1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993
/*!
Types and routines that support the search APIs of most regex engines.
This sub-module isn't exposed directly, but rather, its contents are exported
at the crate root due to the universality of most of the types and routines in
this module.
*/
use core::ops::{Range, RangeBounds};
use crate::util::{escape::DebugByte, primitives::PatternID, utf8};
/// The parameters for a regex search including the haystack to search.
///
/// It turns out that regex searches have a few parameters, and in most cases,
/// those parameters have defaults that work in the vast majority of cases.
/// This `Input` type exists to make that common case seamnless while also
/// providing an avenue for changing the parameters of a search. In particular,
/// this type enables doing so without a combinatorial explosion of different
/// methods and/or superfluous parameters in the common cases.
///
/// An `Input` permits configuring the following things:
///
/// * Search only a substring of a haystack, while taking the broader context
/// into account for resolving look-around assertions.
/// * Indicating whether to search for all patterns in a regex, or to
/// only search for one pattern in particular.
/// * Whether to perform an anchored on unanchored search.
/// * Whether to report a match as early as possible.
///
/// All of these parameters, except for the haystack, have sensible default
/// values. This means that the minimal search configuration is simply a call
/// to [`Input::new`] with your haystack. Setting any other parameter is
/// optional.
///
/// Moreover, for any `H` that implements `AsRef<[u8]>`, there exists a
/// `From<H> for Input` implementation. This is useful because many of the
/// search APIs in this crate accept an `Into<Input>`. This means you can
/// provide string or byte strings to these routines directly, and they'll
/// automatically get converted into an `Input` for you.
///
/// The lifetime parameter `'h` refers to the lifetime of the haystack.
///
/// # Organization
///
/// The API of `Input` is split into a few different parts:
///
/// * A builder-like API that transforms a `Input` by value. Examples:
/// [`Input::span`] and [`Input::anchored`].
/// * A setter API that permits mutating parameters in place. Examples:
/// [`Input::set_span`] and [`Input::set_anchored`].
/// * A getter API that permits retrieving any of the search parameters.
/// Examples: [`Input::get_span`] and [`Input::get_anchored`].
/// * A few convenience getter routines that don't conform to the above naming
/// pattern due to how common they are. Examples: [`Input::haystack`],
/// [`Input::start`] and [`Input::end`].
/// * Miscellaneous predicates and other helper routines that are useful
/// in some contexts. Examples: [`Input::is_char_boundary`].
///
/// A `Input` exposes so much because it is meant to be used by both callers of
/// regex engines _and_ implementors of regex engines. A constraining factor is
/// that regex engines should accept a `&Input` as its lowest level API, which
/// means that implementors should only use the "getter" APIs of a `Input`.
///
/// # Valid bounds and search termination
///
/// An `Input` permits setting the bounds of a search via either
/// [`Input::span`] or [`Input::range`]. The bounds set must be valid, or
/// else a panic will occur. Bounds are valid if and only if:
///
/// * The bounds represent a valid range into the input's haystack.
/// * **or** the end bound is a valid ending bound for the haystack *and*
/// the start bound is exactly one greater than the start bound.
///
/// In the latter case, [`Input::is_done`] will return true and indicates any
/// search receiving such an input should immediately return with no match.
///
/// Note that while `Input` is used for reverse searches in this crate, the
/// `Input::is_done` predicate assumes a forward search. Because unsigned
/// offsets are used internally, there is no way to tell from only the offsets
/// whether a reverse search is done or not.
///
/// # Regex engine support
///
/// Any regex engine accepting an `Input` must support at least the following
/// things:
///
/// * Searching a `&[u8]` for matches.
/// * Searching a substring of `&[u8]` for a match, such that any match
/// reported must appear entirely within that substring.
/// * For a forwards search, a match should never be reported when
/// [`Input::is_done`] returns true. (For reverse searches, termination should
/// be handled outside of `Input`.)
///
/// Supporting other aspects of an `Input` are optional, but regex engines
/// should handle aspects they don't support gracefully. How this is done is
/// generally up to the regex engine. This crate generally treats unsupported
/// anchored modes as an error to report for example, but for simplicity, in
/// the meta regex engine, trying to search with an invalid pattern ID just
/// results in no match being reported.
