1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
//! Provides a dynamic value type abstraction.
//!
//! This module gives access to a dynamically typed value which is used by
//! the template engine during execution.
//!
//! For the most part the existence of the value type can be ignored as
//! MiniJinja will perform the necessary conversions for you. For instance
//! if you write a filter that converts a string you can directly declare the
//! filter to take a [`String`]. However for some more advanced use cases it's
//! useful to know that this type exists.
//!
//! # Basic Value Conversions
//!
//! Values are typically created via the [`From`] trait:
//!
//! ```
//! use std::collections::BTreeMap;
//! # use minijinja::value::Value;
//! let int_value = Value::from(42);
//! let none_value = Value::from(());
//! let true_value = Value::from(true);
//! let map = Value::from({
//! let mut m = BTreeMap::new();
//! m.insert("foo", 1);
//! m.insert("bar", 2);
//! m
//! });
//! ```
//!
//! Or via the [`FromIterator`] trait which can create sequences or maps. When
//! given a tuple it creates maps, otherwise it makes a sequence.
//!
//! ```
//! # use minijinja::value::Value;
//! // collection into a sequence
//! let value: Value = (1..10).into_iter().collect();
//!
//! // collection into a map
//! let value: Value = [("key", "value")].into_iter().collect();
//! ```
//!
//! For certain types of iterators (`Send` + `Sync` + `'static`) it's also
//! possible to make the value lazily iterate over the value by using the
//! [`Value::make_iterable`] function instead. Whenever the value requires
//! iteration, the function is called to create that iterator.
//!
//! ```
//! # use minijinja::value::Value;
//! let value: Value = Value::make_iterable(|| 1..10);
//! ```
//!
//! To to into the inverse directly the various [`TryFrom`]
//! implementations can be used:
//!
//! ```
//! # use minijinja::value::Value;
//! use std::convert::TryFrom;
//! let v = u64::try_from(Value::from(42)).unwrap();
//! ```
//!
//! The special [`Undefined`](Value::UNDEFINED) value also exists but does not
//! have a rust equivalent. It can be created via the [`UNDEFINED`](Value::UNDEFINED)
//! constant.
//!
//! # Collections
//!
//! The standard library's collection types such as
//! [`HashMap`](std::collections::HashMap), [`Vec`] and various others from the
//! collections module are implemented are objects. There is a cavet here which is
//! that maps can only have string or [`Value`] as key. The values in the collections
//! are lazily converted into value when accessed or iterated over. These types can
//! be constructed either from [`Value::from`] or [`Value::from_object`]. Because the
//! types are boxed unchanged, you can also downcast them.
//!
//! ```rust
//! # use minijinja::Value;
//! let vec = Value::from(vec![1i32, 2, 3, 4]);
//! let vec_ref = vec.downcast_object_ref::<Vec<i32>>().unwrap();
//! assert_eq!(vec_ref, &vec![1, 2, 3, 4]);
//! ```
//!
//! **Caveat:** for convenience reasons maps with `&str` keys can be stored. The keys
//! however are converted into `Arc<str>`.
//!
//! # Serde Conversions
//!
//! MiniJinja will usually however create values via an indirection via [`serde`] when
//! a template is rendered or an expression is evaluated. This can also be
//! triggered manually by using the [`Value::from_serialize`] method:
//!
//! ```
//! # use minijinja::value::Value;
//! let value = Value::from_serialize(&[1, 2, 3]);
//! ```
//!
//! The inverse of that operation is to pass a value directly as serializer to
//! a type that supports deserialization. This requires the `deserialization`
//! feature.
//!
#![cfg_attr(
feature = "deserialization",
doc = r"
```
# use minijinja::value::Value;
use serde::Deserialize;
let value = Value::from(vec![1, 2, 3]);
let vec = Vec::<i32>::deserialize(value).unwrap();
```
"
)]
//!
//! # Value Function Arguments
//!
//! [Filters](crate::filters) and [tests](crate::tests) can take values as arguments
//! but optionally also rust types directly. This conversion for function arguments
//! is performed by the [`FunctionArgs`] and related traits ([`ArgType`], [`FunctionResult`]).
//!
//! # Memory Management
//!
//! Values are immutable objects which are internally reference counted which
//! means they can be copied relatively cheaply. Special care must be taken
//! so that cycles are not created to avoid causing memory leaks.
//!
//! # HTML Escaping
//!
//! MiniJinja inherits the general desire to be clever about escaping. For this
//! purpose a value will (when auto escaping is enabled) always be escaped. To
//! prevent this behavior the [`safe`](crate::filters::safe) filter can be used
//! in the template. Outside of templates the [`Value::from_safe_string`] method
//! can be used to achieve the same result.
//!
//! # Dynamic Objects
//!
//! Values can also hold "dynamic" objects. These are objects which implement the
//! [`Object`] trait. These can be used to implement dynamic functionality such
//! as stateful values and more. Dynamic objects are internally also used to
//! implement the special `loop` variable, macros and similar things.
//!
//! To create a [`Value`] from a dynamic object use [`Value::from_object`],
//! [`Value::from_dyn_object`]:
//!
//! ```rust
//! # use std::sync::Arc;
//! # use minijinja::value::{Value, Object, DynObject};
//! #[derive(Debug)]
//! struct Foo;
//!
//! impl Object for Foo {
//! /* implementation */
//! }
//!
//! let value = Value::from_object(Foo);
//! let value = Value::from_dyn_object(Arc::new(Foo));
//! ```
//!
//! # Invalid Values
//!
//! MiniJinja knows the concept of an "invalid value". These are rare in practice
//! and should not be used, but they are needed in some situations. An invalid value
//! looks like a value but working with that value in the context of the engine will
//! fail in most situations. In principle an invalid value is a value that holds an
//! error internally. It's created with [`From`]:
//!
//! ```
//! use minijinja::{Value, Error, ErrorKind};
//! let error = Error::new(ErrorKind::InvalidOperation, "failed to generate an item");
//! let invalid_value = Value::from(error);
//! ```
//!
//! Invalid values are typically encountered in the following situations:
//!
//! - serialization fails with an error: this is the case when a value is crated
//! via [`Value::from_serialize`] and the underlying [`Serialize`] implementation
//! fails with an error.
//! - fallible iteration: there might be situations where an iterator cannot indicate
//! failure ahead of iteration and must abort. In that case the only option an
//! iterator in MiniJinja has is to create an invalid value.
//!
//! It's generally recommende to ignore the existence of invalid objects and let them
//! fail naturally as they are encountered.
