rusqlite/util/sqlite_string.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
// This is used when either vtab or modern-sqlite is on. Different methods are
// used in each feature. Avoid having to track this for each function. We will
// still warn for anything that's not used by either, though.
#![cfg_attr(not(feature = "vtab"), allow(dead_code))]
use crate::ffi;
use std::marker::PhantomData;
use std::os::raw::{c_char, c_int};
use std::ptr::NonNull;
// Space to hold this string must be obtained
// from an SQLite memory allocation function
pub(crate) fn alloc(s: &str) -> *mut c_char {
SqliteMallocString::from_str(s).into_raw()
}
/// A string we own that's allocated on the SQLite heap. Automatically calls
/// `sqlite3_free` when dropped, unless `into_raw` (or `into_inner`) is called
/// on it. If constructed from a rust string, `sqlite3_malloc` is used.
///
/// It has identical representation to a nonnull `*mut c_char`, so you can use
/// it transparently as one. It's nonnull, so Option<SqliteMallocString> can be
/// used for nullable ones (it's still just one pointer).
///
/// Most strings shouldn't use this! Only places where the string needs to be
/// freed with `sqlite3_free`. This includes `sqlite3_extended_sql` results,
/// some error message pointers... Note that misuse is extremely dangerous!
///
/// Note that this is *not* a lossless interface. Incoming strings with internal
/// NULs are modified, and outgoing strings which are non-UTF8 are modified.
/// This seems unavoidable -- it tries very hard to not panic.
#[repr(transparent)]
pub(crate) struct SqliteMallocString {
ptr: NonNull<c_char>,
_boo: PhantomData<Box<[c_char]>>,
}
// This is owned data for a primitive type, and thus it's safe to implement
// these. That said, nothing needs them, and they make things easier to misuse.
// unsafe impl Send for SqliteMallocString {}
// unsafe impl Sync for SqliteMallocString {}
impl SqliteMallocString {
/// SAFETY: Caller must be certain that `m` a nul-terminated c string
/// allocated by `sqlite3_malloc`, and that SQLite expects us to free it!
#[inline]
pub(crate) unsafe fn from_raw_nonnull(ptr: NonNull<c_char>) -> Self {
Self {
ptr,
_boo: PhantomData,
}
}
/// SAFETY: Caller must be certain that `m` a nul-terminated c string
/// allocated by `sqlite3_malloc`, and that SQLite expects us to free it!
#[inline]
pub(crate) unsafe fn from_raw(ptr: *mut c_char) -> Option<Self> {
NonNull::new(ptr).map(|p| Self::from_raw_nonnull(p))
}
/// Get the pointer behind `self`. After this is called, we no longer manage
/// it.
#[inline]
pub(crate) fn into_inner(self) -> NonNull<c_char> {
let p = self.ptr;
std::mem::forget(self);
p
}
/// Get the pointer behind `self`. After this is called, we no longer manage
/// it.
#[inline]
pub(crate) fn into_raw(self) -> *mut c_char {
self.into_inner().as_ptr()
}
/// Borrow the pointer behind `self`. We still manage it when this function
/// returns. If you want to relinquish ownership, use `into_raw`.
#[inline]
pub(crate) fn as_ptr(&self) -> *const c_char {
self.ptr.as_ptr()
}
#[inline]
pub(crate) fn as_cstr(&self) -> &std::ffi::CStr {
unsafe { std::ffi::CStr::from_ptr(self.as_ptr()) }
}
#[inline]
pub(crate) fn to_string_lossy(&self) -> std::borrow::Cow<'_, str> {
self.as_cstr().to_string_lossy()
}
/// Convert `s` into a SQLite string.
///
/// This should almost never be done except for cases like error messages or
/// other strings that SQLite frees.
///
/// If `s` contains internal NULs, we'll replace them with
/// `NUL_REPLACE_CHAR`.
///
/// Except for `debug_assert`s which may trigger during testing, this
/// function never panics. If we hit integer overflow or the allocation
/// fails, we call `handle_alloc_error` which aborts the program after
/// calling a global hook.