#[derive(Clone)]
pub struct Input<'h> {
haystack: &'h [u8],
span: Span,
anchored: Anchored,
earliest: bool,
}
impl<'h> Input<'h> {
/// Create a new search configuration for the given haystack.
#[inline]
pub fn new<H: ?Sized + AsRef<[u8]>>(haystack: &'h H) -> Input<'h> {
// Perform only one call to `haystack.as_ref()` to protect from incorrect
// implementations that return different values from multiple calls.
// This is important because there's code that relies on `span` not being
// out of bounds with respect to the stored `haystack`.
let haystack = haystack.as_ref();
Input {
haystack,
span: Span { start: 0, end: haystack.len() },
anchored: Anchored::No,
earliest: false,
}
}
/// Set the span for this search.
///
/// This routine does not panic if the span given is not a valid range for
/// this search's haystack. If this search is run with an invalid range,
/// then the most likely outcome is that the actual search execution will
/// panic.
///
/// This routine is generic over how a span is provided. While
/// a [`Span`] may be given directly, one may also provide a
/// `std::ops::Range<usize>`. To provide anything supported by range
/// syntax, use the [`Input::range`] method.
///
/// The default span is the entire haystack.
///
/// Note that [`Input::range`] overrides this method and vice versa.
///
/// # Panics
///
/// This panics if the given span does not correspond to valid bounds in
/// the haystack or the termination of a search.
///
/// # Example
///
/// This example shows how the span of the search can impact whether a
/// match is reported or not. This is particularly relevant for look-around
/// operators, which might take things outside of the span into account
/// when determining whether they match.
///
/// ```
/// # if cfg!(miri) { return Ok(()); } // miri takes too long
/// use regex_automata::{
/// nfa::thompson::pikevm::PikeVM,
/// Match, Input,
/// };
///
/// // Look for 'at', but as a distinct word.
/// let re = PikeVM::new(r"\bat\b")?;
/// let mut cache = re.create_cache();
/// let mut caps = re.create_captures();
///
/// // Our haystack contains 'at', but not as a distinct word.
/// let haystack = "batter";
///
/// // A standard search finds nothing, as expected.
/// let input = Input::new(haystack);
/// re.search(&mut cache, &input, &mut caps);
/// assert_eq!(None, caps.get_match());
///
/// // But if we wanted to search starting at position '1', we might
/// // slice the haystack. If we do this, it's impossible for the \b
/// // anchors to take the surrounding context into account! And thus,
/// // a match is produced.
/// let input = Input::new(&haystack[1..3]);
/// re.search(&mut cache, &input, &mut caps);
/// assert_eq!(Some(Match::must(0, 0..2)), caps.get_match());
///
/// // But if we specify the span of the search instead of slicing the
/// // haystack, then the regex engine can "see" outside of the span
/// // and resolve the anchors correctly.
/// let input = Input::new(haystack).span(1..3);
/// re.search(&mut cache, &input, &mut caps);
/// assert_eq!(None, caps.get_match());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// This may seem a little ham-fisted, but this scenario tends to come up
/// if some other regex engine found the match span and now you need to
/// re-process that span to look for capturing groups. (e.g., Run a faster
/// DFA first, find a match, then run the PikeVM on just the match span to
/// resolve capturing groups.) In order to implement that sort of logic
/// correctly, you need to set the span on the search instead of slicing
/// the haystack directly.
///
/// The other advantage of using this routine to specify the bounds of the
/// search is that the match offsets are still reported in terms of the
/// original haystack. For example, the second search in the example above
/// reported a match at position `0`, even though `at` starts at offset
/// `1` because we sliced the haystack.
#[inline]
pub fn span<S: Into<Span>>(mut self, span: S) -> Input<'h> {
self.set_span(span);
self
}
/// Like `Input::span`, but accepts any range instead.
///
/// This routine does not panic if the range given is not a valid range for
/// this search's haystack. If this search is run with an invalid range,
/// then the most likely outcome is that the actual search execution will
/// panic.
///
/// The default range is the entire haystack.
///
/// Note that [`Input::span`] overrides this method and vice versa.
