imbl/vector/
focus.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0. If a copy of the MPL was not distributed with this
// file, You can obtain one at http://mozilla.org/MPL/2.0/.

use std::mem::{replace, swap};
use std::ops::{Range, RangeBounds};
use std::ptr::null;
use std::sync::atomic::{AtomicPtr, Ordering};

use crate::nodes::chunk::Chunk;
use crate::sync::Lock;
use crate::util::{to_range, PoolRef, Ref};
use crate::vector::{
    Iter, IterMut, RRBPool, Vector,
    VectorInner::{Full, Inline, Single},
    RRB,
};

/// Focused indexing over a [`Vector`][Vector].
///
/// By remembering the last tree node accessed through an index lookup and the
/// path we took to get there, we can speed up lookups for adjacent indices
/// tremendously. Lookups on indices in the same node are instantaneous, and
/// lookups on sibling nodes are also very fast.
///
/// A `Focus` can also be used as a restricted view into a vector, using the
/// [`narrow`][narrow] and [`split_at`][split_at] methods.
///
/// # When should I use a `Focus` for better performance?
///
/// `Focus` is useful when you need to perform a large number of index lookups
/// that are more likely than not to be close to each other. It's usually worth
/// using a `Focus` in any situation where you're batching a lot of index
/// lookups together, even if they're not obviously adjacent - there's likely
/// to be some performance gain for even completely random access.
///
/// If you're just iterating forwards or backwards over the [`Vector`][Vector]
/// in order, you're better off with a regular iterator, which, in fact, is
/// implemented using a `Focus`, but provides a simpler interface.
///
/// If you're just doing a very small number of index lookups, the setup cost
/// for the `Focus` is probably not worth it.
///
/// A `Focus` is never faster than an index lookup on a small [`Vector`][Vector]
/// with a length below the internal RRB tree's branching factor of 64.
///
/// # Examples
///
/// This example is contrived, as the better way to iterate forwards or
/// backwards over a vector is with an actual iterator. Even so, the version
/// using a `Focus` should run nearly an order of magnitude faster than the
/// version using index lookups at a length of 1000. It should also be noted
/// that [`vector::Iter`][Iter] is actually implemented using a `Focus` behind
/// the scenes, so the performance of the two should be identical.
///
/// ```rust
/// # #[macro_use] extern crate imbl;
/// # use imbl::vector::Vector;
/// # use std::iter::FromIterator;
/// let mut vec: Vector<i64> = Vector::from_iter(0..1000);
///
/// // Summing a vector, the slow way:
/// let mut sum = 0;
/// for i in 0..1000 {
///     sum += *vec.get(i).unwrap();
/// }
/// assert_eq!(499500, sum);
///
/// // Summing a vector faster using a Focus:
/// let mut sum = 0;
/// let mut focus = vec.focus();
/// for i in 0..1000 {
///     sum += *focus.get(i).unwrap();
/// }
/// assert_eq!(499500, sum);
///
/// // And the easy way, for completeness:
/// let sum: i64 = vec.iter().sum();
/// assert_eq!(499500, sum);
/// ```
///
/// [Vector]: enum.Vector.html
/// [Iter]: struct.Iter.html
/// [narrow]: #method.narrow
/// [split_at]: #method.split_at
pub enum Focus<'a, A> {
    #[doc(hidden)]
    /// The Single variant is a focus of a simple Vector that can be represented as a single slice.
    Single(&'a [A]),
    #[doc(hidden)]
    /// The Full variant is a focus of a more complex Vector that cannot be represented as a single slice.
    Full(TreeFocus<A>),
}

impl<'a, A> Focus<'a, A>
where
    A: 'a,
{
    /// Construct a `Focus` for a [`Vector`][Vector].
    ///
    /// [Vector]: enum.Vector.html
    pub fn new(vector: &'a Vector<A>) -> Self {
        match &vector.vector {
            Inline(_, chunk) => Focus::Single(chunk),
            Single(_, chunk) => Focus::Single(chunk),
            Full(_, tree) => Focus::Full(TreeFocus::new(tree)),
        }
    }

    /// Get the length of the focused [`Vector`][Vector].
    ///
    /// [Vector]: enum.Vector.html
    pub fn len(&self) -> usize {
        match self {
            Focus::Single(chunk) => chunk.len(),
            Focus::Full(tree) => tree.len(),
        }
    }

