curve25519_dalek/backend/vector/avx2/
field.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
// -*- mode: rust; -*-
//
// This file is part of curve25519-dalek.
// Copyright (c) 2016-2021 isis lovecruft
// Copyright (c) 2016-2019 Henry de Valence
// See LICENSE for licensing information.
//
// Authors:
// - isis agora lovecruft <isis@patternsinthevoid.net>
// - Henry de Valence <hdevalence@hdevalence.ca>

//! An implementation of 4-way vectorized 32bit field arithmetic using
//! AVX2.
//!
//! The `FieldElement2625x4` struct provides a vector of four field
//! elements, implemented using AVX2 operations.  Its API is designed
//! to abstract away the platform-dependent details, so that point
//! arithmetic can be implemented only in terms of a vector of field
//! elements.
//!
//! At this level, the API is optimized for speed and not safety.  The
//! `FieldElement2625x4` does not always perform reductions.  The pre-
//! and post-conditions on the bounds of the coefficients are
//! documented for each method, but it is the caller's responsibility
//! to ensure that there are no overflows.

#![allow(non_snake_case)]

const A_LANES: u8 = 0b0000_0101;
const B_LANES: u8 = 0b0000_1010;
const C_LANES: u8 = 0b0101_0000;
const D_LANES: u8 = 0b1010_0000;

#[allow(unused)]
const A_LANES64: u8 = 0b00_00_00_11;
#[allow(unused)]
const B_LANES64: u8 = 0b00_00_11_00;
#[allow(unused)]
const C_LANES64: u8 = 0b00_11_00_00;
#[allow(unused)]
const D_LANES64: u8 = 0b11_00_00_00;

use crate::backend::vector::packed_simd::{u32x8, u64x4};
use core::ops::{Add, Mul, Neg};

use crate::backend::serial::u64::field::FieldElement51;
use crate::backend::vector::avx2::constants::{
    P_TIMES_16_HI, P_TIMES_16_LO, P_TIMES_2_HI, P_TIMES_2_LO,
};

use curve25519_dalek_derive::unsafe_target_feature;

/// Unpack 32-bit lanes into 64-bit lanes:
/// ```ascii,no_run
/// (a0, b0, a1, b1, c0, d0, c1, d1)
/// ```
/// into
/// ```ascii,no_run
/// (a0, 0, b0, 0, c0, 0, d0, 0)
/// (a1, 0, b1, 0, c1, 0, d1, 0)
/// ```
#[unsafe_target_feature("avx2")]
#[inline(always)]
fn unpack_pair(src: u32x8) -> (u32x8, u32x8) {
    let a: u32x8;
    let b: u32x8;
    let zero = u32x8::splat(0);
    unsafe {
        use core::arch::x86_64::_mm256_unpackhi_epi32;
        use core::arch::x86_64::_mm256_unpacklo_epi32;
        a = _mm256_unpacklo_epi32(src.into(), zero.into()).into();
        b = _mm256_unpackhi_epi32(src.into(), zero.into()).into();
    }
    (a, b)
}

/// Repack 64-bit lanes into 32-bit lanes:
/// ```ascii,no_run
/// (a0, 0, b0, 0, c0, 0, d0, 0)
/// (a1, 0, b1, 0, c1, 0, d1, 0)
/// ```
/// into
/// ```ascii,no_run
/// (a0, b0, a1, b1, c0, d0, c1, d1)
/// ```
#[unsafe_target_feature("avx2")]
#[inline(always)]
fn repack_pair(x: u32x8, y: u32x8) -> u32x8 {
    unsafe {
        use core::arch::x86_64::_mm256_blend_epi32;
        use core::arch::x86_64::_mm256_shuffle_epi32;

        // Input: x = (a0, 0, b0, 0, c0, 0, d0, 0)
        // Input: y = (a1, 0, b1, 0, c1, 0, d1, 0)

        let x_shuffled = _mm256_shuffle_epi32(x.into(), 0b11_01_10_00);
        let y_shuffled = _mm256_shuffle_epi32(y.into(), 0b10_00_11_01);

        // x' = (a0, b0,  0,  0, c0, d0,  0,  0)
        // y' = ( 0,  0, a1, b1,  0,  0, c1, d1)

        _mm256_blend_epi32(x_shuffled, y_shuffled, 0b11001100).into()
    }
}

/// The `Lanes` enum represents a subset of the lanes `A,B,C,D` of a
/// `FieldElement2625x4`.
///
/// It's used to specify blend operations without
/// having to know details about the data layout of the
/// `FieldElement2625x4`.
#[allow(clippy::upper_case_acronyms)]
#[derive(Copy, Clone, Debug)]
pub enum Lanes {
    C,
    D,
    AB,
    AC,
    CD,
    AD,
    BC,
    ABCD,
}

/// The `Shuffle` enum represents a shuffle of a `FieldElement2625x4`.
///
/// The enum variants are named by what they do to a vector \\(
/// (A,B,C,D) \\); for instance, `Shuffle::BADC` turns \\( (A, B, C,
/// D) \\) into \\( (B, A, D, C) \\).
#[allow(clippy::upper_case_acronyms)]
#[derive(Copy, Clone, Debug)]
pub enum Shuffle {
    AAAA,
    BBBB,
    CACA,
    DBBD,
    ADDA,
    CBCB,
    ABAB,
    BADC,
    BACD,
    ABDC,
}

/// A vector of four field elements.
///
/// Each operation on a `FieldElement2625x4` has documented effects on
/// the bounds of the coefficients.  This API is designed for speed
/// and not safety; it is the caller's responsibility to ensure that
/// the post-conditions of one operation are compatible with the
/// pre-conditions of the next.
#[derive(Clone, Copy, Debug)]
pub struct FieldElement2625x4(pub(crate) [u32x8; 5]);

use subtle::Choice;
use subtle::ConditionallySelectable;