///
/// # Panics
///
/// This routine will panic if the given range could not be converted
/// to a valid [`Range`]. For example, this would panic when given
/// `0..=usize::MAX` since it cannot be represented using a half-open
/// interval in terms of `usize`.
///
/// This also panics if the given range does not correspond to valid bounds
/// in the haystack or the termination of a search.
///
/// # Example
///
/// ```
/// use regex_automata::Input;
///
/// let input = Input::new("foobar");
/// assert_eq!(0..6, input.get_range());
///
/// let input = Input::new("foobar").range(2..=4);
/// assert_eq!(2..5, input.get_range());
/// ```
#[inline]
pub fn range<R: RangeBounds<usize>>(mut self, range: R) -> Input<'h> {
self.set_range(range);
self
}
/// Sets the anchor mode of a search.
///
/// When a search is anchored (so that's [`Anchored::Yes`] or
/// [`Anchored::Pattern`]), a match must begin at the start of a search.
/// When a search is not anchored (that's [`Anchored::No`]), regex engines
/// will behave as if the pattern started with a `(?s-u:.)*?`. This prefix
/// permits a match to appear anywhere.
///
/// By default, the anchored mode is [`Anchored::No`].
///
/// **WARNING:** this is subtly different than using a `^` at the start of
/// your regex. A `^` forces a regex to match exclusively at the start of
/// a haystack, regardless of where you begin your search. In contrast,
/// anchoring a search will allow your regex to match anywhere in your
/// haystack, but the match must start at the beginning of a search.
///
/// For example, consider the haystack `aba` and the following searches:
///
/// 1. The regex `^a` is compiled with `Anchored::No` and searches `aba`
/// starting at position `2`. Since `^` requires the match to start at
/// the beginning of the haystack and `2 > 0`, no match is found.
/// 2. The regex `a` is compiled with `Anchored::Yes` and searches `aba`
/// starting at position `2`. This reports a match at `[2, 3]` since
/// the match starts where the search started. Since there is no `^`,
/// there is no requirement for the match to start at the beginning of
/// the haystack.
/// 3. The regex `a` is compiled with `Anchored::Yes` and searches `aba`
/// starting at position `1`. Since `b` corresponds to position `1` and
/// since the search is anchored, it finds no match. While the regex
/// matches at other positions, configuring the search to be anchored
/// requires that it only report a match that begins at the same offset
/// as the beginning of the search.
/// 4. The regex `a` is compiled with `Anchored::No` and searches `aba`
/// starting at position `1`. Since the search is not anchored and
/// the regex does not start with `^`, the search executes as if there
/// is a `(?s:.)*?` prefix that permits it to match anywhere. Thus, it
/// reports a match at `[2, 3]`.
///
/// Note that the [`Anchored::Pattern`] mode is like `Anchored::Yes`,
/// except it only reports matches for a particular pattern.
///
/// # Example
///
/// This demonstrates the differences between an anchored search and
/// a pattern that begins with `^` (as described in the above warning
/// message).
///
/// ```
/// use regex_automata::{
/// nfa::thompson::pikevm::PikeVM,
/// Anchored, Match, Input,
/// };
///
/// let haystack = "aba";
///
/// let re = PikeVM::new(r"^a")?;
/// let (mut cache, mut caps) = (re.create_cache(), re.create_captures());
/// let input = Input::new(haystack).span(2..3).anchored(Anchored::No);
/// re.search(&mut cache, &input, &mut caps);
/// // No match is found because 2 is not the beginning of the haystack,
/// // which is what ^ requires.
/// assert_eq!(None, caps.get_match());
///
/// let re = PikeVM::new(r"a")?;
/// let (mut cache, mut caps) = (re.create_cache(), re.create_captures());
/// let input = Input::new(haystack).span(2..3).anchored(Anchored::Yes);
/// re.search(&mut cache, &input, &mut caps);
/// // An anchored search can still match anywhere in the haystack, it just
/// // must begin at the start of the search which is '2' in this case.
/// assert_eq!(Some(Match::must(0, 2..3)), caps.get_match());
///
/// let re = PikeVM::new(r"a")?;
/// let (mut cache, mut caps) = (re.create_cache(), re.create_captures());
/// let input = Input::new(haystack).span(1..3).anchored(Anchored::Yes);
/// re.search(&mut cache, &input, &mut caps);
/// // No match is found since we start searching at offset 1 which
/// // corresponds to 'b'. Since there is no '(?s:.)*?' prefix, no match
/// // is found.
