Note that events are sorted by their descending position.
        assert_eq!(outcome.in_memory_duplicated_event_ids.len(), 2);
        assert_eq!(
            outcome.in_memory_duplicated_event_ids[0],
            (event_id_2, Position::new(ChunkIdentifier::new(0), 0))
        );
        assert_eq!(
            outcome.in_memory_duplicated_event_ids[1],
            (event_id_3, Position::new(ChunkIdentifier::new(0), 1))
        );

        // From these 4 events, 2 are duplicated and live in the store only, they have
        // not been loaded in memory.
        //
        // Note that events are sorted by their descending position.
        assert_eq!(outcome.in_store_duplicated_event_ids.len(), 2);
        assert_eq!(
            outcome.in_store_duplicated_event_ids[0],
            (event_id_0, Position::new(ChunkIdentifier::new(42), 0))
        );
        assert_eq!(
            outcome.in_store_duplicated_event_ids[1],
            (event_id_1, Position::new(ChunkIdentifier::new(42), 1))
        );
    }

    #[test]
    fn test_bloom_filter_no_duplicate() {
        let event_id_0 = owned_event_id!("$ev0");
        let event_id_1 = owned_event_id!("$ev1");
        let event_id_2 = owned_event_id!("$ev2");

        let event_0 = timeline_event(&event_id_0);
        let event_1 = timeline_event(&event_id_1);
        let event_2 = timeline_event(&event_id_2);

        let deduplicator = BloomFilterDeduplicator::new();
        let existing_events = RoomEvents::new();

        let mut events =
            deduplicator.scan_and_learn([event_0, event_1, event_2].into_iter(), &existing_events);

        assert_let!(Some(Decoration::Unique(event)) = events.next());
        assert_eq!(event.event_id(), Some(event_id_0));

        assert_let!(Some(Decoration::Unique(event)) = events.next());
        assert_eq!(event.event_id(), Some(event_id_1));

        assert_let!(Some(Decoration::Unique(event)) = events.next());
        assert_eq!(event.event_id(), Some(event_id_2));

        assert!(events.next().is_none());
    }

    #[test]
    fn test_bloom_filter_growth() {
        // This test was used as a testbed to observe, using `valgrind --tool=massive`,
        // the total memory allocated by the deduplicator. We keep it checked in
        // to revive this experiment in the future, if needs be.

        let num_rooms = if let Ok(num_rooms) = std::env::var("ROOMS") {
            num_rooms.parse().unwrap()
        } else {
            10
        };

        let num_events = if let Ok(num_events) = std::env::var("EVENTS") {
            num_events.parse().unwrap()
        } else {
            100
        };

        let mut dedups = Vec::with_capacity(num_rooms);

        for _ in 0..num_rooms {
            let dedup = BloomFilterDeduplicator::new();
            let existing_events = RoomEvents::new();

            for i in 0..num_events {
                let event = timeline_event(&EventId::parse(format!("$event{i}")).unwrap());
                let mut it = dedup.scan_and_learn([event].into_iter(), &existing_events);

                assert_matches!(it.next(), Some(Decoration::Unique(..)));
                assert_matches!(it.next(), None);
            }

            dedups.push(dedup);
        }
    }

    #[cfg(not(target_arch = "wasm32"))] // This uses the cross-process lock, so needs time support.
    #[async_test]
    async fn test_storage_deduplication() {
        use std::sync::Arc;

        use matrix_sdk_base::{
            event_cache::store::{EventCacheStore as _, MemoryStore},
            linked_chunk::{ChunkIdentifier, Position, Update},
        };
        use matrix_sdk_test::{ALICE, BOB};
        use ruma::{event_id, room_id};

        let room_id = room_id!("!galette:saucisse.bzh");
        let f = EventFactory::new().room(room_id).sender(user_id!("@ben:saucisse.bzh"));

        let event_cache_store = Arc::new(MemoryStore::new());

        let eid1 = event_id!("$1");
        let eid2 = event_id!("$2");
        let eid3 = event_id!("$3");

        let ev1 = f.text_msg("hello world").sender(*ALICE).event_id(eid1).into_event();
        let ev2 = f.text_msg("how's it going").sender(*BOB).event_id(eid2).into_event();
        let ev3 = f.text_msg("wassup").sender(*ALICE).event_id(eid3).into_event();
        // An invalid event (doesn't have an event id.).
        let ev4 = TimelineEvent::new(Raw::from_json_string("{}".to_owned()).unwrap());

        // Prefill the store with ev1 and ev2.
        event_cache_store
            .handle_linked_chunk_updates(
                room_id,
                vec![
                    // Non empty items chunk.
                    Update::NewItemsChunk {
                        previous: None,
                        new: ChunkIdentifier::new(42),
                        next: None,
                    },
                    Update::PushItems {
                        at: Position::new(ChunkIdentifier::new(42), 0),
                        items: vec![ev1.clone()],
                    },
                    // And another items chunk, non-empty again.
                    Update::NewItemsChunk {
                        previous: Some(ChunkIdentifier::new(42)),
                        new: ChunkIdentifier::new(43),
                        next: None,
                    },
                    Update::PushItems {
                        at: Position::new(ChunkIdentifier::new(43), 0),
                        items: vec![ev2.clone()],
                    },
                ],
            )
            .await
            .unwrap();

        // Wrap the store into its lock.
        let event_cache_store = EventCacheStoreLock::new(event_cache_store, "hodor".to_owned());

        let deduplicator = Deduplicator::new_store_based(room_id.to_owned(), event_cache_store);

        let room_events = RoomEvents::new();
        let DeduplicationOutcome {
            all_events: events,
            in_memory_duplicated_event_ids,
            in_store_duplicated_event_ids,
        } = deduplicator
            .filter_duplicate_events(vec![ev1, ev2, ev3, ev4], &room_events)
            .await
            .unwrap();

        assert_eq!(events.len(), 3);
        assert_eq!(events[0].event_id().as_deref(), Some(eid1));
        assert_eq!(events[1].event_id().as_deref(), Some(eid2));
        assert_eq!(events[2].event_id().as_deref(), Some(eid3));

        assert!(in_memory_duplicated_event_ids.is_empty());

        assert_eq!(in_store_duplicated_event_ids.len(), 2);
        assert_eq!(
            in_store_duplicated_event_ids[0],
            (eid1.to_owned(), Position::new(ChunkIdentifier::new(42), 0))
        );
        assert_eq!(
            in_store_duplicated_event_ids[1],
            (eid2.to_owned(), Position::new(ChunkIdentifier::new(43), 0))
        );
    }
}