// this module is based on the content module in insta which in turn is based
// on the content module in serde::private::ser.
use std::cell::{Cell, RefCell};
use std::cmp::Ordering;
use std::collections::BTreeMap;
use std::fmt;
use std::hash::{Hash, Hasher};
use std::sync::{Arc, Mutex};
use serde::ser::{Serialize, Serializer};
use crate::error::{Error, ErrorKind};
use crate::functions;
use crate::utils::OnDrop;
use crate::value::ops::as_f64;
use crate::value::serialize::transform;
use crate::vm::State;
pub use crate::value::argtypes::{from_args, ArgType, FunctionArgs, FunctionResult, Kwargs, Rest};
pub use crate::value::object::{DynObject, Enumerator, Object, ObjectExt, ObjectRepr};
#[macro_use]
mod type_erase;
mod argtypes;
#[cfg(feature = "deserialization")]
mod deserialize;
pub(crate) mod merge_object;
pub(crate) mod namespace_object;
mod object;
pub(crate) mod ops;
mod serialize;
#[cfg(feature = "key_interning")]
mod string_interning;
#[cfg(feature = "deserialization")]
pub use self::deserialize::ViaDeserialize;
// We use in-band signalling to roundtrip some internal values. This is
// not ideal but unfortunately there is no better system in serde today.
const VALUE_HANDLE_MARKER: &str = "\x01__minijinja_ValueHandle";
#[cfg(feature = "preserve_order")]
pub(crate) type ValueMap = indexmap::IndexMap<Value, Value>;
#[cfg(not(feature = "preserve_order"))]
pub(crate) type ValueMap = std::collections::BTreeMap<Value, Value>;
#[inline(always)]
pub(crate) fn value_map_with_capacity(capacity: usize) -> ValueMap {
#[cfg(not(feature = "preserve_order"))]
{
let _ = capacity;
ValueMap::new()
}
#[cfg(feature = "preserve_order")]
{
ValueMap::with_capacity(crate::utils::untrusted_size_hint(capacity))
}
}
thread_local! {
static INTERNAL_SERIALIZATION: Cell<bool> = const { Cell::new(false) };
// This should be an AtomicU64 but sadly 32bit targets do not necessarily have
// AtomicU64 available.
static LAST_VALUE_HANDLE: Cell<u32> = const { Cell::new(0) };
static VALUE_HANDLES: RefCell<BTreeMap<u32, Value>> = RefCell::new(BTreeMap::new());
}
/// Function that returns true when serialization for [`Value`] is taking place.
///
/// MiniJinja internally creates [`Value`] objects from all values passed to the
/// engine. It does this by going through the regular serde serialization trait.
/// In some cases users might want to customize the serialization specifically for
/// MiniJinja because they want to tune the object for the template engine
/// independently of what is normally serialized to disk.
///
/// This function returns `true` when MiniJinja is serializing to [`Value`] and
/// `false` otherwise. You can call this within your own [`Serialize`]
/// implementation to change the output format.
///
/// This is particularly useful as serialization for MiniJinja does not need to
/// support deserialization. So it becomes possible to completely change what
/// gets sent there, even at the cost of serializing something that cannot be
/// deserialized.
pub fn serializing_for_value() -> bool {
INTERNAL_SERIALIZATION.with(|flag| flag.get())
}
/// Enables value optimizations.
///
/// If `key_interning` is enabled, this turns on that feature, otherwise
/// it becomes a noop.
#[inline(always)]
pub(crate) fn value_optimization() -> impl Drop {
#[cfg(feature = "key_interning")]
{
crate::value::string_interning::use_string_cache()
}
#[cfg(not(feature = "key_interning"))]
{
OnDrop::new(|| {})
}
}
fn mark_internal_serialization() -> impl Drop {
let old = INTERNAL_SERIALIZATION.with(|flag| {
let old = flag.get();
flag.set(true);
old
});
OnDrop::new(move || {
if !old {
INTERNAL_SERIALIZATION.with(|flag| flag.set(false));
}
})
}
/// Describes the kind of value.
#[derive(Copy, Clone, Debug, Eq, PartialEq, Ord, PartialOrd)]
#[non_exhaustive]
pub enum ValueKind {
/// The value is undefined
Undefined,
/// The value is the none singleton (`()`)
None,
/// The value is a [`bool`]
Bool,
/// The value is a number of a supported type.
Number,
/// The value is a string.
String,
/// The value is a byte array.
Bytes,
/// The value is an array of other values.
Seq,
/// The value is a key/value mapping.
Map,
/// An iterable
Iterable,
/// A plain object without specific behavior.
Plain,
/// This value is invalid (holds an error).
///
/// This can happen when a serialization error occurred or the engine
/// encountered a failure in a place where an error can otherwise not
/// be produced. Interacting with such values in the context of the
/// template evaluation process will attempt to propagate the error.
Invalid,
}
impl fmt::Display for ValueKind {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str(match *self {
ValueKind::Undefined => "undefined",
ValueKind::None => "none",
ValueKind::Bool => "bool",
ValueKind::Number => "number",
ValueKind::String => "string",
ValueKind::Bytes => "bytes",
ValueKind::Seq => "sequence",
ValueKind::Map => "map",
ValueKind::Iterable => "iterator",
ValueKind::Plain => "plain object",
ValueKind::Invalid => "invalid value",
})
}
}
/// Type type of string
#[derive(Copy, Clone, Debug)]
pub(crate) enum StringType {
Normal,
Safe,
}
/// Wraps an internal copyable value but marks it as packed.
///
/// This is used for `i128`/`u128` in the value repr to avoid
/// the excessive 16 byte alignment.
#[derive(Copy)]
#[repr(packed)]
pub(crate) struct Packed<T: Copy>(pub T);
impl<T: Copy> Clone for Packed<T> {
fn clone(&self) -> Self {
*self
}
}
/// Max size of a small str.
///
/// Logic: Value is 24 bytes. 1 byte is for the disciminant. One byte is
/// needed for the small str length.
const SMALL_STR_CAP: usize = 22;
/// Helper to store string data inline.
