1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
//! The `Notification` trait for specifying notification.

use crate::sync::atomic::{self, Ordering};
#[cfg(feature = "std")]
use core::fmt;

pub(crate) use __private::Internal;

/// The type of notification to use with an [`Event`].
///
/// This is hidden and sealed to prevent changes to this trait from being breaking.
///
/// [`Event`]: crate::Event
#[doc(hidden)]
pub trait NotificationPrivate {
    /// The tag data associated with a notification.
    type Tag;

    /// Emit a fence to ensure that the notification is visible to the listeners.
    fn fence(&self, internal: Internal);

    /// Whether or not the number of currently waiting listeners should be subtracted from `count()`.
    fn is_additional(&self, internal: Internal) -> bool;

    /// Get the number of listeners to wake.
    fn count(&self, internal: Internal) -> usize;

    /// Get a tag to be associated with a notification.
    ///
    /// This method is expected to be called `count()` times.
    fn next_tag(&mut self, internal: Internal) -> Self::Tag;
}

/// A notification that can be used to notify an [`Event`].
///
/// This type is used by the [`Event::notify()`] function to determine how many listeners to wake up, whether
/// or not to subtract additional listeners, and other properties. The actual internal data is hidden in a
/// private trait and is intentionally not exposed. This means that users cannot manually implement the
/// [`Notification`] trait. However, it also means that changing the underlying trait is not a semver breaking
/// change.
///
/// Users can create types that implement notifications using the combinators on the [`IntoNotification`] type.
/// Typical construction of a [`Notification`] starts with a numeric literal (like `3usize`) and then optionally
/// adding combinators.
///
/// # Example
///
/// ```
/// use event_listener::{Event, IntoNotification, Notification};
///
/// fn notify(ev: &Event, notify: impl Notification<Tag = ()>) {
///     ev.notify(notify);
/// }
///
/// notify(&Event::new(), 1.additional());
/// ```
///
/// [`Event`]: crate::Event
pub trait Notification: NotificationPrivate {}
impl<N: NotificationPrivate + ?Sized> Notification for N {}

/// Notify a given number of unnotifed listeners.
#[derive(Debug, Clone)]
#[doc(hidden)]
pub struct Notify(usize);

impl Notify {
    /// Create a new `Notify` with the given number of listeners to notify.
    fn new(count: usize) -> Self {
        Self(count)
    }
}

impl NotificationPrivate for Notify {
    type Tag = ();

    fn is_additional(&self, _: Internal) -> bool {
        false
    }

    fn fence(&self, _: Internal) {
        full_fence();
    }

    fn count(&self, _: Internal) -> usize {
        self.0
    }

    fn next_tag(&mut self, _: Internal) -> Self::Tag {}
}

/// Make the underlying notification additional.
#[derive(Debug, Clone)]
#[doc(hidden)]
pub struct Additional<N: ?Sized>(N);

impl<N> Additional<N> {
    /// Create a new `Additional` with the given notification.
    fn new(inner: N) -> Self {
        Self(inner)
    }
}

impl<N> NotificationPrivate for Additional<N>
where
    N: Notification + ?Sized,
{
    type Tag = N::Tag;

    fn is_additional(&self, _: Internal) -> bool {
        true
    }

    fn fence(&self, i: Internal) {
        self.0.fence(i);
    }

    fn count(&self, i: Internal) -> usize {
        self.0.count(i)
    }

    fn next_tag(&mut self, i: Internal) -> Self::Tag {
        self.0.next_tag(i)
    }
}

/// Don't emit a fence for this notification.
#[derive(Debug, Clone)]
#[doc(hidden)]
pub struct Relaxed<N: ?Sized>(N);

impl<N> Relaxed<N> {
    /// Create a new `Relaxed` with the given notification.
    fn new(inner: N) -> Self {
        Self(inner)
    }
}

impl<N> NotificationPrivate for Relaxed<N>
where
    N: Notification + ?Sized,
{
    type Tag = N::Tag;

    fn is_additional(&self, i: Internal) -> bool {
        self.0.is_additional(i)
    }

    fn fence(&self, _: Internal) {
        // Don't emit a fence.
    }

    fn count(&self, i: Internal) -> usize {
        self.0.count(i)
    }

    fn next_tag(&mut self, i: Internal) -> Self::Tag {
        self.0.next_tag(i)
    }
}

/// Use a tag to notify listeners.
#[cfg(feature = "std")]
#[derive(Debug, Clone)]
#[doc(hidden)]
pub struct Tag<N: ?Sized, T> {
    tag: T,
    inner: N,
}