    /// Test if the focused [`Vector`][Vector] is empty.
    ///
    /// [Vector]: enum.Vector.html
    pub fn is_empty(&self) -> bool {
        self.len() == 0
    }

    /// Get a reference to the value at a given index.
    pub fn get(&mut self, index: usize) -> Option<&A> {
        match self {
            Focus::Single(chunk) => chunk.get(index),
            Focus::Full(tree) => tree.get(index),
        }
    }

    /// Get a reference to the value at a given index.
    ///
    /// Panics if the index is out of bounds.
    pub fn index(&mut self, index: usize) -> &A {
        self.get(index).expect("index out of bounds")
    }

    /// Get the chunk for the given index.
    ///
    /// This gives you a reference to the leaf node that contains the index,
    /// along with its start and end indices.
    pub fn chunk_at(&mut self, index: usize) -> (Range<usize>, &[A]) {
        let len = self.len();
        if index >= len {
            panic!("vector::Focus::chunk_at: index out of bounds");
        }
        match self {
            Focus::Single(chunk) => (0..len, chunk),
            Focus::Full(tree) => tree.get_chunk(index),
        }
    }

    /// Narrow the focus onto a subslice of the vector.
    ///
    /// `Focus::narrow(range)` has the same effect as `&slice[range]`, without
    /// actually modifying the underlying vector.
    ///
    /// Panics if the range isn't fully inside the current focus.
    ///
    /// ## Examples
    ///
    /// ```rust
    /// # #[macro_use] extern crate imbl;
    /// # use imbl::vector::Vector;
    /// # use std::iter::FromIterator;
    /// let vec = Vector::from_iter(0..1000);
    /// let narrowed = vec.focus().narrow(100..200);
    /// let narrowed_vec = narrowed.into_iter().cloned().collect();
    /// assert_eq!(Vector::from_iter(100..200), narrowed_vec);
    /// ```
    ///
    /// [slice::split_at]: https://doc.rust-lang.org/std/primitive.slice.html#method.split_at
    /// [Vector::split_at]: enum.Vector.html#method.split_at
    #[must_use]
    pub fn narrow<R>(self, range: R) -> Self
    where
        R: RangeBounds<usize>,
    {
        let r = to_range(&range, self.len());
        if r.start >= r.end || r.start >= self.len() {
            panic!("vector::Focus::narrow: range out of bounds");
        }
        match self {
            Focus::Single(chunk) => Focus::Single(&chunk[r]),
            Focus::Full(tree) => Focus::Full(tree.narrow(r)),
        }
    }

    /// Split the focus into two.
    ///
    /// Given an index `index`, consume the focus and produce two new foci, the
    /// left onto indices `0..index`, and the right onto indices `index..N`
    /// where `N` is the length of the current focus.
    ///
    /// Panics if the index is out of bounds.
    ///
    /// This is the moral equivalent of [`slice::split_at`][slice::split_at], in
    /// that it leaves the underlying data structure unchanged, unlike
    /// [`Vector::split_at`][Vector::split_at].
    ///
    /// ## Examples
    ///
    /// ```rust
    /// # #[macro_use] extern crate imbl;
    /// # use imbl::vector::Vector;
    /// # use std::iter::FromIterator;
    /// let vec = Vector::from_iter(0..1000);
    /// let (left, right) = vec.focus().split_at(500);
    /// let left_vec = left.into_iter().cloned().collect();
    /// let right_vec = right.into_iter().cloned().collect();
    /// assert_eq!(Vector::from_iter(0..500), left_vec);
    /// assert_eq!(Vector::from_iter(500..1000), right_vec);
    /// ```
    ///
    /// [slice::split_at]: https://doc.rust-lang.org/std/primitive.slice.html#method.split_at
    /// [Vector::split_at]: enum.Vector.html#method.split_at
    pub fn split_at(self, index: usize) -> (Self, Self) {
        if index >= self.len() {
            panic!("vector::Focus::split_at: index out of bounds");
        }
        match self {
            Focus::Single(chunk) => {
                let (left, right) = chunk.split_at(index);
                (Focus::Single(left), Focus::Single(right))
            }
            Focus::Full(tree) => {
                let (left, right) = tree.split_at(index);
                (Focus::Full(left), Focus::Full(right))
            }
        }
    }
}

impl<'a, A> IntoIterator for Focus<'a, A>
where
    A: Clone + 'a,
{
    type Item = &'a A;
    type IntoIter = Iter<'a, A>;