#[derive(Clone)]
pub(crate) struct SmallStr {
len: u8,
buf: [u8; SMALL_STR_CAP],
}
impl SmallStr {
pub fn try_new(s: &str) -> Option<SmallStr> {
let len = s.len();
if len <= SMALL_STR_CAP {
let mut buf = [0u8; SMALL_STR_CAP];
buf[..len].copy_from_slice(s.as_bytes());
Some(SmallStr {
len: len as u8,
buf,
})
} else {
None
}
}
pub fn as_str(&self) -> &str {
// SAFETY: This is safe because we only place well-formed utf-8 strings
unsafe { std::str::from_utf8_unchecked(&self.buf[..self.len as usize]) }
}
pub fn is_empty(&self) -> bool {
self.len == 0
}
}
#[derive(Clone)]
pub(crate) enum ValueRepr {
Undefined,
Bool(bool),
U64(u64),
I64(i64),
F64(f64),
None,
Invalid(Arc<Error>),
U128(Packed<u128>),
I128(Packed<i128>),
String(Arc<str>, StringType),
SmallStr(SmallStr),
Bytes(Arc<Vec<u8>>),
Object(DynObject),
}
impl fmt::Debug for ValueRepr {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
ValueRepr::Undefined => f.write_str("undefined"),
ValueRepr::Bool(val) => fmt::Debug::fmt(val, f),
ValueRepr::U64(val) => fmt::Debug::fmt(val, f),
ValueRepr::I64(val) => fmt::Debug::fmt(val, f),
ValueRepr::F64(val) => fmt::Debug::fmt(val, f),
ValueRepr::None => f.write_str("none"),
ValueRepr::Invalid(ref val) => write!(f, "<invalid value: {}>", val),
ValueRepr::U128(val) => fmt::Debug::fmt(&{ val.0 }, f),
ValueRepr::I128(val) => fmt::Debug::fmt(&{ val.0 }, f),
ValueRepr::String(val, _) => fmt::Debug::fmt(val, f),
ValueRepr::SmallStr(val) => fmt::Debug::fmt(val.as_str(), f),
ValueRepr::Bytes(val) => fmt::Debug::fmt(val, f),
ValueRepr::Object(val) => val.render(f),
}
}
}
impl Hash for Value {
fn hash<H: Hasher>(&self, state: &mut H) {
match &self.0 {
ValueRepr::None | ValueRepr::Undefined => 0u8.hash(state),
ValueRepr::String(ref s, _) => s.hash(state),
ValueRepr::SmallStr(s) => s.as_str().hash(state),
ValueRepr::Bool(b) => b.hash(state),
ValueRepr::Invalid(ref e) => (e.kind(), e.detail()).hash(state),
ValueRepr::Bytes(b) => b.hash(state),
ValueRepr::Object(d) => d.hash(state),
ValueRepr::U64(_)
| ValueRepr::I64(_)
| ValueRepr::F64(_)
| ValueRepr::U128(_)
| ValueRepr::I128(_) => {
if let Ok(val) = i64::try_from(self.clone()) {
val.hash(state)
} else {
as_f64(self, true).map(|x| x.to_bits()).hash(state)
}
}
}
}
}
/// Represents a dynamically typed value in the template engine.
#[derive(Clone)]
pub struct Value(pub(crate) ValueRepr);
impl PartialEq for Value {
fn eq(&self, other: &Self) -> bool {
match (&self.0, &other.0) {
(ValueRepr::None, ValueRepr::None) => true,
(ValueRepr::Undefined, ValueRepr::Undefined) => true,
(ValueRepr::String(ref a, _), ValueRepr::String(ref b, _)) => a == b,
(ValueRepr::SmallStr(a), ValueRepr::SmallStr(b)) => a.as_str() == b.as_str(),
(ValueRepr::Bytes(a), ValueRepr::Bytes(b)) => a == b,
_ => match ops::coerce(self, other, false) {
Some(ops::CoerceResult::F64(a, b)) => a == b,
Some(ops::CoerceResult::I128(a, b)) => a == b,
Some(ops::CoerceResult::Str(a, b)) => a == b,
None => {
if let (Some(a), Some(b)) = (self.as_object(), other.as_object()) {
if a.is_same_object(b) {
return true;
}
match (a.repr(), b.repr()) {
(ObjectRepr::Map, ObjectRepr::Map) => {
// only if we have known lengths can we compare the enumerators
// ahead of time. This function has a fallback for when a
// map has an unknown length. That's generally a bad idea, but
// it makes sense supporting regardless as silent failures are
// not a lot of fun.
let mut need_length_fallback = true;
if let (Some(a_len), Some(b_len)) =
(a.enumerator_len(), b.enumerator_len())
{
if a_len != b_len {
return false;
}
need_length_fallback = false;
}
let mut a_count = 0;
if !a.try_iter_pairs().map_or(false, |mut ak| {
ak.all(|(k, v1)| {
a_count += 1;
b.get_value(&k).map_or(false, |v2| v1 == v2)
})
}) {
return false;
}
if !need_length_fallback {
true
} else {
a_count == b.try_iter().map_or(0, |x| x.count())
}
}
(
ObjectRepr::Seq | ObjectRepr::Iterable,
ObjectRepr::Seq | ObjectRepr::Iterable,
) => {
if let (Some(ak), Some(bk)) = (a.try_iter(), b.try_iter()) {
ak.eq(bk)
} else {
false
}
}
_ => false,
}
} else {
false
}
}
},
}
}
}
impl Eq for Value {}
impl PartialOrd for Value {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other))
}
}
fn f64_total_cmp(left: f64, right: f64) -> Ordering {
// this is taken from f64::total_cmp on newer rust versions
let mut left = left.to_bits() as i64;
let mut right = right.to_bits() as i64;
left ^= (((left >> 63) as u64) >> 1) as i64;
right ^= (((right >> 63) as u64) >> 1) as i64;
left.cmp(&right)
}
impl Ord for Value {
fn cmp(&self, other: &Self) -> Ordering {
let kind_ordering = self.kind().cmp(&other.kind());
if matches!(kind_ordering, Ordering::Less | Ordering::Greater) {
return kind_ordering;
}
match (&self.0, &other.0) {
(ValueRepr::None, ValueRepr::None) => Ordering::Equal,
(ValueRepr::Undefined, ValueRepr::Undefined) => Ordering::Equal,
(ValueRepr::String(ref a, _), ValueRepr::String(ref b, _)) => a.cmp(b),
(ValueRepr::SmallStr(a), ValueRepr::SmallStr(b)) => a.as_str().cmp(b.as_str()),
(ValueRepr::Bytes(a), ValueRepr::Bytes(b)) => a.cmp(b),
_ => match ops::coerce(self, other, false) {
Some(ops::CoerceResult::F64(a, b)) => f64_total_cmp(a, b),
Some(ops::CoerceResult::I128(a, b)) => a.cmp(&b),
Some(ops::CoerceResult::Str(a, b)) => a.cmp(b),
None => {
if let (Some(a), Some(b)) = (self.as_object(), other.as_object()) {
if a.is_same_object(b) {
Ordering::Equal
} else {
match (a.repr(), b.repr()) {
(ObjectRepr::Map, ObjectRepr::Map) => {
// This is not really correct. Because the keys can be in arbitrary
// order this could just sort really weirdly as a result. However
// we don't want to pay the cost of actually sorting the keys for
// ordering so we just accept this for now.
match (a.try_iter_pairs(), b.try_iter_pairs()) {
(Some(a), Some(b)) => a.cmp(b),
_ => unreachable!(),
}
}
(
ObjectRepr::Seq | ObjectRepr::Iterable,
ObjectRepr::Seq | ObjectRepr::Iterable,
) => match (a.try_iter(), b.try_iter()) {
(Some(a), Some(b)) => a.cmp(b),
_ => unreachable!(),
},
(_, _) => unreachable!(),
}
}
} else {
unreachable!()
}
}
},
}
}
}
impl fmt::Debug for Value {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> Result<(), std::fmt::Error> {
fmt::Debug::fmt(&self.0, f)
}
}
impl fmt::Display for Value {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match &self.0 {
ValueRepr::Undefined => Ok(()),
ValueRepr::Bool(val) => val.fmt(f),
ValueRepr::U64(val) => val.fmt(f),
ValueRepr::I64(val) => val.fmt(f),
ValueRepr::F64(val) => {
if val.is_nan() {
f.write_str("NaN")
} else if val.is_infinite() {
write!(f, "{}inf", if val.is_sign_negative() { "-" } else { "" })
} else {
let mut num = val.to_string();
if !num.contains('.') {
num.push_str(".0");
}
write!(f, "{num}")
}
}
ValueRepr::None => f.write_str("none"),
ValueRepr::Invalid(ref val) => write!(f, "<invalid value: {}>", val),
ValueRepr::I128(val) => write!(f, "{}", { val.0 }),
ValueRepr::String(val, _) => write!(f, "{val}"),
ValueRepr::SmallStr(val) => write!(f, "{}", val.as_str()),
ValueRepr::Bytes(val) => write!(f, "{}", String::from_utf8_lossy(val)),
ValueRepr::U128(val) => write!(f, "{}", { val.0 }),
ValueRepr::Object(x) => write!(f, "{x}"),
}
}
}
impl Default for Value {
fn default() -> Value {
ValueRepr::Undefined.into()
}
}
/// Intern a string.