#[cfg(feature = "std")]
impl<N: ?Sized, T> Tag<N, T> {
    /// Create a new `Tag` with the given tag and notification.
    fn new(tag: T, inner: N) -> Self
    where
        N: Sized,
    {
        Self { tag, inner }
    }
}

#[cfg(feature = "std")]
impl<N, T> NotificationPrivate for Tag<N, T>
where
    N: Notification + ?Sized,
    T: Clone,
{
    type Tag = T;

    fn is_additional(&self, i: Internal) -> bool {
        self.inner.is_additional(i)
    }

    fn fence(&self, i: Internal) {
        self.inner.fence(i);
    }

    fn count(&self, i: Internal) -> usize {
        self.inner.count(i)
    }

    fn next_tag(&mut self, _: Internal) -> Self::Tag {
        self.tag.clone()
    }
}

/// Use a function to generate a tag to notify listeners.
#[cfg(feature = "std")]
#[doc(hidden)]
pub struct TagWith<N: ?Sized, F> {
    tag: F,
    inner: N,
}

#[cfg(feature = "std")]
impl<N: fmt::Debug, F> fmt::Debug for TagWith<N, F> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        struct Ellipses;

        impl fmt::Debug for Ellipses {
            fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
                f.write_str("..")
            }
        }

        f.debug_struct("TagWith")
            .field("tag", &Ellipses)
            .field("inner", &self.inner)
            .finish()
    }
}

#[cfg(feature = "std")]
impl<N, F> TagWith<N, F> {
    /// Create a new `TagFn` with the given tag function and notification.
    fn new(tag: F, inner: N) -> Self {
        Self { tag, inner }
    }
}

#[cfg(feature = "std")]
impl<N, F, T> NotificationPrivate for TagWith<N, F>
where
    N: Notification + ?Sized,
    F: FnMut() -> T,
{
    type Tag = T;

    fn is_additional(&self, i: Internal) -> bool {
        self.inner.is_additional(i)
    }

    fn fence(&self, i: Internal) {
        self.inner.fence(i);
    }

    fn count(&self, i: Internal) -> usize {
        self.inner.count(i)
    }

    fn next_tag(&mut self, _: Internal) -> Self::Tag {
        (self.tag)()
    }
}

/// A generic notification.
#[derive(Debug)]
pub(crate) struct GenericNotify<F> {
    /// Number of listeners to notify.
    count: usize,

    /// Whether this notification is additional.
    additional: bool,

    /// Generate tags.
    tags: F,
}

impl<T, F: TagProducer<Tag = T>> GenericNotify<F> {
    pub(crate) fn new(count: usize, additional: bool, tags: F) -> Self {
        Self {
            count,
            additional,
            tags,
        }
    }
}

impl<T, F: TagProducer<Tag = T>> NotificationPrivate for GenericNotify<F> {
    type Tag = T;

    fn is_additional(&self, _: Internal) -> bool {
        self.additional
    }

    fn fence(&self, _: Internal) {
        // Don't emit a fence.
    }

    fn count(&self, _: Internal) -> usize {
        self.count
    }

    fn next_tag(&mut self, _: Internal) -> Self::Tag {
        self.tags.next_tag()
    }
}

/// The producer for a generic notification.
pub(crate) trait TagProducer {
    type Tag;

    /// Get the next tag.
    fn next_tag(&mut self) -> Self::Tag;
}

impl<T, F: FnMut() -> T> TagProducer for F {
    type Tag = T;

    fn next_tag(&mut self) -> T {
        (self)()
    }
}

/// A value that can be converted into a [`Notification`].
///
/// This trait adds onto the [`Notification`] trait by providing combinators that can be applied to all
/// notification types as well as numeric literals. This transforms what would normally be:
///
/// ```
/// use event_listener::Event;
///
/// let event = Event::new();
///
/// // Note that each use case needs its own function, leading to bloat.
/// event.notify(1);
/// event.notify_additional(3);
/// event.notify_relaxed(5);
/// event.notify_additional_relaxed(2);
/// ```
///
/// into this:
///
/// ```
/// use event_listener::{Event, IntoNotification, Listener};
///
/// let event = Event::new();
///
/// event.notify(1);
/// event.notify(3.additional());
/// event.notify(5.relaxed());
/// event.notify(2.additional().relaxed());
/// ```
///
/// This trait is implemented for all types that implement [`Notification`], as well as for non-floating-point
/// numeric literals (`usize`, `i32`, etc).
///
/// This function can be thought of as being analogous to [`std::iter::IntoIterator`], but for [`Notification`].
pub trait IntoNotification: __private::Sealed {
    /// The tag data associated with a notification.
    ///
    /// By default, most [`Event`]s will use the unit type, `()`. However, this can be used to pass data along to
    /// the listener.
    type Tag;