    fn into_iter(self) -> Self::IntoIter {
        Iter::from_focus(self)
    }
}

impl<'a, A> Clone for Focus<'a, A>
where
    A: Clone + 'a,
{
    fn clone(&self) -> Self {
        match self {
            Focus::Single(chunk) => Focus::Single(chunk),
            Focus::Full(tree) => Focus::Full(tree.clone()),
        }
    }
}

pub struct TreeFocus<A> {
    /// A clone of the Vector's internal tree that this focus points to. A clone ensures that we don't require a
    /// reference to the original tree.
    tree: RRB<A>,
    /// The view represents the range of the tree that this TreeFocus can see. The view can be narrowed by calling
    /// either the narrow or split_at methods.
    view: Range<usize>,
    /// The tree version of the Vector is represented as the concatenation of 2 chunks, followed by the tree root,
    /// followed by 2 chunks. The middle_range refers to the range of the Vector that the tree covers.
    middle_range: Range<usize>,
    /// This implementation of a focus stores only a single chunk for the Vector. This chunk can refer to one of the 4
    /// chunks front/back chunks or one of the leaves of the tree. The target_ptr is the pointer to the actual chunk
    /// in question. The target_range is the range that the chunk represents.
    target_range: Range<usize>,
    target_ptr: *const Chunk<A>,
}

impl<A> Clone for TreeFocus<A> {
    fn clone(&self) -> Self {
        let tree = self.tree.clone();
        TreeFocus {
            view: self.view.clone(),
            middle_range: self.middle_range.clone(),
            target_range: 0..0,
            target_ptr: null(),
            tree,
        }
    }
}

unsafe impl<A: Send> Send for TreeFocus<A> {}
unsafe impl<A: Sync> Sync for TreeFocus<A> {}

#[inline]
fn contains<A: Ord>(range: &Range<A>, index: &A) -> bool {
    *index >= range.start && *index < range.end
}

impl<A> TreeFocus<A> {
    /// Creates a new TreeFocus for a Vector's RRB tree.
    fn new(tree: &RRB<A>) -> Self {
        let middle_start = tree.outer_f.len() + tree.inner_f.len();
        let middle_end = middle_start + tree.middle.len();
        TreeFocus {
            tree: tree.clone(),
            view: 0..tree.length,
            middle_range: middle_start..middle_end,
            target_range: 0..0,
            target_ptr: null(),
        }
    }

    /// Returns the number of elements that the TreeFocus is valid for.
    fn len(&self) -> usize {
        self.view.end - self.view.start
    }

    /// Restricts the TreeFocus to a subrange of itself.
    fn narrow(self, mut view: Range<usize>) -> Self {
        view.start += self.view.start;
        view.end += self.view.start;
        TreeFocus {
            view,
            middle_range: self.middle_range.clone(),
            target_range: 0..0,
            target_ptr: null(),
            tree: self.tree,
        }
    }

    /// Splits the TreeFocus into two disjoint foci. The first TreeFocus is valid for ..index while the
    /// second is valid for index.. .
    fn split_at(self, index: usize) -> (Self, Self) {
        let len = self.len();
        let left = self.clone().narrow(0..index);
        let right = self.narrow(index..len);
        (left, right)
    }

    /// Computes an absolute index in the RRBTree for the given index relative to the start of this TreeFocus.
    fn physical_index(&self, index: usize) -> usize {
        debug_assert!(index < self.view.end);
        self.view.start + index
    }

    /// Computes a range relative to the TreeFocus given one that is absolute in the RRBTree.
    fn logical_range(&self, range: &Range<usize>) -> Range<usize> {
        (range.start - self.view.start)..(range.end - self.view.start)
    }

    /// Sets the internal chunk to the one that contains the given absolute index.
    fn set_focus(&mut self, index: usize) {
        if index < self.middle_range.start {
            let outer_len = self.tree.outer_f.len();
            if index < outer_len {
                self.target_range = 0..outer_len;
                self.target_ptr = &*self.tree.outer_f;
            } else {
                self.target_range = outer_len..self.middle_range.start;
                self.target_ptr = &*self.tree.inner_f;
            }
        } else if index >= self.middle_range.end {
            let outer_start = self.middle_range.end + self.tree.inner_b.len();
            if index < outer_start {
                self.target_range = self.middle_range.end..outer_start;
                self.target_ptr = &*self.tree.inner_b;
            } else {
                self.target_range = outer_start..self.tree.length;
                self.target_ptr = &*self.tree.outer_b;
            }
        } else {
            let tree_index = index - self.middle_range.start;
            let (range, ptr) = self
                .tree
                .middle
                .lookup_chunk(self.tree.middle_level, 0, tree_index);
            self.target_range =
                (range.start + self.middle_range.start)..(range.end + self.middle_range.start);
            self.target_ptr = ptr;
        }
    }

