1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
//! An implementation of HKDF, the [HMAC-based Extract-and-Expand Key Derivation Function][1].
//!
//! # Usage
//!
//! The most common way to use HKDF is as follows: you provide the Initial Key
//! Material (IKM) and an optional salt, then you expand it (perhaps multiple times)
//! into some Output Key Material (OKM) bound to an "info" context string.
//!
//! There are two usage options for the salt:
//!
//! - [`None`] or static for domain separation in a private setting
//! - guaranteed to be uniformly-distributed and unique in a public setting
//!
//! Other non fitting data should be added to the `IKM` or `info`.
//!
//! ```rust
//! use sha2::Sha256;
//! use hkdf::Hkdf;
//! use hex_literal::hex;
//!
//! let ikm = hex!("0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b");
//! let salt = hex!("000102030405060708090a0b0c");
//! let info = hex!("f0f1f2f3f4f5f6f7f8f9");
//!
//! let hk = Hkdf::<Sha256>::new(Some(&salt[..]), &ikm);
//! let mut okm = [0u8; 42];
//! hk.expand(&info, &mut okm)
//! .expect("42 is a valid length for Sha256 to output");
//!
//! let expected = hex!("
//! 3cb25f25faacd57a90434f64d0362f2a
//! 2d2d0a90cf1a5a4c5db02d56ecc4c5bf
//! 34007208d5b887185865
//! ");
//! assert_eq!(okm[..], expected[..]);
//! ```
//!
//! Normally the PRK (Pseudo-Random Key) remains hidden within the HKDF
//! object, but if you need to access it, use [`Hkdf::extract`] instead of
//! [`Hkdf::new`].
//!
//! ```rust
//! # use sha2::Sha256;
//! # use hkdf::Hkdf;
//! # use hex_literal::hex;
//! # let ikm = hex!("0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b");
//! # let salt = hex!("000102030405060708090a0b0c");
//!
//! let (prk, hk) = Hkdf::<Sha256>::extract(Some(&salt[..]), &ikm);
//! let expected = hex!("
//! 077709362c2e32df0ddc3f0dc47bba63
//! 90b6c73bb50f9c3122ec844ad7c2b3e5
//! ");
//! assert_eq!(prk[..], expected[..]);
//! ```
//!
//! If you already have a strong key to work from (uniformly-distributed and
//! long enough), you can save a tiny amount of time by skipping the extract
//! step. In this case, you pass a Pseudo-Random Key (PRK) into the
//! [`Hkdf::from_prk`] constructor, then use the resulting [`Hkdf`] object
//! as usual.
//!
//! ```rust
//! # use sha2::Sha256;
//! # use hkdf::Hkdf;
//! # use hex_literal::hex;
//! # let salt = hex!("000102030405060708090a0b0c");
//! # let info = hex!("f0f1f2f3f4f5f6f7f8f9");
//! let prk = hex!("
//! 077709362c2e32df0ddc3f0dc47bba63
//! 90b6c73bb50f9c3122ec844ad7c2b3e5
//! ");
//!
//! let hk = Hkdf::<Sha256>::from_prk(&prk).expect("PRK should be large enough");
//! let mut okm = [0u8; 42];
//! hk.expand(&info, &mut okm)
//! .expect("42 is a valid length for Sha256 to output");
//!
//! let expected = hex!("
//! 3cb25f25faacd57a90434f64d0362f2a
//! 2d2d0a90cf1a5a4c5db02d56ecc4c5bf
//! 34007208d5b887185865
//! ");
//! assert_eq!(okm[..], expected[..]);
//! ```
//!
//! [1]: https://tools.ietf.org/html/rfc5869
#![no_std]
#![doc(
html_logo_url = "https://raw.githubusercontent.com/RustCrypto/media/6ee8e381/logo.svg",
html_favicon_url = "https://raw.githubusercontent.com/RustCrypto/media/6ee8e381/logo.svg"
)]
#![cfg_attr(docsrs, feature(doc_cfg))]
#![forbid(unsafe_code)]
#![warn(missing_docs, rust_2018_idioms)]
#[cfg(feature = "std")]
extern crate std;
pub use hmac;
use core::fmt;
use core::marker::PhantomData;
use hmac::digest::{
crypto_common::AlgorithmName, generic_array::typenum::Unsigned, Output, OutputSizeUser,
};
use hmac::{Hmac, SimpleHmac};
mod errors;
mod sealed;
pub use errors::{InvalidLength, InvalidPrkLength};
/// [`HkdfExtract`] variant which uses [`SimpleHmac`] for underlying HMAC
/// implementation.
pub type SimpleHkdfExtract<H> = HkdfExtract<H, SimpleHmac<H>>;
/// [`Hkdf`] variant which uses [`SimpleHmac`] for underlying HMAC
/// implementation.