///
/// This means it's safe to use in extern "C" functions even outside
/// `catch_unwind`.
pub(crate) fn from_str(s: &str) -> Self {
let s = if s.as_bytes().contains(&0) {
std::borrow::Cow::Owned(make_nonnull(s))
} else {
std::borrow::Cow::Borrowed(s)
};
debug_assert!(!s.as_bytes().contains(&0));
let bytes: &[u8] = s.as_ref().as_bytes();
let src_ptr: *const c_char = bytes.as_ptr().cast();
let src_len = bytes.len();
let maybe_len_plus_1 = s.len().checked_add(1).and_then(|v| c_int::try_from(v).ok());
unsafe {
let res_ptr = maybe_len_plus_1
.and_then(|len_to_alloc| {
// `>` because we added 1.
debug_assert!(len_to_alloc > 0);
debug_assert_eq!((len_to_alloc - 1) as usize, src_len);
NonNull::new(ffi::sqlite3_malloc(len_to_alloc).cast::<c_char>())
})
.unwrap_or_else(|| {
use std::alloc::{handle_alloc_error, Layout};
// Report via handle_alloc_error so that it can be handled with any
// other allocation errors and properly diagnosed.
//
// This is safe:
// - `align` is never 0
// - `align` is always a power of 2.
// - `size` needs no realignment because it's guaranteed to be aligned
// (everything is aligned to 1)
// - `size` is also never zero, although this function doesn't actually require
// it now.
let len = s.len().saturating_add(1).min(isize::MAX as usize);
let layout = Layout::from_size_align_unchecked(len, 1);
// Note: This call does not return.
handle_alloc_error(layout);
});
let buf: *mut c_char = res_ptr.as_ptr().cast::<c_char>();
src_ptr.copy_to_nonoverlapping(buf, src_len);
buf.add(src_len).write(0);
debug_assert_eq!(std::ffi::CStr::from_ptr(res_ptr.as_ptr()).to_bytes(), bytes);
Self::from_raw_nonnull(res_ptr)
}
}
}
const NUL_REPLACE: &str = "␀";
#[cold]
fn make_nonnull(v: &str) -> String {
v.replace('\0', NUL_REPLACE)
}
impl Drop for SqliteMallocString {
#[inline]
fn drop(&mut self) {
unsafe { ffi::sqlite3_free(self.ptr.as_ptr().cast()) };
}
}
impl std::fmt::Debug for SqliteMallocString {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
self.to_string_lossy().fmt(f)
}
}
impl std::fmt::Display for SqliteMallocString {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
self.to_string_lossy().fmt(f)
}
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn test_from_str() {
let to_check = [
("", ""),
("\0", "␀"),
("␀", "␀"),
("\0bar", "␀bar"),
("foo\0bar", "foo␀bar"),
("foo\0", "foo␀"),
("a\0b\0c\0\0d", "a␀b␀c␀␀d"),
("foobar0123", "foobar0123"),
];
for &(input, output) in &to_check {
let s = SqliteMallocString::from_str(input);
assert_eq!(s.to_string_lossy(), output);
assert_eq!(s.as_cstr().to_str().unwrap(), output);
}
}
// This will trigger an asan error if into_raw still freed the ptr.
#[test]
fn test_lossy() {
let p = SqliteMallocString::from_str("abcd").into_raw();
// Make invalid
let s = unsafe {
p.cast::<u8>().write(b'\xff');
SqliteMallocString::from_raw(p).unwrap()
};
assert_eq!(s.to_string_lossy().as_ref(), "\u{FFFD}bcd");
}
// This will trigger an asan error if into_raw still freed the ptr.
#[test]
fn test_into_raw() {
let mut v = vec![];
for i in 0..1000 {
v.push(SqliteMallocString::from_str(&i.to_string()).into_raw());
v.push(SqliteMallocString::from_str(&format!("abc {i} 😀")).into_raw());
}
unsafe {
for (i, s) in v.chunks_mut(2).enumerate() {
let s0 = std::mem::replace(&mut s[0], std::ptr::null_mut());
let s1 = std::mem::replace(&mut s[1], std::ptr::null_mut());
assert_eq!(
std::ffi::CStr::from_ptr(s0).to_str().unwrap(),
&i.to_string()
);
assert_eq!(
std::ffi::CStr::from_ptr(s1).to_str().unwrap(),
&format!("abc {i} 😀")
);
let _ = SqliteMallocString::from_raw(s0).unwrap();
let _ = SqliteMallocString::from_raw(s1).unwrap();
}
}
}
}