#[unsafe_target_feature("avx2")]
impl ConditionallySelectable for FieldElement2625x4 {
    fn conditional_select(
        a: &FieldElement2625x4,
        b: &FieldElement2625x4,
        choice: Choice,
    ) -> FieldElement2625x4 {
        let mask = (-(choice.unwrap_u8() as i32)) as u32;
        let mask_vec = u32x8::splat(mask);
        FieldElement2625x4([
            a.0[0] ^ (mask_vec & (a.0[0] ^ b.0[0])),
            a.0[1] ^ (mask_vec & (a.0[1] ^ b.0[1])),
            a.0[2] ^ (mask_vec & (a.0[2] ^ b.0[2])),
            a.0[3] ^ (mask_vec & (a.0[3] ^ b.0[3])),
            a.0[4] ^ (mask_vec & (a.0[4] ^ b.0[4])),
        ])
    }

    fn conditional_assign(&mut self, other: &FieldElement2625x4, choice: Choice) {
        let mask = (-(choice.unwrap_u8() as i32)) as u32;
        let mask_vec = u32x8::splat(mask);
        self.0[0] ^= mask_vec & (self.0[0] ^ other.0[0]);
        self.0[1] ^= mask_vec & (self.0[1] ^ other.0[1]);
        self.0[2] ^= mask_vec & (self.0[2] ^ other.0[2]);
        self.0[3] ^= mask_vec & (self.0[3] ^ other.0[3]);
        self.0[4] ^= mask_vec & (self.0[4] ^ other.0[4]);
    }
}

#[unsafe_target_feature("avx2")]
impl FieldElement2625x4 {
    pub const ZERO: FieldElement2625x4 = FieldElement2625x4([u32x8::splat_const::<0>(); 5]);

    /// Split this vector into an array of four (serial) field
    /// elements.
    #[rustfmt::skip] // keep alignment of extracted lanes
    pub fn split(&self) -> [FieldElement51; 4] {
        let mut out = [FieldElement51::ZERO; 4];
        for i in 0..5 {
            let a_2i   = self.0[i].extract::<0>() as u64; //
            let b_2i   = self.0[i].extract::<1>() as u64; //
            let a_2i_1 = self.0[i].extract::<2>() as u64; // `.
            let b_2i_1 = self.0[i].extract::<3>() as u64; //  | pre-swapped to avoid
            let c_2i   = self.0[i].extract::<4>() as u64; //  | a cross lane shuffle
            let d_2i   = self.0[i].extract::<5>() as u64; // .'
            let c_2i_1 = self.0[i].extract::<6>() as u64; //
            let d_2i_1 = self.0[i].extract::<7>() as u64; //

            out[0].0[i] = a_2i + (a_2i_1 << 26);
            out[1].0[i] = b_2i + (b_2i_1 << 26);
            out[2].0[i] = c_2i + (c_2i_1 << 26);
            out[3].0[i] = d_2i + (d_2i_1 << 26);
        }

        out
    }

    /// Rearrange the elements of this vector according to `control`.
    ///
    /// The `control` parameter should be a compile-time constant, so
    /// that when this function is inlined, LLVM is able to lower the
    /// shuffle using an immediate.
    #[inline]
    pub fn shuffle(&self, control: Shuffle) -> FieldElement2625x4 {
        #[inline(always)]
        fn shuffle_lanes(x: u32x8, control: Shuffle) -> u32x8 {
            unsafe {
                use core::arch::x86_64::_mm256_permutevar8x32_epi32;

                let c: u32x8 = match control {
                    Shuffle::AAAA => u32x8::new(0, 0, 2, 2, 0, 0, 2, 2),
                    Shuffle::BBBB => u32x8::new(1, 1, 3, 3, 1, 1, 3, 3),
                    Shuffle::CACA => u32x8::new(4, 0, 6, 2, 4, 0, 6, 2),
                    Shuffle::DBBD => u32x8::new(5, 1, 7, 3, 1, 5, 3, 7),
                    Shuffle::ADDA => u32x8::new(0, 5, 2, 7, 5, 0, 7, 2),
                    Shuffle::CBCB => u32x8::new(4, 1, 6, 3, 4, 1, 6, 3),
                    Shuffle::ABAB => u32x8::new(0, 1, 2, 3, 0, 1, 2, 3),
                    Shuffle::BADC => u32x8::new(1, 0, 3, 2, 5, 4, 7, 6),
                    Shuffle::BACD => u32x8::new(1, 0, 3, 2, 4, 5, 6, 7),
                    Shuffle::ABDC => u32x8::new(0, 1, 2, 3, 5, 4, 7, 6),
                };
                // Note that this gets turned into a generic LLVM
                // shuffle-by-constants, which can be lowered to a simpler
                // instruction than a generic permute.
                _mm256_permutevar8x32_epi32(x.into(), c.into()).into()
            }
        }

        FieldElement2625x4([
            shuffle_lanes(self.0[0], control),
            shuffle_lanes(self.0[1], control),
            shuffle_lanes(self.0[2], control),
            shuffle_lanes(self.0[3], control),
            shuffle_lanes(self.0[4], control),
        ])
    }

    /// Blend `self` with `other`, taking lanes specified in `control` from `other`.
    ///
    /// The `control` parameter should be a compile-time constant, so
    /// that this function can be inlined and LLVM can lower it to a
    /// blend instruction using an immediate.
    #[inline]
    pub fn blend(&self, other: FieldElement2625x4, control: Lanes) -> FieldElement2625x4 {
        #[inline(always)]
        fn blend_lanes(x: u32x8, y: u32x8, control: Lanes) -> u32x8 {
            unsafe {
                use core::arch::x86_64::_mm256_blend_epi32;