    /// The notification type.
    ///
    /// Tells what kind of underlying type that the [`Notification`] is. You probably don't need to worry about
    /// this.
    type Notify: Notification<Tag = Self::Tag>;

    /// Convert this value into a notification.
    ///
    /// This allows the user to convert an [`IntoNotification`] into a [`Notification`].
    ///
    /// # Panics
    ///
    /// This function panics if the value represents a negative number of notifications.
    ///
    /// # Examples
    ///
    /// ```
    /// use event_listener::IntoNotification;
    ///
    /// let _ = 3.into_notification();
    /// ```
    fn into_notification(self) -> Self::Notify;

    /// Convert this value into an additional notification.
    ///
    /// By default, notifications ignore listeners that are already notified. Generally, this happens when there
    /// is an [`EventListener`] that has been woken up, but hasn't been polled to completion or waited on yet.
    /// For instance, if you have three notified listeners and you call `event.notify(5)`, only two listeners
    /// will be woken up.
    ///
    /// This default behavior is generally desired. For instance, if you are writing a `Mutex` implementation
    /// powered by an [`Event`], you usually only want one consumer to be notified at a time. If you notified
    /// a listener when another listener is already notified, you would have unnecessary contention for your
    /// lock, as both listeners fight over the lock. Therefore, you would call `event.notify(1)` to make sure
    /// *at least* one listener is awake.
    ///
    /// Sometimes, this behavior is not desired. For instance, if you are writing an MPMC channel, it is desirable
    /// for multiple listeners to be reading from the underlying queue at once. In this case, you would instead
    /// call `event.notify(1.additional())`.
    ///
    /// # Examples
    ///
    /// ```
    /// use event_listener::{Event, IntoNotification, Listener};
    ///
    /// let event = Event::new();
    ///
    /// let mut l1 = event.listen();
    /// let mut l2 = event.listen();
    ///
    /// // This will only wake up the first listener, as the second call observes that there is already a
    /// // notified listener.
    /// event.notify(1);
    /// event.notify(1);
    ///
    /// // This call wakes up the other listener.
    /// event.notify(1.additional());
    /// ```
    fn additional(self) -> Additional<Self::Notify>
    where
        Self: Sized,
    {
        Additional::new(self.into_notification())
    }

    /// Don't emit a fence for this notification.
    ///
    /// Usually, notifications emit a `SeqCst` atomic fence before any listeners are woken up. This ensures
    /// that notification state isn't inconsistent before any wakers are woken up. However, it may be
    /// desirable to omit this fence in certain cases.
    ///
    /// - You are running the [`Event`] on a single thread, where no synchronization needs to occur.
    /// - You are emitting the `SeqCst` fence yourself.
    ///
    /// In these cases, `relaxed()` can be used to avoid emitting the `SeqCst` fence.
    ///
    /// # Examples
    ///
    /// ```
    /// use event_listener::{Event, IntoNotification, Listener};
    /// use std::sync::atomic::{self, Ordering};
    ///
    /// let event = Event::new();
    ///
    /// let listener1 = event.listen();
    /// let listener2 = event.listen();
    /// let listener3 = event.listen();
    ///
    /// // We should emit a fence manually when using relaxed notifications.
    /// atomic::fence(Ordering::SeqCst);
    ///
    /// // Notifies two listeners.
    /// //
    /// // Listener queueing is fair, which means `listener1` and `listener2`
    /// // get notified here since they start listening before `listener3`.
    /// event.notify(1.relaxed());
    /// event.notify(1.relaxed());
    /// ```
    fn relaxed(self) -> Relaxed<Self::Notify>
    where
        Self: Sized,
    {
        Relaxed::new(self.into_notification())
    }