    /// Gets the chunk that this TreeFocus is focused on.
    fn get_focus(&self) -> &Chunk<A> {
        unsafe { &*self.target_ptr }
    }

    /// Gets the value at the given index relative to the TreeFocus.
    pub fn get(&mut self, index: usize) -> Option<&A> {
        if index >= self.len() {
            return None;
        }
        let phys_index = self.physical_index(index);
        if !contains(&self.target_range, &phys_index) {
            self.set_focus(phys_index);
        }
        let target_phys_index = phys_index - self.target_range.start;
        Some(&self.get_focus()[target_phys_index])
    }

    /// Gets the chunk for an index as a slice and its corresponding range within the TreeFocus.
    pub fn get_chunk(&mut self, index: usize) -> (Range<usize>, &[A]) {
        let phys_index = self.physical_index(index);
        if !contains(&self.target_range, &phys_index) {
            self.set_focus(phys_index);
        }
        let mut slice: &[A] = self.get_focus();
        let mut left = 0;
        let mut right = 0;
        if self.target_range.start < self.view.start {
            left = self.view.start - self.target_range.start;
        }
        if self.target_range.end > self.view.end {
            right = self.target_range.end - self.view.end;
        }
        slice = &slice[left..(slice.len() - right)];
        let phys_range = (self.target_range.start + left)..(self.target_range.end - right);
        (self.logical_range(&phys_range), slice)
    }
}

/// A mutable version of [`Focus`][Focus].
///
/// See [`Focus`][Focus] for more details.
///
/// You can only build one `FocusMut` at a time for a vector, effectively
/// keeping a lock on the vector until you're done with the focus, which relies
/// on the structure of the vector not changing while it exists.
///
/// ```rust,compile_fail
/// # #[macro_use] extern crate imbl;
/// # use imbl::vector::Vector;
/// # use std::iter::FromIterator;
/// let mut vec = Vector::from_iter(0..1000);
/// let focus1 = vec.focus_mut();
/// // Fails here in 2015 edition because you're creating
/// // two mutable references to the same thing.
/// let focus2 = vec.focus_mut();
/// // Fails here in 2018 edition because creating focus2
/// // made focus1's lifetime go out of scope.
/// assert_eq!(Some(&0), focus1.get(0));
/// ```
///
/// On the other hand, you can split that one focus into multiple sub-focuses,
/// which is safe because they can't overlap:
///
/// ```rust
/// # #[macro_use] extern crate imbl;
/// # use imbl::vector::Vector;
/// # use std::iter::FromIterator;
/// let mut vec = Vector::from_iter(0..1000);
/// let focus = vec.focus_mut();
/// let (mut left, mut right) = focus.split_at(500);
/// assert_eq!(Some(&0), left.get(0));
/// assert_eq!(Some(&500), right.get(0));
/// ```
///
/// These sub-foci also work as a lock on the vector, even if the focus they
/// were created from goes out of scope.
///
/// ```rust,compile_fail
/// # #[macro_use] extern crate imbl;
/// # use imbl::vector::Vector;
/// # use std::iter::FromIterator;
/// let mut vec = Vector::from_iter(0..1000);
/// let (left, right) = {
///     let focus = vec.focus_mut();
///     focus.split_at(500)
/// };
/// // `left` and `right` are still in scope even if `focus` isn't, so we can't
/// // create another focus:
/// let focus2 = vec.focus_mut();
/// assert_eq!(Some(&0), left.get(0));
/// ```
///
/// [Focus]: enum.Focus.html
pub enum FocusMut<'a, A> {
    #[doc(hidden)]
    /// The Single variant is a focusmut of a simple Vector that can be represented as a single slice.
    Single(RRBPool<A>, &'a mut [A]),
    #[doc(hidden)]
    /// The Full variant is a focus of a more complex Vector that cannot be represented as a single slice.
    Full(RRBPool<A>, TreeFocusMut<'a, A>),
}

impl<'a, A> FocusMut<'a, A>
where
    A: 'a,
{
    /// Get the length of the focused `Vector`.
    pub fn len(&self) -> usize {
        match self {
            FocusMut::Single(_, chunk) => chunk.len(),
            FocusMut::Full(_, tree) => tree.len(),
        }
    }