                // This would be much cleaner if we could factor out the match
                // statement on the control. Unfortunately, rustc forgets
                // constant-info very quickly, so we can't even write
                // ```
                // match control {
                //     Lanes::C => {
                //         let imm = C_LANES as i32;
                //         _mm256_blend_epi32(..., imm)
                // ```
                // let alone
                // ```
                // let imm = match control {
                //     Lanes::C => C_LANES as i32,
                // }
                // _mm256_blend_epi32(..., imm)
                // ```
                // even though both of these would be constant-folded by LLVM
                // at a lower level (as happens in the shuffle implementation,
                // which does not require a shuffle immediate but *is* lowered
                // to immediate shuffles anyways).
                match control {
                    Lanes::C => _mm256_blend_epi32(x.into(), y.into(), C_LANES as i32).into(),
                    Lanes::D => _mm256_blend_epi32(x.into(), y.into(), D_LANES as i32).into(),
                    Lanes::AD => {
                        _mm256_blend_epi32(x.into(), y.into(), (A_LANES | D_LANES) as i32).into()
                    }
                    Lanes::AB => {
                        _mm256_blend_epi32(x.into(), y.into(), (A_LANES | B_LANES) as i32).into()
                    }
                    Lanes::AC => {
                        _mm256_blend_epi32(x.into(), y.into(), (A_LANES | C_LANES) as i32).into()
                    }
                    Lanes::CD => {
                        _mm256_blend_epi32(x.into(), y.into(), (C_LANES | D_LANES) as i32).into()
                    }
                    Lanes::BC => {
                        _mm256_blend_epi32(x.into(), y.into(), (B_LANES | C_LANES) as i32).into()
                    }
                    Lanes::ABCD => _mm256_blend_epi32(
                        x.into(),
                        y.into(),
                        (A_LANES | B_LANES | C_LANES | D_LANES) as i32,
                    )
                    .into(),
                }
            }
        }

        FieldElement2625x4([
            blend_lanes(self.0[0], other.0[0], control),
            blend_lanes(self.0[1], other.0[1], control),
            blend_lanes(self.0[2], other.0[2], control),
            blend_lanes(self.0[3], other.0[3], control),
            blend_lanes(self.0[4], other.0[4], control),
        ])
    }

    /// Convenience wrapper around `new(x,x,x,x)`.
    pub fn splat(x: &FieldElement51) -> FieldElement2625x4 {
        FieldElement2625x4::new(x, x, x, x)
    }

    /// Create a `FieldElement2625x4` from four `FieldElement51`s.
    ///
    /// # Postconditions
    ///
    /// The resulting `FieldElement2625x4` is bounded with \\( b < 0.0002 \\).
    #[rustfmt::skip] // keep alignment of computed lanes
    pub fn new(
        x0: &FieldElement51,
        x1: &FieldElement51,
        x2: &FieldElement51,
        x3: &FieldElement51,
    ) -> FieldElement2625x4 {
        let mut buf = [u32x8::splat(0); 5];
        let low_26_bits = (1 << 26) - 1;
        #[allow(clippy::needless_range_loop)]
        for i in 0..5 {
            let a_2i   = (x0.0[i] & low_26_bits) as u32;
            let a_2i_1 = (x0.0[i] >> 26) as u32;
            let b_2i   = (x1.0[i] & low_26_bits) as u32;
            let b_2i_1 = (x1.0[i] >> 26) as u32;
            let c_2i   = (x2.0[i] & low_26_bits) as u32;
            let c_2i_1 = (x2.0[i] >> 26) as u32;
            let d_2i   = (x3.0[i] & low_26_bits) as u32;
            let d_2i_1 = (x3.0[i] >> 26) as u32;

            buf[i] = u32x8::new(a_2i, b_2i, a_2i_1, b_2i_1, c_2i, d_2i, c_2i_1, d_2i_1);
        }

        // We don't know that the original `FieldElement51`s were
        // fully reduced, so the odd limbs may exceed 2^25.
        // Reduce them to be sure.
        FieldElement2625x4(buf).reduce()
    }

    /// Given \\((A,B,C,D)\\), compute \\((-A,-B,-C,-D)\\), without
    /// performing a reduction.
    ///
    /// # Preconditions
    ///
    /// The coefficients of `self` must be bounded with \\( b < 0.999 \\).
    ///
    /// # Postconditions
    ///
    /// The coefficients of the result are bounded with \\( b < 1 \\).
    #[inline]
    pub fn negate_lazy(&self) -> FieldElement2625x4 {
        // The limbs of self are bounded with b < 0.999, while the
        // smallest limb of 2*p is 67108845 > 2^{26+0.9999}, so
        // underflows are not possible.
        FieldElement2625x4([
            P_TIMES_2_LO - self.0[0],
            P_TIMES_2_HI - self.0[1],
            P_TIMES_2_HI - self.0[2],
            P_TIMES_2_HI - self.0[3],
            P_TIMES_2_HI - self.0[4],
        ])
    }

    /// Given `self = (A,B,C,D)`, compute `(B - A, B + A, D - C, D + C)`.
    ///
    /// # Preconditions
    ///
    /// The coefficients of `self` must be bounded with \\( b < 0.01 \\).
    ///
    /// # Postconditions
    ///
    /// The coefficients of the result are bounded with \\( b < 1.6 \\).
    #[inline]
    pub fn diff_sum(&self) -> FieldElement2625x4 {
        // tmp1 = (B, A, D, C)
        let tmp1 = self.shuffle(Shuffle::BADC);
        // tmp2 = (-A, B, -C, D)
        let tmp2 = self.blend(self.negate_lazy(), Lanes::AC);
        // (B - A, B + A, D - C, D + C) bounded with b < 1.6
        tmp1 + tmp2
    }

    /// Reduce this vector of field elements \\(\mathrm{mod} p\\).
    ///
    /// # Postconditions
    ///
    /// The coefficients of the result are bounded with \\( b < 0.0002 \\).
    #[inline]
    pub fn reduce(&self) -> FieldElement2625x4 {
        let shifts = u32x8::new(26, 26, 25, 25, 26, 26, 25, 25);
        let masks = u32x8::new(
            (1 << 26) - 1,
            (1 << 26) - 1,
            (1 << 25) - 1,
            (1 << 25) - 1,
            (1 << 26) - 1,
            (1 << 26) - 1,
            (1 << 25) - 1,
            (1 << 25) - 1,
        );

