1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
//! Injective type-level functions
use crate::TypeFn;
use core::marker::PhantomData;
/// An [injective] type-level function
///
/// This trait is implemented automatically when both
/// [`TypeFn`] and [`RevTypeFn`] are implemented, and the function is [injective].
/// `InjTypeFn` cannot be manually implemented.
///
/// # Properties
///
/// These are properties about `InjTypeFn` that users can rely on.
///
/// For any given `F: InjTypeFn<A> + InjTypeFn<B>` these hold:
///
/// 1. If `A == B`, then `CallInjFn<F, A> == CallInjFn<F, B>`.
/// 2. If `CallInjFn<F, A> == CallInjFn<F, B>`, then `A == B`.
/// 3. If `A != B`, then `CallInjFn<F, A> != CallInjFn<F, B>`.
/// 4. If `CallInjFn<F, A> != CallInjFn<F, B>`, then `A != B`.
///
///
/// # Examples
///
/// ### Macro-based Implementation
///
/// ```rust
/// use typewit::{CallInjFn, UncallFn, inj_type_fn};
///
/// let _: CallInjFn<BoxFn, u32> = Box::new(3u32);
/// let _: UncallFn<BoxFn, Box<u32>> = 3u32;
///
/// inj_type_fn!{
/// struct BoxFn;
///
/// impl<T: ?Sized> T => Box<T>
/// }
/// ```
///
/// ### Non-macro Implementation
///
/// ```rust
/// use typewit::{CallInjFn, RevTypeFn, TypeFn, UncallFn};
///
/// let _: CallInjFn<BoxFn, u32> = Box::new(3u32);
/// let _: UncallFn<BoxFn, Box<u32>> = 3u32;
///
///
/// struct BoxFn;
///
/// impl<T: ?Sized> TypeFn<T> for BoxFn {
/// type Output = Box<T>;
///
/// // Asserts that this impl of `TypeFn` for `BoxFn` is injective.
/// const TYPE_FN_ASSERTS: () = { let _: CallInjFn<Self, T>; };
/// }
///
/// impl<T: ?Sized> RevTypeFn<Box<T>> for BoxFn {
/// type Arg = T;
/// }
///
/// ```
///
/// [injective]: mod@crate::type_fn#injective
pub trait InjTypeFn<A: ?Sized>: TypeFn<A, Output = Self::Ret> + RevTypeFn<Self::Ret, Arg = A> {
/// Return value of the function
type Ret: ?Sized;
}
impl<F, A: ?Sized, R: ?Sized> InjTypeFn<A> for F
where
F: TypeFn<A, Output = R>,
F: RevTypeFn<R, Arg = A>,
{
type Ret = R;
}
/// The inverse of [`TypeFn`],
/// for getting the argument of a [`TypeFn`](crate::type_fn::TypeFn)
/// from its return value.
///
/// # Properties
///
/// These are properties about `RevTypeFn` that users can rely on.
///
/// For any given `F: RevTypeFn<R> + RevTypeFn<O>` these hold:
///
/// 1. If `R == O`, then `UncallFn<F, R> == UncallFn<F, O>`
///
/// 2. If `R != O`, then `UncallFn<F, R> != UncallFn<F, O>`
///
/// Disclaimer: this trait **does not** by itself ensure that a function is
/// [injective],
/// since `RevTypeFn<Ret>` can't know if `Self::Arg` is the only argument
/// that could produce `Ret`.
///
/// # Examples
///
/// ### Macro-based impl
///
/// ```rust
/// use std::ops::Range;
///
/// use typewit::{RevTypeFn, UncallFn};
///
/// let array = [3usize, 5];
///
/// // Getting the argument of `ArrayFn` from its return value
/// let value: UncallFn<ArrayFn<2>, [usize; 2]> = array[0];
///
/// assert_eq!(value, 3usize);
///
/// typewit::inj_type_fn!{
/// struct ArrayFn<const N: usize>;
/// impl<T> T => [T; N]
/// }
/// ```
///
/// ### Manual impl
///
/// ```rust
/// use std::ops::Range;
///
/// use typewit::{CallInjFn, RevTypeFn, TypeFn, UncallFn};
///
/// let array = [3usize, 5];
///
/// // Getting the argument of `ArrayFn` from its return value
/// let value: UncallFn<ArrayFn<2>, [usize; 2]> = array[0];
///
/// assert_eq!(value, 3usize);
///
/// struct ArrayFn<const N: usize>;
///
/// impl<T, const N: usize> TypeFn<T> for ArrayFn<N> {
/// type Output = [T; N];
///
/// // Ensures that this impl of `TypeFn` for `ArrayFn` is injective.
/// const TYPE_FN_ASSERTS: () = { let _: CallInjFn<Self, T>; };
/// }
/// impl<T, const N: usize> RevTypeFn<[T; N]> for ArrayFn<N> {
/// type Arg = T;
/// }
/// ```
///
/// ### Non-injective function
///
/// As mentioned above, this trait doesn't make a function [injective].