    /// Test if the focused `Vector` is empty.
    pub fn is_empty(&self) -> bool {
        self.len() == 0
    }

    /// Narrow the focus onto a subslice of the vector.
    ///
    /// `FocusMut::narrow(range)` has the same effect as `&slice[range]`, without
    /// actually modifying the underlying vector.
    ///
    /// Panics if the range isn't fully inside the current focus.
    ///
    /// ## Examples
    ///
    /// ```rust
    /// # #[macro_use] extern crate imbl;
    /// # use imbl::vector::Vector;
    /// # use std::iter::FromIterator;
    /// let mut vec = Vector::from_iter(0..1000);
    /// let narrowed = vec.focus_mut().narrow(100..200);
    /// let narrowed_vec = narrowed.unmut().into_iter().cloned().collect();
    /// assert_eq!(Vector::from_iter(100..200), narrowed_vec);
    /// ```
    ///
    /// [slice::split_at]: https://doc.rust-lang.org/std/primitive.slice.html#method.split_at
    /// [Vector::split_at]: enum.Vector.html#method.split_at
    #[must_use]
    pub fn narrow<R>(self, range: R) -> Self
    where
        R: RangeBounds<usize>,
    {
        let r = to_range(&range, self.len());
        if r.start > r.end || r.start > self.len() {
            panic!("vector::FocusMut::narrow: range out of bounds");
        }
        match self {
            FocusMut::Single(pool, chunk) => FocusMut::Single(pool, &mut chunk[r]),
            FocusMut::Full(pool, tree) => FocusMut::Full(pool, tree.narrow(r)),
        }
    }

    /// Split the focus into two.
    ///
    /// Given an index `index`, consume the focus and produce two new foci, the
    /// left onto indices `0..index`, and the right onto indices `index..N`
    /// where `N` is the length of the current focus.
    ///
    /// Panics if the index is out of bounds.
    ///
    /// This is the moral equivalent of [`slice::split_at`][slice::split_at], in
    /// that it leaves the underlying data structure unchanged, unlike
    /// [`Vector::split_at`][Vector::split_at].
    ///
    /// ## Examples
    ///
    /// ```rust
    /// # #[macro_use] extern crate imbl;
    /// # use imbl::vector::Vector;
    /// # use std::iter::FromIterator;
    /// let mut vec = Vector::from_iter(0..1000);
    /// {
    ///     let (left, right) = vec.focus_mut().split_at(500);
    ///     for ptr in left {
    ///         *ptr += 100;
    ///     }
    ///     for ptr in right {
    ///         *ptr -= 100;
    ///     }
    /// }
    /// let expected = Vector::from_iter(100..600)
    ///              + Vector::from_iter(400..900);
    /// assert_eq!(expected, vec);
    /// ```
    ///
    /// [slice::split_at]: https://doc.rust-lang.org/std/primitive.slice.html#method.split_at
    /// [Vector::split_at]: enum.Vector.html#method.split_at
    #[allow(clippy::redundant_clone)]
    pub fn split_at(self, index: usize) -> (Self, Self) {
        if index > self.len() {
            panic!("vector::FocusMut::split_at: index out of bounds");
        }
        match self {
            FocusMut::Single(pool, chunk) => {
                let (left, right) = chunk.split_at_mut(index);
                (
                    FocusMut::Single(pool.clone(), left),
                    FocusMut::Single(pool, right),
                )
            }
            FocusMut::Full(pool, tree) => {
                let (left, right) = tree.split_at(index);
                (
                    FocusMut::Full(pool.clone(), left),
                    FocusMut::Full(pool, right),
                )
            }
        }
    }