        // Let c(x) denote the carryout of the coefficient x.
        //
        // Given    (   x0,    y0,    x1,    y1,    z0,    w0,    z1,    w1),
        // compute  (c(x1), c(y1), c(x0), c(y0), c(z1), c(w1), c(z0), c(w0)).
        //
        // The carryouts are bounded by 2^(32 - 25) = 2^7.
        let rotated_carryout = |v: u32x8| -> u32x8 {
            unsafe {
                use core::arch::x86_64::_mm256_shuffle_epi32;
                use core::arch::x86_64::_mm256_srlv_epi32;

                let c = _mm256_srlv_epi32(v.into(), shifts.into());
                _mm256_shuffle_epi32(c, 0b01_00_11_10).into()
            }
        };

        // Combine (lo, lo, lo, lo, lo, lo, lo, lo)
        //    with (hi, hi, hi, hi, hi, hi, hi, hi)
        //      to (lo, lo, hi, hi, lo, lo, hi, hi)
        //
        // This allows combining carryouts, e.g.,
        //
        // lo  (c(x1), c(y1), c(x0), c(y0), c(z1), c(w1), c(z0), c(w0))
        // hi  (c(x3), c(y3), c(x2), c(y2), c(z3), c(w3), c(z2), c(w2))
        // ->  (c(x1), c(y1), c(x2), c(y2), c(z1), c(w1), c(z2), c(w2))
        //
        // which is exactly the vector of carryins for
        //
        //     (   x2,    y2,    x3,    y3,    z2,    w2,    z3,    w3).
        //
        let combine = |v_lo: u32x8, v_hi: u32x8| -> u32x8 {
            unsafe {
                use core::arch::x86_64::_mm256_blend_epi32;
                _mm256_blend_epi32(v_lo.into(), v_hi.into(), 0b11_00_11_00).into()
            }
        };

        let mut v = self.0;

        let c10 = rotated_carryout(v[0]);
        v[0] = (v[0] & masks) + combine(u32x8::splat(0), c10);

        let c32 = rotated_carryout(v[1]);
        v[1] = (v[1] & masks) + combine(c10, c32);

        let c54 = rotated_carryout(v[2]);
        v[2] = (v[2] & masks) + combine(c32, c54);

        let c76 = rotated_carryout(v[3]);
        v[3] = (v[3] & masks) + combine(c54, c76);

        let c98 = rotated_carryout(v[4]);
        v[4] = (v[4] & masks) + combine(c76, c98);

        let c9_19: u32x8 = unsafe {
            use core::arch::x86_64::_mm256_mul_epu32;
            use core::arch::x86_64::_mm256_shuffle_epi32;

            // Need to rearrange c98, since vpmuludq uses the low
            // 32-bits of each 64-bit lane to compute the product:
            //
            // c98       = (c(x9), c(y9), c(x8), c(y8), c(z9), c(w9), c(z8), c(w8));
            // c9_spread = (c(x9), c(x8), c(y9), c(y8), c(z9), c(z8), c(w9), c(w8)).
            let c9_spread = _mm256_shuffle_epi32(c98.into(), 0b11_01_10_00);

            // Since the carryouts are bounded by 2^7, their products with 19
            // are bounded by 2^11.25.  This means that
            //
            // c9_19_spread = (19*c(x9), 0, 19*c(y9), 0, 19*c(z9), 0, 19*c(w9), 0).
            let c9_19_spread = _mm256_mul_epu32(c9_spread, u64x4::splat(19).into());

            // Unshuffle:
            // c9_19 = (19*c(x9), 19*c(y9), 0, 0, 19*c(z9), 19*c(w9), 0, 0).
            _mm256_shuffle_epi32(c9_19_spread, 0b11_01_10_00).into()
        };

        // Add the final carryin.
        v[0] += c9_19;

        // Each output coefficient has exactly one carryin, which is
        // bounded by 2^11.25, so they are bounded as
        //
        // c_even < 2^26 + 2^11.25 < 26.00006 < 2^{26+b}
        // c_odd  < 2^25 + 2^11.25 < 25.0001  < 2^{25+b}
        //
        // where b = 0.0002.
        FieldElement2625x4(v)
    }

    /// Given an array of wide coefficients, reduce them to a `FieldElement2625x4`.
    ///
    /// # Postconditions
    ///
    /// The coefficients of the result are bounded with \\( b < 0.007 \\).
    #[inline]
    #[rustfmt::skip] // keep alignment of carry chain
    fn reduce64(mut z: [u64x4; 10]) -> FieldElement2625x4 {
        // These aren't const because splat isn't a const fn
        let LOW_25_BITS: u64x4 = u64x4::splat((1 << 25) - 1);
        let LOW_26_BITS: u64x4 = u64x4::splat((1 << 26) - 1);

        // Carry the value from limb i = 0..8 to limb i+1
        let carry = |z: &mut [u64x4; 10], i: usize| {
            debug_assert!(i < 9);
            if i % 2 == 0 {
                // Even limbs have 26 bits
                z[i + 1] += z[i].shr::<26>();
                z[i] &= LOW_26_BITS;
            } else {
                // Odd limbs have 25 bits
                z[i + 1] += z[i].shr::<25>();
                z[i] &= LOW_25_BITS;
            }
        };

        // Perform two halves of the carry chain in parallel.
        carry(&mut z, 0); carry(&mut z, 4);
        carry(&mut z, 1); carry(&mut z, 5);
        carry(&mut z, 2); carry(&mut z, 6);
        carry(&mut z, 3); carry(&mut z, 7);
        // Since z[3] < 2^64, c < 2^(64-25) = 2^39,
        // so    z[4] < 2^26 + 2^39 < 2^39.0002
        carry(&mut z, 4); carry(&mut z, 8);
        // Now z[4] < 2^26
        // and z[5] < 2^25 + 2^13.0002 < 2^25.0004 (good enough)