/// assert_eq!(None, caps.get_match());
///
/// let re = PikeVM::new(r"a")?;
/// let (mut cache, mut caps) = (re.create_cache(), re.create_captures());
/// let input = Input::new(haystack).span(1..3).anchored(Anchored::No);
/// re.search(&mut cache, &input, &mut caps);
/// // Since anchored=no, an implicit '(?s:.)*?' prefix was added to the
/// // pattern. Even though the search starts at 'b', the 'match anything'
/// // prefix allows the search to match 'a'.
/// let expected = Some(Match::must(0, 2..3));
/// assert_eq!(expected, caps.get_match());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn anchored(mut self, mode: Anchored) -> Input<'h> {
self.set_anchored(mode);
self
}
/// Whether to execute an "earliest" search or not.
///
/// When running a non-overlapping search, an "earliest" search will return
/// the match location as early as possible. For example, given a pattern
/// of `foo[0-9]+` and a haystack of `foo12345`, a normal leftmost search
/// will return `foo12345` as a match. But an "earliest" search for regex
/// engines that support "earliest" semantics will return `foo1` as a
/// match, since as soon as the first digit following `foo` is seen, it is
/// known to have found a match.
///
/// Note that "earliest" semantics generally depend on the regex engine.
/// Different regex engines may determine there is a match at different
/// points. So there is no guarantee that "earliest" matches will always
/// return the same offsets for all regex engines. The "earliest" notion
/// is really about when the particular regex engine determines there is
/// a match rather than a consistent semantic unto itself. This is often
/// useful for implementing "did a match occur or not" predicates, but
/// sometimes the offset is useful as well.
///
/// This is disabled by default.
///
/// # Example
///
/// This example shows the difference between "earliest" searching and
/// normal searching.
///
/// ```
/// use regex_automata::{nfa::thompson::pikevm::PikeVM, Match, Input};
///
/// let re = PikeVM::new(r"foo[0-9]+")?;
/// let mut cache = re.create_cache();
/// let mut caps = re.create_captures();
///
/// // A normal search implements greediness like you expect.
/// let input = Input::new("foo12345");
/// re.search(&mut cache, &input, &mut caps);
/// assert_eq!(Some(Match::must(0, 0..8)), caps.get_match());
///
/// // When 'earliest' is enabled and the regex engine supports
/// // it, the search will bail once it knows a match has been
/// // found.
/// let input = Input::new("foo12345").earliest(true);
/// re.search(&mut cache, &input, &mut caps);
/// assert_eq!(Some(Match::must(0, 0..4)), caps.get_match());
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn earliest(mut self, yes: bool) -> Input<'h> {
self.set_earliest(yes);
self
}
/// Set the span for this search configuration.
///
/// This is like the [`Input::span`] method, except this mutates the
/// span in place.
///
/// This routine is generic over how a span is provided. While
/// a [`Span`] may be given directly, one may also provide a
/// `std::ops::Range<usize>`.
///
/// # Panics
///
/// This panics if the given span does not correspond to valid bounds in
/// the haystack or the termination of a search.
///
/// # Example
///
/// ```
/// use regex_automata::Input;
///
/// let mut input = Input::new("foobar");
/// assert_eq!(0..6, input.get_range());
/// input.set_span(2..4);
/// assert_eq!(2..4, input.get_range());
/// ```
#[inline]
pub fn set_span<S: Into<Span>>(&mut self, span: S) {
let span = span.into();
assert!(
span.end <= self.haystack.len()
&& span.start <= span.end.wrapping_add(1),
"invalid span {:?} for haystack of length {}",
span,
self.haystack.len(),
);
self.span = span;
}
/// Set the span for this search configuration given any range.
///
/// This is like the [`Input::range`] method, except this mutates the
/// span in place.
///
/// This routine does not panic if the range given is not a valid range for
/// this search's haystack. If this search is run with an invalid range,
/// then the most likely outcome is that the actual search execution will
/// panic.