///
/// When the `key_interning` feature is in used, then MiniJinja will attempt to
/// reuse strings in certain cases. This function can be used to utilize the
/// same functionality. There is no guarantee that a string will be interned
/// as there are heuristics involved for it. Additionally the string interning
/// will only work during the template engine execution (eg: within filters etc.).
pub fn intern(s: &str) -> Arc<str> {
#[cfg(feature = "key_interning")]
{
crate::value::string_interning::try_intern(s)
}
#[cfg(not(feature = "key_interning"))]
{
Arc::from(s.to_string())
}
}
#[allow(clippy::len_without_is_empty)]
impl Value {
/// The undefined value.
///
/// This constant exists because the undefined type does not exist in Rust
/// and this is the only way to construct it.
pub const UNDEFINED: Value = Value(ValueRepr::Undefined);
/// Creates a value from something that can be serialized.
///
/// This is the method that MiniJinja will generally use whenever a serializable
/// object is passed to one of the APIs that internally want to create a value.
/// For instance this is what [`context!`](crate::context) and
/// [`render`](crate::Template::render) will use.
///
/// During serialization of the value, [`serializing_for_value`] will return
/// `true` which makes it possible to customize serialization for MiniJinja.
/// For more information see [`serializing_for_value`].
///
/// ```
/// # use minijinja::value::Value;
/// let val = Value::from_serialize(&vec![1, 2, 3]);
/// ```
///
/// This method does not fail but it might return a value that is not valid. Such
/// values will when operated on fail in the template engine in most situations.
/// This for instance can happen if the underlying implementation of [`Serialize`]
/// fails. There are also cases where invalid objects are silently hidden in the
/// engine today. This is for instance the case for when keys are used in hash maps
/// that the engine cannot deal with. Invalid values are considered an implementation
/// detail. There is currently no API to validate a value.
///
/// If the `deserialization` feature is enabled then the inverse of this method
/// is to use the [`Value`] type as serializer. You can pass a value into the
/// [`deserialize`](serde::Deserialize::deserialize) method of a type that supports
/// serde deserialization.
pub fn from_serialize<T: Serialize>(value: T) -> Value {
let _serialization_guard = mark_internal_serialization();
let _optimization_guard = value_optimization();
transform(value)
}
/// Extracts a contained error.
///
/// An invalid value carres an error internally and will reveal that error
/// at a later point when iteracted with. This is used to carry
/// serialization errors or failures that happen when the engine otherwise
/// assumes an infallible operation such as iteration.
pub(crate) fn validate(self) -> Result<Value, Error> {
if let ValueRepr::Invalid(err) = self.0 {
// Today the API implies tghat errors are `Clone`, but we don't want to expose
// this as a functionality (yet?).
Err(Arc::try_unwrap(err).unwrap_or_else(|arc| (*arc).internal_clone()))
} else {
Ok(self)
}
}
/// Creates a value from a safe string.
///
/// A safe string is one that will bypass auto escaping. For instance if you
/// want to have the template engine render some HTML without the user having to
/// supply the `|safe` filter, you can use a value of this type instead.
///
/// ```
/// # use minijinja::value::Value;
/// let val = Value::from_safe_string("<em>note</em>".into());
/// ```
pub fn from_safe_string(value: String) -> Value {
ValueRepr::String(Arc::from(value), StringType::Safe).into()
}
/// Creates a value from a dynamic object.
///
/// For more information see [`Object`].
///
/// ```rust
/// # use minijinja::value::{Value, Object};
/// use std::fmt;
///
/// #[derive(Debug)]
/// struct Thing {
/// id: usize,
/// }
///
/// impl Object for Thing {}
///
/// let val = Value::from_object(Thing { id: 42 });
/// ```
pub fn from_object<T: Object + Send + Sync + 'static>(value: T) -> Value {
Value::from(ValueRepr::Object(DynObject::new(Arc::new(value))))
}
/// Like [`from_object`](Self::from_object) but for type erased dynamic objects.
///
/// This especially useful if you have an object that has an `Arc<T>` to another
/// child object that you want to return as a `Arc<T>` turns into a [`DynObject`]
/// automatically.
///
/// ```rust
/// # use std::sync::Arc;
/// # use minijinja::value::{Value, Object, Enumerator};
/// #[derive(Debug)]
/// pub struct HttpConfig {
/// port: usize,
/// }
///
/// #[derive(Debug)]
/// struct Config {
/// http: Arc<HttpConfig>,
/// }
///
/// impl Object for HttpConfig {
/// fn enumerate(self: &Arc<Self>) -> Enumerator {
/// Enumerator::Str(&["port"])
/// }
///
/// fn get_value(self: &Arc<Self>, key: &Value) -> Option<Value> {
/// match key.as_str()? {
/// "port" => Some(Value::from(self.port)),
/// _ => None,
/// }
/// }
/// }
///
/// impl Object for Config {
/// fn enumerate(self: &Arc<Self>) -> Enumerator {
/// Enumerator::Str(&["http"])
/// }
///
/// fn get_value(self: &Arc<Self>, key: &Value) -> Option<Value> {
/// match key.as_str()? {
/// "http" => Some(Value::from_dyn_object(self.http.clone())),
/// _ => None
/// }
/// }
/// }
/// ```
pub fn from_dyn_object<T: Into<DynObject>>(value: T) -> Value {
Value::from(ValueRepr::Object(value.into()))
}
/// Creates a value that is an iterable.
///
/// The function is invoked to create a new iterator every time the value is
/// iterated over.
///
/// ```
/// # use minijinja::value::Value;
/// let val = Value::make_iterable(|| 0..10);
/// ```
///
/// Iterators that implement [`ExactSizeIterator`] or have a matching lower and upper
/// bound on the [`Iterator::size_hint`] report a known `loop.length`. Iterators that
/// do not fulfill these requirements will not. The same is true for `revindex` and
/// similar properties.
pub fn make_iterable<I, T, F>(maker: F) -> Value
where
I: Iterator<Item = T> + Send + Sync + 'static,
T: Into<Value> + Send + Sync + 'static,
F: Fn() -> I + Send + Sync + 'static,
{
Value::make_object_iterable((), move |_| Box::new(maker().map(Into::into)))
}
/// Creates an iterable that iterates over the given value.