///
/// In the example below, `NonInjective` isn't injective, because it maps different
/// arguments to the same return value:
///
/// ```rust
/// use typewit::{CallFn, RevTypeFn, TypeFn, UncallFn};
///
/// let _: CallFn<NonInjective, Vec<u8>> = 3u8;
/// let _: CallFn<NonInjective, String> = 5u8;
///
/// let _: UncallFn<NonInjective, u8> = ();
///
///
/// struct NonInjective;
///
/// impl<T> TypeFn<T> for NonInjective {
/// type Output = u8;
/// }
///
/// impl RevTypeFn<u8> for NonInjective {
/// type Arg = ();
/// }
/// ```
///
/// [injective]: mod@crate::type_fn#injective
pub trait RevTypeFn<Ret: ?Sized>: TypeFn<Self::Arg, Output = Ret> {
/// The argument to this function with `Ret` as the return value.
type Arg: ?Sized;
}
/// Queries the argument to a `F: `[`TypeFn`] from its return value.
///
/// # Example
///
/// ```rust
/// use typewit::UncallFn;
///
/// let vect = vec![3u32, 5, 8];
/// let value: UncallFn<VecFn, Vec<u32>> = vect[1];
/// assert_eq!(value, 5u32);
///
/// typewit::inj_type_fn!{
/// struct VecFn;
/// impl<T> T => Vec<T>
/// }
/// ```
pub type UncallFn<F, Ret> = <F as RevTypeFn<Ret>>::Arg;
/// [`CallFn`](crate::CallFn) with an additional `F:`[`InjTypeFn<A>`] requirement,
/// which helps with type inference.
///
/// # Example
///
/// ```rust
/// use typewit::{InjTypeFn, CallInjFn};
///
/// // inferred return type
/// let inferred_ret = upcast(3u8);
/// assert_eq!(inferred_ret, 3);
///
/// // inferred argument type
/// let inferred_arg: u32 = upcast(5);
/// assert_eq!(inferred_arg, 5);
///
/// // Because the return type is `CallInjFn<_, I>`,
/// // this can infer `I` from the return type,
/// fn upcast<I>(int: I) -> CallInjFn<Upcast, I>
/// where
/// Upcast: InjTypeFn<I>,
/// CallInjFn<Upcast, I>: From<I>,
/// {
/// int.into()
/// }
///
///
/// typewit::inj_type_fn!{
/// struct Upcast;
///
/// impl u8 => u16;
/// impl u16 => u32;
/// impl u32 => u64;
/// impl u64 => u128;
/// }
/// ```
///
/// As of October 2023, replacing `CallInjFn` with `CallFn` can cause type inference errors:
///
/// ```text
/// error[E0277]: the trait bound `Upcast: TypeFn<{integer}>` is not satisfied
/// --> src/type_fn/injective.rs:132:32
/// |
/// 11 | let inferred_arg: u32 = upcast(5);
/// | ------ ^ the trait `TypeFn<{integer}>` is not implemented for `Upcast`
/// | |
/// | required by a bound introduced by this call
/// |
/// = help: the following other types implement trait `TypeFn<T>`:
/// <Upcast as TypeFn<u16>>
/// <Upcast as TypeFn<u32>>
/// <Upcast as TypeFn<u64>>
/// <Upcast as TypeFn<u8>>
/// ```
pub type CallInjFn<F, A> = <F as InjTypeFn<A>>::Ret;
macro_rules! simple_inj_type_fn {
(
impl[$($impl:tt)*] ($arg:ty => $ret:ty) for $func:ty
$(where[$($where:tt)*])?
) => {
impl<$($impl)*> crate::type_fn::TypeFn<$arg> for $func
$(where $($where)*)?
{
type Output = $ret;
}
impl<$($impl)*> crate::type_fn::RevTypeFn<$ret> for $func
$(where $($where)*)?
{
type Arg = $arg;
}
};
} pub(crate) use simple_inj_type_fn;
////////////////////////////////////////////////////////////////////////////////
/// Reverses an [`InjTypeFn`], its arguments become return values,
/// and its return values become arguments.
///
/// # Examples
///
/// ### Permutations
///
/// The different ways this function can be combined with [`CallFn`] and
/// [`UncallFn`]
///
/// ```rust
/// use typewit::type_fn::{CallFn, FnRev, UncallFn};
///
/// let _: CallFn<FnRev<Swap>, Right> = Left;
/// let _: UncallFn< Swap, Right> = Left;
///
/// let _: CallFn< Swap, Up> = Down;
/// let _: UncallFn<FnRev<Swap>, Up> = Down;
///
/// typewit::inj_type_fn!{
/// struct Swap;
///
/// impl Left => Right;
/// impl Up => Down;
/// }
///
/// struct Left;
/// struct Right;
/// struct Up;
/// struct Down;
/// ```
///
/// [`CallFn`]: crate::CallFn
pub struct FnRev<F: ?Sized>(PhantomData<fn() -> F>);
impl<F: ?Sized> FnRev<F> {
/// Constructs a `FnRev`.
pub const NEW: Self = Self(PhantomData);
}
impl<F> FnRev<F> {
/// Constructs a `FnRev` from `&F`
pub const fn from_ref(_f: &F) -> Self {
Self::NEW
}
}
impl<F, A: ?Sized> TypeFn<A> for FnRev<F>
where
F: RevTypeFn<A>
{
type Output = UncallFn<F, A>;
}
impl<F, R: ?Sized> RevTypeFn<R> for FnRev<F>
where
F: InjTypeFn<R>
{
type Arg = CallInjFn<F, R>;
}
#[test]
fn test_fnrev_equivalence(){
fn _foo<A, F: InjTypeFn<A>>() {
let _ = crate::TypeEq::<CallInjFn<FnRev<F>, F::Ret>, UncallFn<F, F::Ret>>::NEW;
let _ = crate::TypeEq::<UncallFn<FnRev<F>, A>, CallInjFn<F, A>>::NEW;
}
}