pub type SimpleHkdf<H> = Hkdf<H, SimpleHmac<H>>;
/// Structure representing the streaming context of an HKDF-Extract operation
/// ```rust
/// # use hkdf::{Hkdf, HkdfExtract};
/// # use sha2::Sha256;
/// let mut extract_ctx = HkdfExtract::<Sha256>::new(Some(b"mysalt"));
/// extract_ctx.input_ikm(b"hello");
/// extract_ctx.input_ikm(b" world");
/// let (streamed_res, _) = extract_ctx.finalize();
///
/// let (oneshot_res, _) = Hkdf::<Sha256>::extract(Some(b"mysalt"), b"hello world");
/// assert_eq!(streamed_res, oneshot_res);
/// ```
#[derive(Clone)]
pub struct HkdfExtract<H, I = Hmac<H>>
where
H: OutputSizeUser,
I: HmacImpl<H>,
{
hmac: I,
_pd: PhantomData<H>,
}
impl<H, I> HkdfExtract<H, I>
where
H: OutputSizeUser,
I: HmacImpl<H>,
{
/// Initiates the HKDF-Extract context with the given optional salt
pub fn new(salt: Option<&[u8]>) -> Self {
let default_salt = Output::<H>::default();
let salt = salt.unwrap_or(&default_salt);
Self {
hmac: I::new_from_slice(salt),
_pd: PhantomData,
}
}
/// Feeds in additional input key material to the HKDF-Extract context
pub fn input_ikm(&mut self, ikm: &[u8]) {
self.hmac.update(ikm);
}
/// Completes the HKDF-Extract operation, returning both the generated pseudorandom key and
/// `Hkdf` struct for expanding.
pub fn finalize(self) -> (Output<H>, Hkdf<H, I>) {
let prk = self.hmac.finalize();
let hkdf = Hkdf::from_prk(&prk).expect("PRK size is correct");
(prk, hkdf)
}
}
impl<H, I> fmt::Debug for HkdfExtract<H, I>
where
H: OutputSizeUser,
I: HmacImpl<H>,
I::Core: AlgorithmName,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str("HkdfExtract<")?;
<I::Core as AlgorithmName>::write_alg_name(f)?;
f.write_str("> { ... }")
}
}
/// Structure representing the HKDF, capable of HKDF-Expand and HKDF-Extract operations.
/// Recommendations for the correct usage of the parameters can be found in the
/// [crate root](index.html#usage).
#[derive(Clone)]
pub struct Hkdf<H: OutputSizeUser, I: HmacImpl<H> = Hmac<H>> {
hmac: I::Core,
_pd: PhantomData<H>,
}
impl<H: OutputSizeUser, I: HmacImpl<H>> Hkdf<H, I> {
/// Convenience method for [`extract`][Hkdf::extract] when the generated
/// pseudorandom key can be ignored and only HKDF-Expand operation is needed. This is the most
/// common constructor.
pub fn new(salt: Option<&[u8]>, ikm: &[u8]) -> Self {
let (_, hkdf) = Self::extract(salt, ikm);
hkdf
}
/// Create `Hkdf` from an already cryptographically strong pseudorandom key
/// as per section 3.3 from RFC5869.
pub fn from_prk(prk: &[u8]) -> Result<Self, InvalidPrkLength> {
// section 2.3 specifies that prk must be "at least HashLen octets"
if prk.len() < <H as OutputSizeUser>::OutputSize::to_usize() {
return Err(InvalidPrkLength);
}
Ok(Self {
hmac: I::new_core(prk),
_pd: PhantomData,
})
}
/// The RFC5869 HKDF-Extract operation returning both the generated
/// pseudorandom key and `Hkdf` struct for expanding.
pub fn extract(salt: Option<&[u8]>, ikm: &[u8]) -> (Output<H>, Self) {
let mut extract_ctx = HkdfExtract::new(salt);
extract_ctx.input_ikm(ikm);
extract_ctx.finalize()
}
/// The RFC5869 HKDF-Expand operation. This is equivalent to calling
/// [`expand`][Hkdf::extract] with the `info` argument set equal to the
/// concatenation of all the elements of `info_components`.
pub fn expand_multi_info(
&self,
info_components: &[&[u8]],
okm: &mut [u8],
) -> Result<(), InvalidLength> {
let mut prev: Option<Output<H>> = None;
let chunk_len = <H as OutputSizeUser>::OutputSize::USIZE;
if okm.len() > chunk_len * 255 {
return Err(InvalidLength);
}
for (block_n, block) in okm.chunks_mut(chunk_len).enumerate() {
let mut hmac = I::from_core(&self.hmac);
if let Some(ref prev) = prev {
hmac.update(prev)
};
// Feed in the info components in sequence. This is equivalent to feeding in the
// concatenation of all the info components
for info in info_components {
hmac.update(info);
}
hmac.update(&[block_n as u8 + 1]);
let output = hmac.finalize();
let block_len = block.len();
block.copy_from_slice(&output[..block_len]);
prev = Some(output);
}
Ok(())
}
/// The RFC5869 HKDF-Expand operation
///
/// If you don't have any `info` to pass, use an empty slice.
pub fn expand(&self, info: &[u8], okm: &mut [u8]) -> Result<(), InvalidLength> {
self.expand_multi_info(&[info], okm)
}
}
impl<H, I> fmt::Debug for Hkdf<H, I>
where
H: OutputSizeUser,
I: HmacImpl<H>,
I::Core: AlgorithmName,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str("Hkdf<")?;
<I::Core as AlgorithmName>::write_alg_name(f)?;
f.write_str("> { ... }")
}
}
/// Sealed trait implemented for [`Hmac`] and [`SimpleHmac`].
pub trait HmacImpl<H: OutputSizeUser>: sealed::Sealed<H> {}
impl<H: OutputSizeUser, T: sealed::Sealed<H>> HmacImpl<H> for T {}