///
/// This is similar to [`make_iterable`](Self::make_iterable) but it takes an extra
/// reference to a value it can borrow out from. It's a bit less generic in that it
/// needs to return a boxed iterator of values directly.
///
/// ```rust
/// # use minijinja::value::Value;
/// let val = Value::make_object_iterable(vec![1, 2, 3], |vec| {
/// Box::new(vec.iter().copied().map(Value::from))
/// });
/// assert_eq!(val.to_string(), "[1, 2, 3]");
/// ````
pub fn make_object_iterable<T, F>(object: T, maker: F) -> Value
where
T: Send + Sync + 'static,
F: for<'a> Fn(&'a T) -> Box<dyn Iterator<Item = Value> + Send + Sync + 'a>
+ Send
+ Sync
+ 'static,
{
struct Iterable<T, F> {
maker: F,
object: T,
}
impl<T, F> fmt::Debug for Iterable<T, F> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("<iterator>").finish()
}
}
impl<T, F> Object for Iterable<T, F>
where
T: Send + Sync + 'static,
F: for<'a> Fn(&'a T) -> Box<dyn Iterator<Item = Value> + Send + Sync + 'a>
+ Send
+ Sync
+ 'static,
{
fn repr(self: &Arc<Self>) -> ObjectRepr {
ObjectRepr::Iterable
}
fn enumerate(self: &Arc<Self>) -> Enumerator {
struct Iter {
iter: Box<dyn Iterator<Item = Value> + Send + Sync + 'static>,
_object: DynObject,
}
impl Iterator for Iter {
type Item = Value;
fn next(&mut self) -> Option<Self::Item> {
self.iter.next()
}
fn size_hint(&self) -> (usize, Option<usize>) {
self.iter.size_hint()
}
}
// SAFETY: this is safe because the object is kept alive by the iter
let iter = unsafe {
std::mem::transmute::<
Box<dyn Iterator<Item = _>>,
Box<dyn Iterator<Item = _> + Send + Sync>,
>((self.maker)(&self.object))
};
let _object = DynObject::new(self.clone());
Enumerator::Iter(Box::new(Iter { iter, _object }))
}
}
Value::from_object(Iterable { maker, object })
}
/// Creates a value from a one-shot iterator.
///
/// This takes an iterator (yielding values that can be turned into a [`Value`])
/// and wraps it in a way that it turns into an iterable value. From the view of
/// the template this can be iterated over exactly once for the most part once
/// exhausted.
///
/// Such iterators are strongly recommended against in the general sense due to
/// their surprising behavior, but they can be useful for more advanced use
/// cases where data should be streamed into the template as it becomes available.
///
/// Such iterators never have any size hints.
///
/// ```
/// # use minijinja::value::Value;
/// let val = Value::make_one_shot_iterator(0..10);
/// ```
///
/// Attempting to iterate over it a second time will not yield any more items.
pub fn make_one_shot_iterator<I, T>(iter: I) -> Value
where
I: Iterator<Item = T> + Send + Sync + 'static,
T: Into<Value> + Send + Sync + 'static,
{
let iter = Arc::new(Mutex::new(iter.fuse()));
Value::make_iterable(move || {
let iter = iter.clone();
std::iter::from_fn(move || iter.lock().unwrap().next())
})
}
/// Creates a callable value from a function.
///
/// ```
/// # use minijinja::value::Value;
/// let pow = Value::from_function(|a: u32| a * a);
/// ```
pub fn from_function<F, Rv, Args>(f: F) -> Value
where
// the crazy bounds here exist to enable borrowing in closures
F: functions::Function<Rv, Args>
+ for<'a> functions::Function<Rv, <Args as FunctionArgs<'a>>::Output>,
Rv: FunctionResult,
Args: for<'a> FunctionArgs<'a>,
{
functions::BoxedFunction::new(f).to_value()
}
/// Returns the kind of the value.
///
/// This can be used to determine what's in the value before trying to
/// perform operations on it.
pub fn kind(&self) -> ValueKind {
match self.0 {
ValueRepr::Undefined => ValueKind::Undefined,
ValueRepr::Bool(_) => ValueKind::Bool,
ValueRepr::U64(_) | ValueRepr::I64(_) | ValueRepr::F64(_) => ValueKind::Number,
ValueRepr::None => ValueKind::None,
ValueRepr::I128(_) => ValueKind::Number,
ValueRepr::String(..) | ValueRepr::SmallStr(_) => ValueKind::String,
ValueRepr::Bytes(_) => ValueKind::Bytes,
ValueRepr::U128(_) => ValueKind::Number,
ValueRepr::Invalid(_) => ValueKind::Invalid,
ValueRepr::Object(ref obj) => match obj.repr() {
ObjectRepr::Map => ValueKind::Map,
ObjectRepr::Seq => ValueKind::Seq,
ObjectRepr::Iterable => ValueKind::Iterable,
ObjectRepr::Plain => ValueKind::Plain,
},
}
}
/// Returns `true` if the value is a number.
///
/// To convert a value into a primitive number, use [`TryFrom`] or [`TryInto`].
pub fn is_number(&self) -> bool {
matches!(
self.0,
ValueRepr::U64(_)
| ValueRepr::I64(_)
| ValueRepr::F64(_)
| ValueRepr::I128(_)
| ValueRepr::U128(_)
)
}
/// Returns true if the number is a real integer.
///
/// This can be used to distinguish `42` from `42.0`. For the most part
/// the engine keeps these the same.
pub fn is_integer(&self) -> bool {
matches!(
self.0,
ValueRepr::U64(_) | ValueRepr::I64(_) | ValueRepr::I128(_) | ValueRepr::U128(_)
)
}
/// Returns `true` if the map represents keyword arguments.
pub fn is_kwargs(&self) -> bool {
Kwargs::extract(self).is_some()
}
/// Is this value considered true?
///
/// The engine inherits the same behavior as Jinja2 when it comes to
/// considering objects true. Empty objects are generally not considered
/// true. For custom objects this is customized by [`Object::is_true`].
pub fn is_true(&self) -> bool {
match self.0 {
ValueRepr::Bool(val) => val,
ValueRepr::U64(x) => x != 0,
ValueRepr::U128(x) => x.0 != 0,
ValueRepr::I64(x) => x != 0,
ValueRepr::I128(x) => x.0 != 0,
ValueRepr::F64(x) => x != 0.0,
ValueRepr::String(ref x, _) => !x.is_empty(),
ValueRepr::SmallStr(ref x) => !x.is_empty(),
ValueRepr::Bytes(ref x) => !x.is_empty(),
ValueRepr::None | ValueRepr::Undefined | ValueRepr::Invalid(_) => false,
ValueRepr::Object(ref x) => x.is_true(),
}
}
/// Returns `true` if this value is safe.
pub fn is_safe(&self) -> bool {
matches!(&self.0, ValueRepr::String(_, StringType::Safe))
}
/// Returns `true` if this value is undefined.
pub fn is_undefined(&self) -> bool {
matches!(&self.0, ValueRepr::Undefined)
}
/// Returns `true` if this value is none.