        // Last carry has a multiplication by 19.  In the serial case we
        // do a 64-bit multiplication by 19, but here we want to do a
        // 32-bit multiplication.  However, if we only know z[9] < 2^64,
        // the carry is bounded as c < 2^(64-25) = 2^39, which is too
        // big.  To ensure c < 2^32, we would need z[9] < 2^57.
        // Instead, we split the carry in two, with c = c_0 + c_1*2^26.

        let c = z[9].shr::<25>();
        z[9] &= LOW_25_BITS;
        let mut c0: u64x4 = c & LOW_26_BITS; // c0 < 2^26;
        let mut c1: u64x4 = c.shr::<26>();         // c1 < 2^(39-26) = 2^13;

        let x19 = u64x4::splat(19);
        c0 = u32x8::from(c0).mul32(u32x8::from(x19));
        c1 = u32x8::from(c1).mul32(u32x8::from(x19));

        z[0] += c0; // z0 < 2^26 + 2^30.25 < 2^30.33
        z[1] += c1; // z1 < 2^25 + 2^17.25 < 2^25.0067
        carry(&mut z, 0); // z0 < 2^26, z1 < 2^25.0067 + 2^4.33 = 2^25.007

        // The output coefficients are bounded with
        //
        // b = 0.007  for z[1]
        // b = 0.0004 for z[5]
        // b = 0      for other z[i].
        //
        // So the packed result is bounded with b = 0.007.
        FieldElement2625x4([
            repack_pair(z[0].into(), z[1].into()),
            repack_pair(z[2].into(), z[3].into()),
            repack_pair(z[4].into(), z[5].into()),
            repack_pair(z[6].into(), z[7].into()),
            repack_pair(z[8].into(), z[9].into()),
        ])
    }

    /// Square this field element, and negate the result's \\(D\\) value.
    ///
    /// # Preconditions
    ///
    /// The coefficients of `self` must be bounded with \\( b < 1.5 \\).
    ///
    /// # Postconditions
    ///
    /// The coefficients of the result are bounded with \\( b < 0.007 \\).
    #[rustfmt::skip] // keep alignment of z* calculations
    pub fn square_and_negate_D(&self) -> FieldElement2625x4 {
        #[inline(always)]
        fn m(x: u32x8, y: u32x8) -> u64x4 {
            x.mul32(y)
        }

        #[inline(always)]
        fn m_lo(x: u32x8, y: u32x8) -> u32x8 {
            x.mul32(y).into()
        }

        let v19 = u32x8::new(19, 0, 19, 0, 19, 0, 19, 0);

        let (x0, x1) = unpack_pair(self.0[0]);
        let (x2, x3) = unpack_pair(self.0[1]);
        let (x4, x5) = unpack_pair(self.0[2]);
        let (x6, x7) = unpack_pair(self.0[3]);
        let (x8, x9) = unpack_pair(self.0[4]);

        let x0_2 = x0.shl::<1>();
        let x1_2 = x1.shl::<1>();
        let x2_2 = x2.shl::<1>();
        let x3_2 = x3.shl::<1>();
        let x4_2 = x4.shl::<1>();
        let x5_2 = x5.shl::<1>();
        let x6_2 = x6.shl::<1>();
        let x7_2 = x7.shl::<1>();

        let x5_19 = m_lo(v19, x5);
        let x6_19 = m_lo(v19, x6);
        let x7_19 = m_lo(v19, x7);
        let x8_19 = m_lo(v19, x8);
        let x9_19 = m_lo(v19, x9);

        let mut z0 = m(x0,   x0) + m(x2_2, x8_19) + m(x4_2, x6_19) + ((m(x1_2, x9_19) +   m(x3_2, x7_19) +    m(x5,   x5_19)).shl::<1>());
        let mut z1 = m(x0_2, x1) + m(x3_2, x8_19) + m(x5_2, x6_19) +                    ((m(x2,   x9_19) +    m(x4,   x7_19)).shl::<1>());
        let mut z2 = m(x0_2, x2) + m(x1_2,    x1) + m(x4_2, x8_19) +   m(x6,   x6_19) + ((m(x3_2, x9_19) +    m(x5_2, x7_19)).shl::<1>());
        let mut z3 = m(x0_2, x3) + m(x1_2,    x2) + m(x5_2, x8_19) +                    ((m(x4,   x9_19) +    m(x6,   x7_19)).shl::<1>());
        let mut z4 = m(x0_2, x4) + m(x1_2,  x3_2) + m(x2,      x2) +   m(x6_2, x8_19) + ((m(x5_2, x9_19) +    m(x7,   x7_19)).shl::<1>());
        let mut z5 = m(x0_2, x5) + m(x1_2,    x4) + m(x2_2,    x3) +   m(x7_2, x8_19)                    +  ((m(x6,   x9_19)).shl::<1>());
        let mut z6 = m(x0_2, x6) + m(x1_2,  x5_2) + m(x2_2,    x4) +   m(x3_2,    x3) +   m(x8,   x8_19) +  ((m(x7_2, x9_19)).shl::<1>());
        let mut z7 = m(x0_2, x7) + m(x1_2,    x6) + m(x2_2,    x5) +   m(x3_2,    x4)                    +  ((m(x8,   x9_19)).shl::<1>());
        let mut z8 = m(x0_2, x8) + m(x1_2,  x7_2) + m(x2_2,    x6) +   m(x3_2,  x5_2) +   m(x4,      x4) +  ((m(x9,   x9_19)).shl::<1>());
        let mut z9 = m(x0_2, x9) + m(x1_2,    x8) + m(x2_2,    x7) +   m(x3_2,    x6) +   m(x4_2,    x5)                                 ;

        // The biggest z_i is bounded as z_i < 249*2^(51 + 2*b);
        // if b < 1.5 we get z_i < 4485585228861014016.
        //
        // The limbs of the multiples of p are bounded above by
        //
        // 0x3fffffff << 37 = 9223371899415822336 < 2^63
        //
        // and below by
        //
        // 0x1fffffff << 37 = 4611685880988434432
        //                  > 4485585228861014016
        //
        // So these multiples of p are big enough to avoid underflow
        // in subtraction, and small enough to fit within u64
        // with room for a carry.

