rusqlite/util/
sqlite_string.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
// This is used when either vtab or modern-sqlite is on. Different methods are
// used in each feature. Avoid having to track this for each function. We will
// still warn for anything that's not used by either, though.
#![cfg_attr(not(feature = "vtab"), allow(dead_code))]
use crate::ffi;
use std::marker::PhantomData;
use std::os::raw::{c_char, c_int};
use std::ptr::NonNull;

// Space to hold this string must be obtained
// from an SQLite memory allocation function
pub(crate) fn alloc(s: &str) -> *mut c_char {
    SqliteMallocString::from_str(s).into_raw()
}

/// A string we own that's allocated on the SQLite heap. Automatically calls
/// `sqlite3_free` when dropped, unless `into_raw` (or `into_inner`) is called
/// on it. If constructed from a rust string, `sqlite3_malloc` is used.
///
/// It has identical representation to a nonnull `*mut c_char`, so you can use
/// it transparently as one. It's nonnull, so Option<SqliteMallocString> can be
/// used for nullable ones (it's still just one pointer).
///
/// Most strings shouldn't use this! Only places where the string needs to be
/// freed with `sqlite3_free`. This includes `sqlite3_extended_sql` results,
/// some error message pointers... Note that misuse is extremely dangerous!
///
/// Note that this is *not* a lossless interface. Incoming strings with internal
/// NULs are modified, and outgoing strings which are non-UTF8 are modified.
/// This seems unavoidable -- it tries very hard to not panic.
#[repr(transparent)]
pub(crate) struct SqliteMallocString {
    ptr: NonNull<c_char>,
    _boo: PhantomData<Box<[c_char]>>,
}
// This is owned data for a primitive type, and thus it's safe to implement
// these. That said, nothing needs them, and they make things easier to misuse.

// unsafe impl Send for SqliteMallocString {}
// unsafe impl Sync for SqliteMallocString {}

impl SqliteMallocString {
    /// SAFETY: Caller must be certain that `m` a nul-terminated c string
    /// allocated by `sqlite3_malloc`, and that SQLite expects us to free it!
    #[inline]
    pub(crate) unsafe fn from_raw_nonnull(ptr: NonNull<c_char>) -> Self {
        Self {
            ptr,
            _boo: PhantomData,
        }
    }

    /// SAFETY: Caller must be certain that `m` a nul-terminated c string
    /// allocated by `sqlite3_malloc`, and that SQLite expects us to free it!
    #[inline]
    pub(crate) unsafe fn from_raw(ptr: *mut c_char) -> Option<Self> {
        NonNull::new(ptr).map(|p| Self::from_raw_nonnull(p))
    }

    /// Get the pointer behind `self`. After this is called, we no longer manage
    /// it.
    #[inline]
    pub(crate) fn into_inner(self) -> NonNull<c_char> {
        let p = self.ptr;
        std::mem::forget(self);
        p
    }

    /// Get the pointer behind `self`. After this is called, we no longer manage
    /// it.
    #[inline]
    pub(crate) fn into_raw(self) -> *mut c_char {
        self.into_inner().as_ptr()
    }

    /// Borrow the pointer behind `self`. We still manage it when this function
    /// returns. If you want to relinquish ownership, use `into_raw`.
    #[inline]
    pub(crate) fn as_ptr(&self) -> *const c_char {
        self.ptr.as_ptr()
    }

    #[inline]
    pub(crate) fn as_cstr(&self) -> &std::ffi::CStr {
        unsafe { std::ffi::CStr::from_ptr(self.as_ptr()) }
    }

    #[inline]
    pub(crate) fn to_string_lossy(&self) -> std::borrow::Cow<'_, str> {
        self.as_cstr().to_string_lossy()
    }