pub fn is_none(&self) -> bool {
matches!(&self.0, ValueRepr::None)
}
/// If the value is a string, return it.
pub fn to_str(&self) -> Option<Arc<str>> {
match &self.0 {
ValueRepr::String(ref s, _) => Some(s.clone()),
ValueRepr::SmallStr(ref s) => Some(Arc::from(s.as_str())),
_ => None,
}
}
/// If the value is a string, return it.
pub fn as_str(&self) -> Option<&str> {
match &self.0 {
ValueRepr::String(ref s, _) => Some(s as &str),
ValueRepr::SmallStr(ref s) => Some(s.as_str()),
_ => None,
}
}
/// If this is an i64 return it
pub fn as_usize(&self) -> Option<usize> {
usize::try_from(self.clone()).ok()
}
/// If this is an i64 return it
pub fn as_i64(&self) -> Option<i64> {
i64::try_from(self.clone()).ok()
}
/// Returns the bytes of this value if they exist.
pub fn as_bytes(&self) -> Option<&[u8]> {
match &self.0 {
ValueRepr::String(ref s, _) => Some(s.as_bytes()),
ValueRepr::SmallStr(ref s) => Some(s.as_str().as_bytes()),
ValueRepr::Bytes(ref b) => Some(&b[..]),
_ => None,
}
}
/// If the value is an object a reference to it is returned.
///
/// The returned value is a reference to a type erased [`DynObject`].
/// For a specific type use [`downcast_object`](Self::downcast_object)
/// instead.
pub fn as_object(&self) -> Option<&DynObject> {
match self.0 {
ValueRepr::Object(ref dy) => Some(dy),
_ => None,
}
}
/// Returns the length of the contained value.
///
/// Values without a length will return `None`.
///
/// ```
/// # use minijinja::value::Value;
/// let seq = Value::from(vec![1, 2, 3, 4]);
/// assert_eq!(seq.len(), Some(4));
/// ```
pub fn len(&self) -> Option<usize> {
match self.0 {
ValueRepr::String(ref s, _) => Some(s.chars().count()),
ValueRepr::SmallStr(ref s) => Some(s.as_str().chars().count()),
ValueRepr::Object(ref dy) => dy.enumerator_len(),
_ => None,
}
}
/// Looks up an attribute by attribute name.
///
/// This this returns [`UNDEFINED`](Self::UNDEFINED) when an invalid key is
/// resolved. An error is returned if the value does not contain an object
/// that has attributes.
///
/// ```
/// # use minijinja::value::Value;
/// # fn test() -> Result<(), minijinja::Error> {
/// let ctx = minijinja::context! {
/// foo => "Foo"
/// };
/// let value = ctx.get_attr("foo")?;
/// assert_eq!(value.to_string(), "Foo");
/// # Ok(()) }
/// ```
pub fn get_attr(&self, key: &str) -> Result<Value, Error> {
let value = match self.0 {
ValueRepr::Undefined => return Err(Error::from(ErrorKind::UndefinedError)),
ValueRepr::Object(ref dy) => dy.get_value(&Value::from(key)),
_ => None,
};
Ok(value.unwrap_or(Value::UNDEFINED))
}
/// Alternative lookup strategy without error handling exclusively for context
/// resolution.
///
/// The main difference is that the return value will be `None` if the value is
/// unable to look up the key rather than returning `Undefined` and errors will
/// also not be created.
pub(crate) fn get_attr_fast(&self, key: &str) -> Option<Value> {
match self.0 {
ValueRepr::Object(ref dy) => dy.get_value(&Value::from(key)),
_ => None,
}
}
/// Looks up an index of the value.
///
/// This is a shortcut for [`get_item`](Self::get_item).
///
/// ```
/// # use minijinja::value::Value;
/// let seq = Value::from(vec![0u32, 1, 2]);
/// let value = seq.get_item_by_index(1).unwrap();
/// assert_eq!(value.try_into().ok(), Some(1));
/// ```
pub fn get_item_by_index(&self, idx: usize) -> Result<Value, Error> {
self.get_item(&Value(ValueRepr::U64(idx as _)))
}
/// Looks up an item (or attribute) by key.
///
/// This is similar to [`get_attr`](Self::get_attr) but instead of using
/// a string key this can be any key. For instance this can be used to
/// index into sequences. Like [`get_attr`](Self::get_attr) this returns
/// [`UNDEFINED`](Self::UNDEFINED) when an invalid key is looked up.
///
/// ```
/// # use minijinja::value::Value;
/// let ctx = minijinja::context! {
/// foo => "Foo",
/// };
/// let value = ctx.get_item(&Value::from("foo")).unwrap();
/// assert_eq!(value.to_string(), "Foo");
/// ```
pub fn get_item(&self, key: &Value) -> Result<Value, Error> {
if let ValueRepr::Undefined = self.0 {
Err(Error::from(ErrorKind::UndefinedError))
} else {
Ok(self.get_item_opt(key).unwrap_or(Value::UNDEFINED))
}
}
/// Iterates over the value.
///
/// Depending on the [`kind`](Self::kind) of the value the iterator
/// has a different behavior.
///
/// * [`ValueKind::Map`]: the iterator yields the keys of the map.
/// * [`ValueKind::Seq`] / [`ValueKind::Iterable`]: the iterator yields the items in the sequence.
/// * [`ValueKind::String`]: the iterator yields characters in a string.
/// * [`ValueKind::None`] / [`ValueKind::Undefined`]: the iterator is empty.
///
/// ```
/// # use minijinja::value::Value;
/// # fn test() -> Result<(), minijinja::Error> {
/// let value = Value::from({
/// let mut m = std::collections::BTreeMap::new();
/// m.insert("foo", 42);
/// m.insert("bar", 23);
/// m
/// });
/// for key in value.try_iter()? {
/// let value = value.get_item(&key)?;
/// println!("{} = {}", key, value);
/// }
/// # Ok(()) }
/// ```
pub fn try_iter(&self) -> Result<ValueIter, Error> {
match self.0 {
ValueRepr::None | ValueRepr::Undefined => Some(ValueIterImpl::Empty),
ValueRepr::String(ref s, _) => {
Some(ValueIterImpl::Chars(0, s.chars().count(), Arc::clone(s)))
}
ValueRepr::SmallStr(ref s) => Some(ValueIterImpl::Chars(
0,
s.as_str().chars().count(),
Arc::from(s.as_str()),
)),
ValueRepr::Object(ref obj) => obj.try_iter().map(ValueIterImpl::Dyn),
_ => None,
}
.map(|imp| ValueIter { imp })
.ok_or_else(|| {
Error::new(
ErrorKind::InvalidOperation,
format!("{} is not iterable", self.kind()),
)
})
}
/// Returns a reversed view of this value.
///
/// This is implemented for the following types with the following behaviors:
///
/// * undefined or none: value returned unchanged.