        let low__p37 = u64x4::splat(0x3ffffed << 37);
        let even_p37 = u64x4::splat(0x3ffffff << 37);
        let odd__p37 = u64x4::splat(0x1ffffff << 37);

        let negate_D = |x: u64x4, p: u64x4| -> u64x4 {
            unsafe {
                use core::arch::x86_64::_mm256_blend_epi32;
                _mm256_blend_epi32(x.into(), (p - x).into(), D_LANES64 as i32).into()
            }
        };

        z0 = negate_D(z0, low__p37);
        z1 = negate_D(z1, odd__p37);
        z2 = negate_D(z2, even_p37);
        z3 = negate_D(z3, odd__p37);
        z4 = negate_D(z4, even_p37);
        z5 = negate_D(z5, odd__p37);
        z6 = negate_D(z6, even_p37);
        z7 = negate_D(z7, odd__p37);
        z8 = negate_D(z8, even_p37);
        z9 = negate_D(z9, odd__p37);

        FieldElement2625x4::reduce64([z0, z1, z2, z3, z4, z5, z6, z7, z8, z9])
    }
}

#[unsafe_target_feature("avx2")]
impl Neg for FieldElement2625x4 {
    type Output = FieldElement2625x4;

    /// Negate this field element, performing a reduction.
    ///
    /// If the coefficients are known to be small, use `negate_lazy`
    /// to avoid performing a reduction.
    ///
    /// # Preconditions
    ///
    /// The coefficients of `self` must be bounded with \\( b < 4.0 \\).
    ///
    /// # Postconditions
    ///
    /// The coefficients of the result are bounded with \\( b < 0.0002 \\).
    #[inline]
    fn neg(self) -> FieldElement2625x4 {
        FieldElement2625x4([
            P_TIMES_16_LO - self.0[0],
            P_TIMES_16_HI - self.0[1],
            P_TIMES_16_HI - self.0[2],
            P_TIMES_16_HI - self.0[3],
            P_TIMES_16_HI - self.0[4],
        ])
        .reduce()
    }
}

#[unsafe_target_feature("avx2")]
impl Add<FieldElement2625x4> for FieldElement2625x4 {
    type Output = FieldElement2625x4;
    /// Add two `FieldElement2625x4`s, without performing a reduction.
    #[inline]
    fn add(self, rhs: FieldElement2625x4) -> FieldElement2625x4 {
        FieldElement2625x4([
            self.0[0] + rhs.0[0],
            self.0[1] + rhs.0[1],
            self.0[2] + rhs.0[2],
            self.0[3] + rhs.0[3],
            self.0[4] + rhs.0[4],
        ])
    }
}

#[unsafe_target_feature("avx2")]
impl Mul<(u32, u32, u32, u32)> for FieldElement2625x4 {
    type Output = FieldElement2625x4;
    /// Perform a multiplication by a vector of small constants.
    ///
    /// # Postconditions
    ///
    /// The coefficients of the result are bounded with \\( b < 0.007 \\).
    #[inline]
    fn mul(self, scalars: (u32, u32, u32, u32)) -> FieldElement2625x4 {
        let consts = u32x8::new(scalars.0, 0, scalars.1, 0, scalars.2, 0, scalars.3, 0);

        let (b0, b1) = unpack_pair(self.0[0]);
        let (b2, b3) = unpack_pair(self.0[1]);
        let (b4, b5) = unpack_pair(self.0[2]);
        let (b6, b7) = unpack_pair(self.0[3]);
        let (b8, b9) = unpack_pair(self.0[4]);

        FieldElement2625x4::reduce64([
            b0.mul32(consts),
            b1.mul32(consts),
            b2.mul32(consts),
            b3.mul32(consts),
            b4.mul32(consts),
            b5.mul32(consts),
            b6.mul32(consts),
            b7.mul32(consts),
            b8.mul32(consts),
            b9.mul32(consts),
        ])
    }
}

#[unsafe_target_feature("avx2")]
impl Mul<&FieldElement2625x4> for &FieldElement2625x4 {
    type Output = FieldElement2625x4;
    /// Multiply `self` by `rhs`.
    ///
    /// # Preconditions
    ///
    /// The coefficients of `self` must be bounded with \\( b < 2.5 \\).
    ///
    /// The coefficients of `rhs` must be bounded with \\( b < 1.75 \\).
    ///
    /// # Postconditions
    ///
    /// The coefficients of the result are bounded with \\( b < 0.007 \\).
    ///
    #[rustfmt::skip] // keep alignment of z* calculations
    #[inline]
    fn mul(self, rhs: &FieldElement2625x4) -> FieldElement2625x4 {
        #[inline(always)]
        fn m(x: u32x8, y: u32x8) -> u64x4 {
            x.mul32(y)
        }

        #[inline(always)]
        fn m_lo(x: u32x8, y: u32x8) -> u32x8 {
            x.mul32(y).into()
        }

        let (x0, x1) = unpack_pair(self.0[0]);
        let (x2, x3) = unpack_pair(self.0[1]);
        let (x4, x5) = unpack_pair(self.0[2]);
        let (x6, x7) = unpack_pair(self.0[3]);
        let (x8, x9) = unpack_pair(self.0[4]);

        let (y0, y1) = unpack_pair(rhs.0[0]);
        let (y2, y3) = unpack_pair(rhs.0[1]);
        let (y4, y5) = unpack_pair(rhs.0[2]);
        let (y6, y7) = unpack_pair(rhs.0[3]);
        let (y8, y9) = unpack_pair(rhs.0[4]);

        let v19 = u32x8::new(19, 0, 19, 0, 19, 0, 19, 0);