    /// Convert a `FocusMut` into a `Focus`.
    pub fn unmut(self) -> Focus<'a, A> {
        match self {
            FocusMut::Single(_, chunk) => Focus::Single(chunk),
            FocusMut::Full(_, mut tree) => Focus::Full(TreeFocus {
                tree: {
                    let t = tree.tree.lock().unwrap();
                    (*t).clone()
                },
                view: tree.view.clone(),
                middle_range: tree.middle_range.clone(),
                target_range: 0..0,
                target_ptr: null(),
            }),
        }
    }
}

impl<'a, A> FocusMut<'a, A>
where
    A: Clone + 'a,
{
    /// Construct a `FocusMut` for a `Vector`.
    pub fn new(vector: &'a mut Vector<A>) -> Self {
        match &mut vector.vector {
            Inline(pool, chunk) => FocusMut::Single(pool.clone(), chunk),
            Single(pool, chunk) => FocusMut::Single(
                pool.clone(),
                PoolRef::make_mut(&pool.value_pool, chunk).as_mut_slice(),
            ),
            Full(pool, tree) => FocusMut::Full(pool.clone(), TreeFocusMut::new(tree)),
        }
    }

    /// Get a reference to the value at a given index.
    pub fn get(&mut self, index: usize) -> Option<&A> {
        self.get_mut(index).map(|r| &*r)
    }

    /// Get a mutable reference to the value at a given index.
    pub fn get_mut(&mut self, index: usize) -> Option<&mut A> {
        match self {
            FocusMut::Single(_, chunk) => chunk.get_mut(index),
            FocusMut::Full(pool, tree) => tree.get(pool, index),
        }
    }

    /// Get a reference to the value at a given index.
    ///
    /// Panics if the index is out of bounds.
    pub fn index(&mut self, index: usize) -> &A {
        &*self.index_mut(index)
    }

    /// Get a mutable reference to the value at a given index.
    ///
    /// Panics if the index is out of bounds.
    #[allow(clippy::should_implement_trait)] // would if I could
    pub fn index_mut(&mut self, index: usize) -> &mut A {
        self.get_mut(index).expect("index out of bounds")
    }

    /// Update the value at a given index.
    ///
    /// Returns `None` if the index is out of bounds, or the replaced value
    /// otherwise.
    pub fn set(&mut self, index: usize, value: A) -> Option<A> {
        self.get_mut(index).map(|pos| replace(pos, value))
    }

    /// Swap the values at two given indices.
    ///
    /// Panics if either index is out of bounds.
    ///
    /// If the indices are equal, this function returns without doing anything.
    pub fn swap(&mut self, a: usize, b: usize) {
        if a == b {
            return;
        }
        self.pair(a, b, |left, right| swap(left, right));
    }

    /// Lookup two indices simultaneously and run a function over them.
    ///
    /// Useful because the borrow checker won't let you have more than one
    /// mutable reference into the same data structure at any given time.
    ///
    /// Panics if either index is out of bounds, or if they are the same index.
    ///
    /// # Examples
    ///
    /// ```rust
    /// # #[macro_use] extern crate imbl;
    /// # use imbl::vector::Vector;
    /// # use std::iter::FromIterator;
    /// let mut vec = vector![1, 2, 3, 4, 5];
    /// vec.focus_mut().pair(1, 3, |a, b| *a += *b);
    /// assert_eq!(vector![1, 6, 3, 4, 5], vec);
    /// ```
    pub fn pair<F, B>(&mut self, a: usize, b: usize, mut f: F) -> B
    where
        F: FnMut(&mut A, &mut A) -> B,
    {
        if a == b {
            panic!("vector::FocusMut::pair: indices cannot be equal!");
        }
        let pa: *mut A = self.index_mut(a);
        let pb: *mut A = self.index_mut(b);
        unsafe { f(&mut *pa, &mut *pb) }
    }

    /// Lookup three indices simultaneously and run a function over them.
    ///
    /// Useful because the borrow checker won't let you have more than one
    /// mutable reference into the same data structure at any given time.
    ///
    /// Panics if any index is out of bounds, or if any indices are equal.
    ///
    /// # Examples
    ///
    /// ```rust
    /// # #[macro_use] extern crate imbl;
    /// # use imbl::vector::Vector;
    /// # use std::iter::FromIterator;
    /// let mut vec = vector![1, 2, 3, 4, 5];
    /// vec.focus_mut().triplet(0, 2, 4, |a, b, c| *a += *b + *c);
    /// assert_eq!(vector![9, 2, 3, 4, 5], vec);
    /// ```
    pub fn triplet<F, B>(&mut self, a: usize, b: usize, c: usize, mut f: F) -> B
    where
        F: FnMut(&mut A, &mut A, &mut A) -> B,
    {
        if a == b || b == c || a == c {
            panic!("vector::FocusMut::triplet: indices cannot be equal!");
        }
        let pa: *mut A = self.index_mut(a);
        let pb: *mut A = self.index_mut(b);
        let pc: *mut A = self.index_mut(c);
        unsafe { f(&mut *pa, &mut *pb, &mut *pc) }
    }