/// * string and bytes: returns a reversed version of that value
/// * iterables: returns a reversed version of the iterable. If the iterable is not
/// reversable itself, it consumes it and then reverses it.
pub fn reverse(&self) -> Result<Value, Error> {
match self.0 {
ValueRepr::Undefined | ValueRepr::None => Some(self.clone()),
ValueRepr::String(ref s, _) => Some(Value::from(s.chars().rev().collect::<String>())),
ValueRepr::SmallStr(ref s) => {
// TODO: add small str optimization here
Some(Value::from(s.as_str().chars().rev().collect::<String>()))
}
ValueRepr::Bytes(ref b) => {
Some(Value::from(b.iter().rev().copied().collect::<Vec<_>>()))
}
ValueRepr::Object(ref o) => match o.enumerate() {
Enumerator::NonEnumerable => None,
Enumerator::Empty => Some(Value::make_iterable(|| None::<Value>.into_iter())),
Enumerator::Seq(l) => {
let self_clone = o.clone();
Some(Value::make_iterable(move || {
let self_clone = self_clone.clone();
(0..l).rev().map(move |idx| {
self_clone.get_value(&Value::from(idx)).unwrap_or_default()
})
}))
}
Enumerator::Iter(iter) => {
let mut v = iter.collect::<Vec<_>>();
v.reverse();
Some(Value::make_object_iterable(v, move |v| {
Box::new(v.iter().cloned())
}))
}
Enumerator::RevIter(rev_iter) => {
let for_restart = self.clone();
let iter = Mutex::new(Some(rev_iter));
Some(Value::make_iterable(move || {
if let Some(iter) = iter.lock().unwrap().take() {
Box::new(iter) as Box<dyn Iterator<Item = Value> + Send + Sync>
} else {
match for_restart.reverse().and_then(|x| x.try_iter()) {
Ok(iterable) => Box::new(iterable)
as Box<dyn Iterator<Item = Value> + Send + Sync>,
Err(err) => Box::new(Some(Value::from(err)).into_iter())
as Box<dyn Iterator<Item = Value> + Send + Sync>,
}
}
}))
}
Enumerator::Str(s) => Some(Value::make_iterable(move || s.iter().rev().copied())),
Enumerator::Values(mut v) => {
v.reverse();
Some(Value::make_object_iterable(v, move |v| {
Box::new(v.iter().cloned())
}))
}
},
_ => None,
}
.ok_or_else(|| {
Error::new(
ErrorKind::InvalidOperation,
format!("cannot reverse values of type {}", self.kind()),
)
})
}
/// Returns some reference to the boxed object if it is of type `T`, or None if it isn’t.
///
/// This is basically the "reverse" of [`from_object`](Self::from_object)
/// and [`from_dyn_object`](Self::from_dyn_object). It's also a shortcut for
/// [`downcast_ref`](DynObject::downcast_ref) on the return value of
/// [`as_object`](Self::as_object).
///
/// # Example
///
/// ```rust
/// # use minijinja::value::{Value, Object};
/// use std::fmt;
///
/// #[derive(Debug)]
/// struct Thing {
/// id: usize,
/// }
///
/// impl Object for Thing {}
///
/// let x_value = Value::from_object(Thing { id: 42 });
/// let thing = x_value.downcast_object_ref::<Thing>().unwrap();
/// assert_eq!(thing.id, 42);
/// ```
pub fn downcast_object_ref<T: 'static>(&self) -> Option<&T> {
match self.0 {
ValueRepr::Object(ref o) => o.downcast_ref(),
_ => None,
}
}
/// Like [`downcast_object_ref`](Self::downcast_object_ref) but returns
/// the actual object.
pub fn downcast_object<T: 'static>(&self) -> Option<Arc<T>> {
match self.0 {
ValueRepr::Object(ref o) => o.downcast(),
_ => None,
}
}
pub(crate) fn get_item_opt(&self, key: &Value) -> Option<Value> {
fn index(value: &Value, len: impl Fn() -> Option<usize>) -> Option<usize> {
match value.as_i64().and_then(|v| isize::try_from(v).ok()) {
Some(i) if i < 0 => some!(len()).checked_sub(i.unsigned_abs()),
Some(i) => Some(i as usize),
None => None,
}
}
match self.0 {
ValueRepr::Object(ref dy) => match dy.repr() {
ObjectRepr::Map | ObjectRepr::Plain => dy.get_value(key),
ObjectRepr::Iterable => {
if let Some(rv) = dy.get_value(key) {
return Some(rv);
}
// The default behavior is to try to index into the iterable
// as if nth() was called. This lets one slice an array and
// then index into it.
if let Some(idx) = index(key, || dy.enumerator_len()) {
if let Some(mut iter) = dy.try_iter() {
if let Some(rv) = iter.nth(idx) {
return Some(rv);
}
}
}
None
}
ObjectRepr::Seq => {
let idx = index(key, || dy.enumerator_len()).map(Value::from);
dy.get_value(idx.as_ref().unwrap_or(key))
}
},
ValueRepr::String(ref s, _) => {
let idx = some!(index(key, || Some(s.chars().count())));
s.chars().nth(idx).map(Value::from)
}
ValueRepr::SmallStr(ref s) => {
let idx = some!(index(key, || Some(s.as_str().chars().count())));
s.as_str().chars().nth(idx).map(Value::from)
}
_ => None,
}
}
/// Calls the value directly.
///
/// If the value holds a function or macro, this invokes it. Note that in
/// MiniJinja there is a separate namespace for methods on objects and callable
/// items. To call methods (which should be a rather rare occurrence) you
/// have to use [`call_method`](Self::call_method).
///
/// The `args` slice is for the arguments of the function call. To pass
/// keyword arguments use the [`Kwargs`] type.
///
/// Usually the state is already available when it's useful to call this method,
/// but when it's not available you can get a fresh template state straight
/// from the [`Template`](crate::Template) via [`new_state`](crate::Template::new_state).
///
/// ```
/// # use minijinja::{Environment, value::{Value, Kwargs}};
/// # let mut env = Environment::new();
/// # env.add_template("foo", "").unwrap();
/// # let tmpl = env.get_template("foo").unwrap();
/// # let state = tmpl.new_state(); let state = &state;
/// let func = Value::from_function(|v: i64, kwargs: Kwargs| {
/// v * kwargs.get::<i64>("mult").unwrap_or(1)
/// });
/// let rv = func.call(
/// state,
/// &[
/// Value::from(42),
/// Value::from(Kwargs::from_iter([("mult", Value::from(2))])),
/// ],
/// ).unwrap();
/// assert_eq!(rv, Value::from(84));
/// ```
///
/// With the [`args!`](crate::args) macro creating an argument slice is
/// simplified:
///
/// ```
/// # use minijinja::{Environment, args, value::{Value, Kwargs}};
/// # let mut env = Environment::new();
/// # env.add_template("foo", "").unwrap();
/// # let tmpl = env.get_template("foo").unwrap();
/// # let state = tmpl.new_state(); let state = &state;
/// let func = Value::from_function(|v: i64, kwargs: Kwargs| {
/// v * kwargs.get::<i64>("mult").unwrap_or(1)
/// });
/// let rv = func.call(state, args!(42, mult => 2)).unwrap();
/// assert_eq!(rv, Value::from(84));
/// ```
pub fn call(&self, state: &State, args: &[Value]) -> Result<Value, Error> {
if let ValueRepr::Object(ref dy) = self.0 {
dy.call(state, args)
} else {
Err(Error::new(
ErrorKind::InvalidOperation,
format!("value of type {} is not callable", self.kind()),
))
}
}
/// Calls a method on the value.