        let y1_19 = m_lo(v19, y1); // This fits in a u32
        let y2_19 = m_lo(v19, y2); // iff 26 + b + lg(19) < 32
        let y3_19 = m_lo(v19, y3); // if  b < 32 - 26 - 4.248 = 1.752
        let y4_19 = m_lo(v19, y4);
        let y5_19 = m_lo(v19, y5);
        let y6_19 = m_lo(v19, y6);
        let y7_19 = m_lo(v19, y7);
        let y8_19 = m_lo(v19, y8);
        let y9_19 = m_lo(v19, y9);

        let x1_2 = x1 + x1; // This fits in a u32 iff 25 + b + 1 < 32
        let x3_2 = x3 + x3; //                    iff b < 6
        let x5_2 = x5 + x5;
        let x7_2 = x7 + x7;
        let x9_2 = x9 + x9;

        let z0 = m(x0, y0) + m(x1_2, y9_19) + m(x2, y8_19) + m(x3_2, y7_19) + m(x4, y6_19) + m(x5_2, y5_19) + m(x6, y4_19) + m(x7_2, y3_19) + m(x8, y2_19) + m(x9_2, y1_19);
        let z1 = m(x0, y1) + m(x1,      y0) + m(x2, y9_19) + m(x3,   y8_19) + m(x4, y7_19) + m(x5,   y6_19) + m(x6, y5_19) + m(x7,   y4_19) + m(x8, y3_19) + m(x9,   y2_19);
        let z2 = m(x0, y2) + m(x1_2,    y1) + m(x2,    y0) + m(x3_2, y9_19) + m(x4, y8_19) + m(x5_2, y7_19) + m(x6, y6_19) + m(x7_2, y5_19) + m(x8, y4_19) + m(x9_2, y3_19);
        let z3 = m(x0, y3) + m(x1,      y2) + m(x2,    y1) + m(x3,      y0) + m(x4, y9_19) + m(x5,   y8_19) + m(x6, y7_19) + m(x7,   y6_19) + m(x8, y5_19) + m(x9,   y4_19);
        let z4 = m(x0, y4) + m(x1_2,    y3) + m(x2,    y2) + m(x3_2,    y1) + m(x4,    y0) + m(x5_2, y9_19) + m(x6, y8_19) + m(x7_2, y7_19) + m(x8, y6_19) + m(x9_2, y5_19);
        let z5 = m(x0, y5) + m(x1,      y4) + m(x2,    y3) + m(x3,      y2) + m(x4,    y1) + m(x5,      y0) + m(x6, y9_19) + m(x7,   y8_19) + m(x8, y7_19) + m(x9,   y6_19);
        let z6 = m(x0, y6) + m(x1_2,    y5) + m(x2,    y4) + m(x3_2,    y3) + m(x4,    y2) + m(x5_2,    y1) + m(x6,    y0) + m(x7_2, y9_19) + m(x8, y8_19) + m(x9_2, y7_19);
        let z7 = m(x0, y7) + m(x1,      y6) + m(x2,    y5) + m(x3,      y4) + m(x4,    y3) + m(x5,      y2) + m(x6,    y1) + m(x7,      y0) + m(x8, y9_19) + m(x9,   y8_19);
        let z8 = m(x0, y8) + m(x1_2,    y7) + m(x2,    y6) + m(x3_2,    y5) + m(x4,    y4) + m(x5_2,    y3) + m(x6,    y2) + m(x7_2,    y1) + m(x8,    y0) + m(x9_2, y9_19);
        let z9 = m(x0, y9) + m(x1,      y8) + m(x2,    y7) + m(x3,      y6) + m(x4,    y5) + m(x5,      y4) + m(x6,    y3) + m(x7,      y2) + m(x8,    y1) + m(x9,      y0);

        // The bounds on z[i] are the same as in the serial 32-bit code
        // and the comment below is copied from there:

        // How big is the contribution to z[i+j] from x[i], y[j]?
        //
        // Using the bounds above, we get:
        //
        // i even, j even:   x[i]*y[j] <   2^(26+b)*2^(26+b) = 2*2^(51+2*b)
        // i  odd, j even:   x[i]*y[j] <   2^(25+b)*2^(26+b) = 1*2^(51+2*b)
        // i even, j  odd:   x[i]*y[j] <   2^(26+b)*2^(25+b) = 1*2^(51+2*b)
        // i  odd, j  odd: 2*x[i]*y[j] < 2*2^(25+b)*2^(25+b) = 1*2^(51+2*b)
        //
        // We perform inline reduction mod p by replacing 2^255 by 19
        // (since 2^255 - 19 = 0 mod p).  This adds a factor of 19, so
        // we get the bounds (z0 is the biggest one, but calculated for
        // posterity here in case finer estimation is needed later):
        //
        //  z0 < ( 2 + 1*19 + 2*19 + 1*19 + 2*19 + 1*19 + 2*19 + 1*19 + 2*19 + 1*19 )*2^(51 + 2b) = 249*2^(51 + 2*b)
        //  z1 < ( 1 +  1   + 1*19 + 1*19 + 1*19 + 1*19 + 1*19 + 1*19 + 1*19 + 1*19 )*2^(51 + 2b) = 154*2^(51 + 2*b)
        //  z2 < ( 2 +  1   +  2   + 1*19 + 2*19 + 1*19 + 2*19 + 1*19 + 2*19 + 1*19 )*2^(51 + 2b) = 195*2^(51 + 2*b)
        //  z3 < ( 1 +  1   +  1   +  1   + 1*19 + 1*19 + 1*19 + 1*19 + 1*19 + 1*19 )*2^(51 + 2b) = 118*2^(51 + 2*b)
        //  z4 < ( 2 +  1   +  2   +  1   +  2   + 1*19 + 2*19 + 1*19 + 2*19 + 1*19 )*2^(51 + 2b) = 141*2^(51 + 2*b)
        //  z5 < ( 1 +  1   +  1   +  1   +  1   +  1   + 1*19 + 1*19 + 1*19 + 1*19 )*2^(51 + 2b) =  82*2^(51 + 2*b)
        //  z6 < ( 2 +  1   +  2   +  1   +  2   +  1   +  2   + 1*19 + 2*19 + 1*19 )*2^(51 + 2b) =  87*2^(51 + 2*b)
        //  z7 < ( 1 +  1   +  1   +  1   +  1   +  1   +  1   +  1   + 1*19 + 1*19 )*2^(51 + 2b) =  46*2^(51 + 2*b)
        //  z8 < ( 2 +  1   +  2   +  1   +  2   +  1   +  2   +  1   +  2   + 1*19 )*2^(51 + 2b) =  33*2^(51 + 2*b)
        //  z9 < ( 1 +  1   +  1   +  1   +  1   +  1   +  1   +  1   +  1   +  1   )*2^(51 + 2b) =  10*2^(51 + 2*b)
        //
        // So z[0] fits into a u64 if 51 + 2*b + lg(249) < 64
        //                         if b < 2.5.