    /// Get the chunk for the given index.
    ///
    /// This gives you a reference to the leaf node that contains the index,
    /// along with its start and end indices.
    pub fn chunk_at(&mut self, index: usize) -> (Range<usize>, &mut [A]) {
        let len = self.len();
        if index >= len {
            panic!("vector::FocusMut::chunk_at: index out of bounds");
        }
        match self {
            FocusMut::Single(_, chunk) => (0..len, chunk),
            FocusMut::Full(pool, tree) => {
                let (range, chunk) = tree.get_chunk(pool, index);
                (range, chunk)
            }
        }
    }
}

impl<'a, A> IntoIterator for FocusMut<'a, A>
where
    A: Clone + 'a,
{
    type Item = &'a mut A;
    type IntoIter = IterMut<'a, A>;

    fn into_iter(self) -> Self::IntoIter {
        IterMut::from_focus(self)
    }
}

impl<'a, A> From<FocusMut<'a, A>> for Focus<'a, A>
where
    A: Clone + 'a,
{
    fn from(f: FocusMut<'a, A>) -> Focus<'a, A> {
        f.unmut()
    }
}

// NOTE: The documentation the mutable version is similar to the non-mutable version. I will comment for the places
// where there are differences, otherwise the documentation is copied directly.
pub struct TreeFocusMut<'a, A> {
    /// The tree that this TreeFocusMut refers to. Unlike the non-mutable version, TreeFocusMut needs to store a
    /// mutable reference. Additionally, there may be multiple TreeFocusMuts that refer to the same tree so we need a
    /// Lock to synchronise the changes.
    tree: Lock<&'a mut RRB<A>>,
    /// The view represents the range of the tree that this TreeFocusMut can see. The view can be narrowed by calling
    /// either the narrow or split_at methods.
    view: Range<usize>,
    /// The tree version of the Vector is represented as the concatenation of 2 chunks, followed by the tree root,
    /// followed by 2 chunks. The middle_range refers to the range of the Vector that the tree covers.
    middle_range: Range<usize>,
    /// This implementation of a focusmut stores only a single chunk for the Vector. This chunk can refer to one of the
    /// 4 chunks front/back chunks or one of the leaves of the tree. The target_ptr is the pointer to the actual chunk
    /// in question. The target_range is the range that the chunk represents.
    target_range: Range<usize>,
    /// Not actually sure why this needs to be an atomic, it seems like it is unneccessary. This is just a pointer to
    /// the chunk referred to above.
    target_ptr: AtomicPtr<Chunk<A>>,
}

impl<'a, A> TreeFocusMut<'a, A>
where
    A: 'a,
{
    /// Creates a new TreeFocusMut for a Vector's RRB tree.
    fn new(tree: &'a mut RRB<A>) -> Self {
        let middle_start = tree.outer_f.len() + tree.inner_f.len();
        let middle_end = middle_start + tree.middle.len();
        TreeFocusMut {
            view: 0..tree.length,
            tree: Lock::new(tree),
            middle_range: middle_start..middle_end,
            target_range: 0..0,
            target_ptr: AtomicPtr::default(),
        }
    }

    /// Returns the number of elements that the TreeFocusMut is valid for.
    fn len(&self) -> usize {
        self.view.end - self.view.start
    }

    /// Restricts the TreeFocusMut to a subrange of itself.
    fn narrow(self, mut view: Range<usize>) -> Self {
        view.start += self.view.start;
        view.end += self.view.start;
        TreeFocusMut {
            view,
            middle_range: self.middle_range.clone(),
            target_range: 0..0,
            target_ptr: AtomicPtr::default(),
            tree: self.tree,
        }
    }

    /// Splits the TreeFocusMut into two disjoint foci. The first TreeFocusMut is valid for ..index while the
    /// second is valid for index.. .
    fn split_at(self, index: usize) -> (Self, Self) {
        let len = self.len();
        debug_assert!(index <= len);
        let left = TreeFocusMut {
            view: self.view.start..(self.view.start + index),
            middle_range: self.middle_range.clone(),
            target_range: 0..0,
            target_ptr: AtomicPtr::default(),
            tree: self.tree.clone(),
        };
        let right = TreeFocusMut {
            view: (self.view.start + index)..(self.view.start + len),
            middle_range: self.middle_range.clone(),
            target_range: 0..0,
            target_ptr: AtomicPtr::default(),
            tree: self.tree,
        };
        (left, right)
    }