    /// Use a tag with this notification.
    ///
    /// In many cases, it is desired to send additional information to the listener of the [`Event`]. For instance,
    /// it is possible to optimize a `Mutex` implementation by locking directly on the next listener, without
    /// needing to ever unlock the mutex at all.
    ///
    /// The tag provided is cloned to provide the tag for all listeners. In cases where this is not flexible
    /// enough, use [`IntoNotification::with_tag()`] instead.
    ///
    /// Tagging functions cannot be implemented efficiently for `no_std`, so this is only available
    /// when the `std` feature is enabled.
    ///
    /// # Examples
    ///
    /// ```
    /// use event_listener::{IntoNotification, Listener, Event};
    ///
    /// let event = Event::<bool>::with_tag();
    ///
    /// let mut listener1 = event.listen();
    /// let mut listener2 = event.listen();
    ///
    /// // Notify with `true` then `false`.
    /// event.notify(1.additional().tag(true));
    /// event.notify(1.additional().tag(false));
    ///
    /// assert_eq!(listener1.wait(), true);
    /// assert_eq!(listener2.wait(), false);
    /// ```
    #[cfg(feature = "std")]
    fn tag<T: Clone>(self, tag: T) -> Tag<Self::Notify, T>
    where
        Self: Sized + IntoNotification<Tag = ()>,
    {
        Tag::new(tag, self.into_notification())
    }

    /// Use a function to generate a tag with this notification.
    ///
    /// In many cases, it is desired to send additional information to the listener of the [`Event`]. For instance,
    /// it is possible to optimize a `Mutex` implementation by locking directly on the next listener, without
    /// needing to ever unlock the mutex at all.
    ///
    /// Tagging functions cannot be implemented efficiently for `no_std`, so this is only available
    /// when the `std` feature is enabled.
    ///
    /// # Examples
    ///
    /// ```
    /// use event_listener::{IntoNotification, Listener, Event};
    ///
    /// let event = Event::<bool>::with_tag();
    ///
    /// let mut listener1 = event.listen();
    /// let mut listener2 = event.listen();
    ///
    /// // Notify with `true` then `false`.
    /// event.notify(1.additional().tag_with(|| true));
    /// event.notify(1.additional().tag_with(|| false));
    ///
    /// assert_eq!(listener1.wait(), true);
    /// assert_eq!(listener2.wait(), false);
    /// ```
    #[cfg(feature = "std")]
    fn tag_with<T, F>(self, tag: F) -> TagWith<Self::Notify, F>
    where
        Self: Sized + IntoNotification<Tag = ()>,
        F: FnMut() -> T,
    {
        TagWith::new(tag, self.into_notification())
    }
}

impl<N: Notification> IntoNotification for N {
    type Tag = N::Tag;
    type Notify = N;

    fn into_notification(self) -> Self::Notify {
        self
    }
}

macro_rules! impl_for_numeric_types {
    ($($ty:ty)*) => {$(
        impl IntoNotification for $ty {
            type Tag = ();
            type Notify = Notify;

            #[allow(unused_comparisons)]
            fn into_notification(self) -> Self::Notify {
                if self < 0 {
                    panic!("negative notification count");
                }

                Notify::new(self.try_into().expect("overflow"))
            }
        }

        impl __private::Sealed for $ty {}
    )*};
}

impl_for_numeric_types! { usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128 }

/// Equivalent to `atomic::fence(Ordering::SeqCst)`, but in some cases faster.
#[inline]
pub(super) fn full_fence() {
    #[cfg(all(any(target_arch = "x86", target_arch = "x86_64"), not(miri), not(loom)))]
    {
        use core::{arch::asm, cell::UnsafeCell};
        // HACK(stjepang): On x86 architectures there are two different ways of executing
        // a `SeqCst` fence.
        //
        // 1. `atomic::fence(SeqCst)`, which compiles into a `mfence` instruction.
        // 2. A `lock <op>` instruction.
        //
        // Both instructions have the effect of a full barrier, but empirical benchmarks have shown
        // that the second one is sometimes a bit faster.
        let a = UnsafeCell::new(0_usize);
        // It is common to use `lock or` here, but when using a local variable, `lock not`, which
        // does not change the flag, should be slightly more efficient.
        // Refs: https://www.felixcloutier.com/x86/not
        unsafe {
            #[cfg(target_pointer_width = "64")]
            asm!("lock not qword ptr [{0}]", in(reg) a.get(), options(nostack, preserves_flags));
            #[cfg(target_pointer_width = "32")]
            asm!("lock not dword ptr [{0:e}]", in(reg) a.get(), options(nostack, preserves_flags));
        }
        return;
    }
    #[allow(unreachable_code)]
    {
        atomic::fence(Ordering::SeqCst);
    }
}

mod __private {
    /// Make sure the NotificationPrivate trait can't be implemented outside of this crate.
    #[doc(hidden)]
    #[derive(Debug)]
    pub struct Internal(());

    impl Internal {
        pub(crate) fn new() -> Self {
            Self(())
        }
    }

    #[doc(hidden)]
    pub trait Sealed {}
    impl<N: super::NotificationPrivate + ?Sized> Sealed for N {}
}