        // In fact this bound is slightly sloppy, since it treats both
        // inputs x and y as being bounded by the same parameter b,
        // while they are in fact bounded by b_x and b_y, and we
        // already require that b_y < 1.75 in order to fit the
        // multiplications by 19 into a u32.  The tighter bound on b_y
        // means we could get a tighter bound on the outputs, or a
        // looser bound on b_x.
        FieldElement2625x4::reduce64([z0, z1, z2, z3, z4, z5, z6, z7, z8, z9])
    }
}

#[cfg(target_feature = "avx2")]
#[cfg(test)]
mod test {
    use super::*;

    #[test]
    fn scale_by_curve_constants() {
        let mut x = FieldElement2625x4::splat(&FieldElement51::ONE);

        x = x * (121666, 121666, 2 * 121666, 2 * 121665);

        let xs = x.split();
        assert_eq!(xs[0], FieldElement51([121666, 0, 0, 0, 0]));
        assert_eq!(xs[1], FieldElement51([121666, 0, 0, 0, 0]));
        assert_eq!(xs[2], FieldElement51([2 * 121666, 0, 0, 0, 0]));
        assert_eq!(xs[3], FieldElement51([2 * 121665, 0, 0, 0, 0]));
    }

    #[test]
    fn diff_sum_vs_serial() {
        let x0 = FieldElement51([10000, 10001, 10002, 10003, 10004]);
        let x1 = FieldElement51([10100, 10101, 10102, 10103, 10104]);
        let x2 = FieldElement51([10200, 10201, 10202, 10203, 10204]);
        let x3 = FieldElement51([10300, 10301, 10302, 10303, 10304]);

        let vec = FieldElement2625x4::new(&x0, &x1, &x2, &x3).diff_sum();

        let result = vec.split();

        assert_eq!(result[0], &x1 - &x0);
        assert_eq!(result[1], &x1 + &x0);
        assert_eq!(result[2], &x3 - &x2);
        assert_eq!(result[3], &x3 + &x2);
    }

    #[test]
    fn square_vs_serial() {
        let x0 = FieldElement51([10000, 10001, 10002, 10003, 10004]);
        let x1 = FieldElement51([10100, 10101, 10102, 10103, 10104]);
        let x2 = FieldElement51([10200, 10201, 10202, 10203, 10204]);
        let x3 = FieldElement51([10300, 10301, 10302, 10303, 10304]);

        let vec = FieldElement2625x4::new(&x0, &x1, &x2, &x3);

        let result = vec.square_and_negate_D().split();

        assert_eq!(result[0], &x0 * &x0);
        assert_eq!(result[1], &x1 * &x1);
        assert_eq!(result[2], &x2 * &x2);
        assert_eq!(result[3], -&(&x3 * &x3));
    }

    #[test]
    fn multiply_vs_serial() {
        let x0 = FieldElement51([10000, 10001, 10002, 10003, 10004]);
        let x1 = FieldElement51([10100, 10101, 10102, 10103, 10104]);
        let x2 = FieldElement51([10200, 10201, 10202, 10203, 10204]);
        let x3 = FieldElement51([10300, 10301, 10302, 10303, 10304]);

        let vec = FieldElement2625x4::new(&x0, &x1, &x2, &x3);
        let vecprime = vec.clone();

        let result = (&vec * &vecprime).split();

        assert_eq!(result[0], &x0 * &x0);
        assert_eq!(result[1], &x1 * &x1);
        assert_eq!(result[2], &x2 * &x2);
        assert_eq!(result[3], &x3 * &x3);
    }

    #[test]
    fn test_unpack_repack_pair() {
        let x0 = FieldElement51([10000 + (10001 << 26), 0, 0, 0, 0]);
        let x1 = FieldElement51([10100 + (10101 << 26), 0, 0, 0, 0]);
        let x2 = FieldElement51([10200 + (10201 << 26), 0, 0, 0, 0]);
        let x3 = FieldElement51([10300 + (10301 << 26), 0, 0, 0, 0]);

        let vec = FieldElement2625x4::new(&x0, &x1, &x2, &x3);

        let src = vec.0[0];

        let (a, b) = unpack_pair(src);

        let expected_a = u32x8::new(10000, 0, 10100, 0, 10200, 0, 10300, 0);
        let expected_b = u32x8::new(10001, 0, 10101, 0, 10201, 0, 10301, 0);

        assert_eq!(a, expected_a);
        assert_eq!(b, expected_b);

        let expected_src = repack_pair(a, b);

        assert_eq!(src, expected_src);
    }

    #[test]
    fn new_split_roundtrips() {
        let x0 = FieldElement51::from_bytes(&[0x10; 32]);
        let x1 = FieldElement51::from_bytes(&[0x11; 32]);
        let x2 = FieldElement51::from_bytes(&[0x12; 32]);
        let x3 = FieldElement51::from_bytes(&[0x13; 32]);

        let vec = FieldElement2625x4::new(&x0, &x1, &x2, &x3);

        let splits = vec.split();

        assert_eq!(x0, splits[0]);
        assert_eq!(x1, splits[1]);
        assert_eq!(x2, splits[2]);
        assert_eq!(x3, splits[3]);
    }
}