    /// Computes an absolute index in the RRBTree for the given index relative to the start of this TreeFocusMut.
    fn physical_index(&self, index: usize) -> usize {
        debug_assert!(index < self.view.end);
        self.view.start + index
    }

    /// Computes a range relative to the TreeFocusMut given one that is absolute in the RRBTree.
    fn logical_range(&self, range: &Range<usize>) -> Range<usize> {
        (range.start - self.view.start)..(range.end - self.view.start)
    }

    /// Gets the chunk for an index and its corresponding range within the TreeFocusMut.
    fn get_focus(&mut self) -> &mut Chunk<A> {
        unsafe { &mut *self.target_ptr.load(Ordering::Relaxed) }
    }
}

impl<'a, A> TreeFocusMut<'a, A>
where
    A: Clone + 'a,
{
    /// Sets the internal chunk to the one that contains the given absolute index.
    fn set_focus(&mut self, pool: &RRBPool<A>, index: usize) {
        let mut tree = self
            .tree
            .lock()
            .expect("imbl::vector::Focus::set_focus: unable to acquire exclusive lock on Vector");
        if index < self.middle_range.start {
            let outer_len = tree.outer_f.len();
            if index < outer_len {
                self.target_range = 0..outer_len;
                self.target_ptr.store(
                    PoolRef::make_mut(&pool.value_pool, &mut tree.outer_f),
                    Ordering::Relaxed,
                );
            } else {
                self.target_range = outer_len..self.middle_range.start;
                self.target_ptr.store(
                    PoolRef::make_mut(&pool.value_pool, &mut tree.inner_f),
                    Ordering::Relaxed,
                );
            }
        } else if index >= self.middle_range.end {
            let outer_start = self.middle_range.end + tree.inner_b.len();
            if index < outer_start {
                self.target_range = self.middle_range.end..outer_start;
                self.target_ptr.store(
                    PoolRef::make_mut(&pool.value_pool, &mut tree.inner_b),
                    Ordering::Relaxed,
                );
            } else {
                self.target_range = outer_start..tree.length;
                self.target_ptr.store(
                    PoolRef::make_mut(&pool.value_pool, &mut tree.outer_b),
                    Ordering::Relaxed,
                );
            }
        } else {
            let tree_index = index - self.middle_range.start;
            let level = tree.middle_level;
            let middle = Ref::make_mut(&mut tree.middle);
            let (range, ptr) = middle.lookup_chunk_mut(pool, level, 0, tree_index);
            self.target_range =
                (range.start + self.middle_range.start)..(range.end + self.middle_range.start);
            self.target_ptr.store(ptr, Ordering::Relaxed);
        }
    }

    /// Gets the value at the given index relative to the TreeFocusMut.
    pub fn get(&mut self, pool: &RRBPool<A>, index: usize) -> Option<&mut A> {
        if index >= self.len() {
            return None;
        }
        let phys_index = self.physical_index(index);
        if !contains(&self.target_range, &phys_index) {
            self.set_focus(pool, phys_index);
        }
        let target_phys_index = phys_index - self.target_range.start;
        Some(&mut self.get_focus()[target_phys_index])
    }

    /// Gets the chunk for an index as a slice and its corresponding range within the TreeFocusMut.
    pub fn get_chunk(&mut self, pool: &RRBPool<A>, index: usize) -> (Range<usize>, &mut [A]) {
        let phys_index = self.physical_index(index);
        if !contains(&self.target_range, &phys_index) {
            self.set_focus(pool, phys_index);
        }
        let mut left = 0;
        let mut right = 0;
        if self.target_range.start < self.view.start {
            left = self.view.start - self.target_range.start;
        }
        if self.target_range.end > self.view.end {
            right = self.target_range.end - self.view.end;
        }
        let phys_range = (self.target_range.start + left)..(self.target_range.end - right);
        let log_range = self.logical_range(&phys_range);
        let slice_len = self.get_focus().len();
        let slice = &mut (self.get_focus().as_mut_slice())[left..(slice_len - right)];
        (log_range, slice)
    }
}