    /// Convert `s` into a SQLite string.
    ///
    /// This should almost never be done except for cases like error messages or
    /// other strings that SQLite frees.
    ///
    /// If `s` contains internal NULs, we'll replace them with
    /// `NUL_REPLACE_CHAR`.
    ///
    /// Except for `debug_assert`s which may trigger during testing, this
    /// function never panics. If we hit integer overflow or the allocation
    /// fails, we call `handle_alloc_error` which aborts the program after
    /// calling a global hook.
    ///
    /// This means it's safe to use in extern "C" functions even outside
    /// `catch_unwind`.
    pub(crate) fn from_str(s: &str) -> Self {
        let s = if s.as_bytes().contains(&0) {
            std::borrow::Cow::Owned(make_nonnull(s))
        } else {
            std::borrow::Cow::Borrowed(s)
        };
        debug_assert!(!s.as_bytes().contains(&0));
        let bytes: &[u8] = s.as_ref().as_bytes();
        let src_ptr: *const c_char = bytes.as_ptr().cast();
        let src_len = bytes.len();
        let maybe_len_plus_1 = s.len().checked_add(1).and_then(|v| c_int::try_from(v).ok());
        unsafe {
            let res_ptr = maybe_len_plus_1
                .and_then(|len_to_alloc| {
                    // `>` because we added 1.
                    debug_assert!(len_to_alloc > 0);
                    debug_assert_eq!((len_to_alloc - 1) as usize, src_len);
                    NonNull::new(ffi::sqlite3_malloc(len_to_alloc).cast::<c_char>())
                })
                .unwrap_or_else(|| {
                    use std::alloc::{handle_alloc_error, Layout};
                    // Report via handle_alloc_error so that it can be handled with any
                    // other allocation errors and properly diagnosed.
                    //
                    // This is safe:
                    // - `align` is never 0
                    // - `align` is always a power of 2.
                    // - `size` needs no realignment because it's guaranteed to be aligned
                    //   (everything is aligned to 1)
                    // - `size` is also never zero, although this function doesn't actually require
                    //   it now.
                    let len = s.len().saturating_add(1).min(isize::MAX as usize);
                    let layout = Layout::from_size_align_unchecked(len, 1);
                    // Note: This call does not return.
                    handle_alloc_error(layout);
                });
            let buf: *mut c_char = res_ptr.as_ptr().cast::<c_char>();
            src_ptr.copy_to_nonoverlapping(buf, src_len);
            buf.add(src_len).write(0);
            debug_assert_eq!(std::ffi::CStr::from_ptr(res_ptr.as_ptr()).to_bytes(), bytes);
            Self::from_raw_nonnull(res_ptr)
        }
    }
}

const NUL_REPLACE: &str = "␀";

#[cold]
fn make_nonnull(v: &str) -> String {
    v.replace('\0', NUL_REPLACE)
}

impl Drop for SqliteMallocString {
    #[inline]
    fn drop(&mut self) {
        unsafe { ffi::sqlite3_free(self.ptr.as_ptr().cast()) };
    }
}

impl std::fmt::Debug for SqliteMallocString {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        self.to_string_lossy().fmt(f)
    }
}

impl std::fmt::Display for SqliteMallocString {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        self.to_string_lossy().fmt(f)
    }
}

#[cfg(test)]
mod test {
    use super::*;
    #[test]
    fn test_from_str() {
        let to_check = [
            ("", ""),
            ("\0", "␀"),
            ("␀", "␀"),
            ("\0bar", "␀bar"),
            ("foo\0bar", "foo␀bar"),
            ("foo\0", "foo␀"),
            ("a\0b\0c\0\0d", "a␀b␀c␀␀d"),
            ("foobar0123", "foobar0123"),
        ];

        for &(input, output) in &to_check {
            let s = SqliteMallocString::from_str(input);
            assert_eq!(s.to_string_lossy(), output);
            assert_eq!(s.as_cstr().to_str().unwrap(), output);
        }
    }

    // This will trigger an asan error if into_raw still freed the ptr.
    #[test]
    fn test_lossy() {
        let p = SqliteMallocString::from_str("abcd").into_raw();
        // Make invalid
        let s = unsafe {
            p.cast::<u8>().write(b'\xff');
            SqliteMallocString::from_raw(p).unwrap()
        };
        assert_eq!(s.to_string_lossy().as_ref(), "\u{FFFD}bcd");
    }

    // This will trigger an asan error if into_raw still freed the ptr.
    #[test]
    fn test_into_raw() {
        let mut v = vec![];
        for i in 0..1000 {
            v.push(SqliteMallocString::from_str(&i.to_string()).into_raw());
            v.push(SqliteMallocString::from_str(&format!("abc {i} 😀")).into_raw());
        }
        unsafe {
            for (i, s) in v.chunks_mut(2).enumerate() {
                let s0 = std::mem::replace(&mut s[0], std::ptr::null_mut());
                let s1 = std::mem::replace(&mut s[1], std::ptr::null_mut());
                assert_eq!(
                    std::ffi::CStr::from_ptr(s0).to_str().unwrap(),
                    &i.to_string()
                );
                assert_eq!(
                    std::ffi::CStr::from_ptr(s1).to_str().unwrap(),
                    &format!("abc {i} 😀")
                );
                let _ = SqliteMallocString::from_raw(s0).unwrap();
                let _ = SqliteMallocString::from_raw(s1).unwrap();
            }
        }
    }
}