///
/// The name of the method is `name`, the arguments passed are in the `args`
/// slice.
pub fn call_method(&self, state: &State, name: &str, args: &[Value]) -> Result<Value, Error> {
match self._call_method(state, name, args) {
Ok(rv) => Ok(rv),
Err(mut err) => {
if err.kind() == ErrorKind::UnknownMethod {
if let Some(ref callback) = state.env().unknown_method_callback {
return callback(state, self, name, args);
} else if err.detail().is_none() {
err.set_detail(format!("{} has no method named {}", self.kind(), name));
}
}
Err(err)
}
}
}
fn _call_method(&self, state: &State, name: &str, args: &[Value]) -> Result<Value, Error> {
if let Some(object) = self.as_object() {
object.call_method(state, name, args)
} else {
Err(Error::from(ErrorKind::UnknownMethod))
}
}
#[cfg(feature = "builtins")]
pub(crate) fn get_path(&self, path: &str) -> Result<Value, Error> {
let mut rv = self.clone();
for part in path.split('.') {
if let Ok(num) = part.parse::<usize>() {
rv = ok!(rv.get_item_by_index(num));
} else {
rv = ok!(rv.get_attr(part));
}
}
Ok(rv)
}
#[cfg(feature = "builtins")]
pub(crate) fn get_path_or_default(&self, path: &str, default: &Value) -> Value {
match self.get_path(path) {
Err(_) => default.clone(),
Ok(val) if val.is_undefined() => default.clone(),
Ok(val) => val,
}
}
}
impl Serialize for Value {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
// enable round tripping of values
if serializing_for_value() {
let handle = LAST_VALUE_HANDLE.with(|x| {
// we are okay with overflowing the handle here because these values only
// live for a very short period of time and it's not likely that you run out
// of an entire u32 worth of handles in a single serialization operation.
// This lets us stick the handle into a unit variant in the serde data model.
let rv = x.get().wrapping_add(1);
x.set(rv);
rv
});
VALUE_HANDLES.with(|handles| handles.borrow_mut().insert(handle, self.clone()));
return serializer.serialize_unit_variant(
VALUE_HANDLE_MARKER,
handle,
VALUE_HANDLE_MARKER,
);
}
match self.0 {
ValueRepr::Bool(b) => serializer.serialize_bool(b),
ValueRepr::U64(u) => serializer.serialize_u64(u),
ValueRepr::I64(i) => serializer.serialize_i64(i),
ValueRepr::F64(f) => serializer.serialize_f64(f),
ValueRepr::None | ValueRepr::Undefined | ValueRepr::Invalid(_) => {
serializer.serialize_unit()
}
ValueRepr::U128(u) => serializer.serialize_u128(u.0),
ValueRepr::I128(i) => serializer.serialize_i128(i.0),
ValueRepr::String(ref s, _) => serializer.serialize_str(s),
ValueRepr::SmallStr(ref s) => serializer.serialize_str(s.as_str()),
ValueRepr::Bytes(ref b) => serializer.serialize_bytes(b),
ValueRepr::Object(ref o) => match o.repr() {
ObjectRepr::Plain => serializer.serialize_str(&o.to_string()),
ObjectRepr::Seq | ObjectRepr::Iterable => {
use serde::ser::SerializeSeq;
let mut seq = ok!(serializer.serialize_seq(o.enumerator_len()));
if let Some(iter) = o.try_iter() {
for item in iter {
ok!(seq.serialize_element(&item));
}
}
seq.end()
}
ObjectRepr::Map => {
use serde::ser::SerializeMap;
let mut map = ok!(serializer.serialize_map(None));
if let Some(iter) = o.try_iter_pairs() {
for (key, value) in iter {
ok!(map.serialize_entry(&key, &value));
}
}
map.end()
}
},
}
}
}
/// Utility to iterate over values.
pub struct ValueIter {
imp: ValueIterImpl,
}
impl Iterator for ValueIter {
type Item = Value;
fn next(&mut self) -> Option<Self::Item> {
match &mut self.imp {
ValueIterImpl::Empty => None,
ValueIterImpl::Chars(offset, len, ref s) => {
(s as &str)[*offset..].chars().next().map(|c| {
*offset += c.len_utf8();
*len -= 1;
Value::from(c)
})
}
ValueIterImpl::Dyn(iter) => iter.next(),
}
}
fn size_hint(&self) -> (usize, Option<usize>) {
match self.imp {
ValueIterImpl::Empty => (0, Some(0)),
ValueIterImpl::Chars(_, len, _) => (0, Some(len)),
ValueIterImpl::Dyn(ref iter) => iter.size_hint(),
}
}
}
impl fmt::Debug for ValueIter {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("ValueIterator").finish()
}
}
enum ValueIterImpl {
Empty,
Chars(usize, usize, Arc<str>),
Dyn(Box<dyn Iterator<Item = Value> + Send + Sync>),
}
impl From<Error> for Value {
fn from(value: Error) -> Self {
Value(ValueRepr::Invalid(Arc::new(value)))
}
}
#[cfg(test)]
mod tests {
use super::*;
use similar_asserts::assert_eq;
#[test]
fn test_dynamic_object_roundtrip() {
use std::sync::atomic::{self, AtomicUsize};
#[derive(Debug, Clone)]
struct X(Arc<AtomicUsize>);
impl Object for X {
fn get_value(self: &Arc<Self>, key: &Value) -> Option<Value> {
match key.as_str()? {
"value" => Some(Value::from(self.0.load(atomic::Ordering::Relaxed))),
_ => None,
}
}
fn enumerate(self: &Arc<Self>) -> Enumerator {
Enumerator::Str(&["value"])
}
fn render(self: &Arc<Self>, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "{}", self.0.load(atomic::Ordering::Relaxed))
}
}
let x = Arc::new(X(Default::default()));
let x_value = Value::from_dyn_object(x.clone());
x.0.fetch_add(42, atomic::Ordering::Relaxed);
let x_clone = Value::from_serialize(&x_value);
x.0.fetch_add(23, atomic::Ordering::Relaxed);
assert_eq!(x_value.to_string(), "65");
assert_eq!(x_clone.to_string(), "65");
}
#[test]
fn test_string_char() {
let val = Value::from('a');
assert_eq!(char::try_from(val).unwrap(), 'a');
let val = Value::from("a");
assert_eq!(char::try_from(val).unwrap(), 'a');
let val = Value::from("wat");
assert!(char::try_from(val).is_err());
}
#[test]
#[cfg(target_pointer_width = "64")]
fn test_sizes() {
assert_eq!(std::mem::size_of::<Value>(), 24);
}
}