///
/// # Panics
///
/// This routine will panic if the given range could not be converted
/// to a valid [`Range`]. For example, this would panic when given
/// `0..=usize::MAX` since it cannot be represented using a half-open
/// interval in terms of `usize`.
///
/// This also panics if the given span does not correspond to valid bounds
/// in the haystack or the termination of a search.
///
/// # Example
///
/// ```
/// use regex_automata::Input;
///
/// let mut input = Input::new("foobar");
/// assert_eq!(0..6, input.get_range());
/// input.set_range(2..=4);
/// assert_eq!(2..5, input.get_range());
/// ```
#[inline]
pub fn set_range<R: RangeBounds<usize>>(&mut self, range: R) {
use core::ops::Bound;
// It's a little weird to convert ranges into spans, and then spans
// back into ranges when we actually slice the haystack. Because
// of that process, we always represent everything as a half-open
// internal. Therefore, handling things like m..=n is a little awkward.
let start = match range.start_bound() {
Bound::Included(&i) => i,
// Can this case ever happen? Range syntax doesn't support it...
Bound::Excluded(&i) => i.checked_add(1).unwrap(),
Bound::Unbounded => 0,
};
let end = match range.end_bound() {
Bound::Included(&i) => i.checked_add(1).unwrap(),
Bound::Excluded(&i) => i,
Bound::Unbounded => self.haystack().len(),
};
self.set_span(Span { start, end });
}
/// Set the starting offset for the span for this search configuration.
///
/// This is a convenience routine for only mutating the start of a span
/// without having to set the entire span.
///
/// # Panics
///
/// This panics if the span resulting from the new start position does not
/// correspond to valid bounds in the haystack or the termination of a
/// search.
///
/// # Example
///
/// ```
/// use regex_automata::Input;
///
/// let mut input = Input::new("foobar");
/// assert_eq!(0..6, input.get_range());
/// input.set_start(5);
/// assert_eq!(5..6, input.get_range());
/// ```
#[inline]
pub fn set_start(&mut self, start: usize) {
self.set_span(Span { start, ..self.get_span() });
}
/// Set the ending offset for the span for this search configuration.
///
/// This is a convenience routine for only mutating the end of a span
/// without having to set the entire span.
///
/// # Panics
///
/// This panics if the span resulting from the new end position does not
/// correspond to valid bounds in the haystack or the termination of a
/// search.
///
/// # Example
///
/// ```
/// use regex_automata::Input;
///
/// let mut input = Input::new("foobar");
/// assert_eq!(0..6, input.get_range());
/// input.set_end(5);
/// assert_eq!(0..5, input.get_range());
/// ```
#[inline]
pub fn set_end(&mut self, end: usize) {
self.set_span(Span { end, ..self.get_span() });
}
/// Set the anchor mode of a search.
///
/// This is like [`Input::anchored`], except it mutates the search
/// configuration in place.
///
/// # Example
///
/// ```
/// use regex_automata::{Anchored, Input, PatternID};
///
/// let mut input = Input::new("foobar");
/// assert_eq!(Anchored::No, input.get_anchored());
///
/// let pid = PatternID::must(5);
/// input.set_anchored(Anchored::Pattern(pid));
/// assert_eq!(Anchored::Pattern(pid), input.get_anchored());
/// ```
#[inline]
pub fn set_anchored(&mut self, mode: Anchored) {
self.anchored = mode;
}
/// Set whether the search should execute in "earliest" mode or not.
///
/// This is like [`Input::earliest`], except it mutates the search
/// configuration in place.
///
/// # Example
///
/// ```
/// use regex_automata::Input;
///
/// let mut input = Input::new("foobar");
/// assert!(!input.get_earliest());
/// input.set_earliest(true);
/// assert!(input.get_earliest());
/// ```
#[inline]
pub fn set_earliest(&mut self, yes: bool) {
self.earliest = yes;
}
/// Return a borrow of the underlying haystack as a slice of bytes.
///
/// # Example
///
/// ```
/// use regex_automata::Input;
///
/// let input = Input::new("foobar");
/// assert_eq!(b"foobar", input.haystack());
/// ```
#[inline]
pub fn haystack(&self) -> &[u8] {
self.haystack
}
/// Return the start position of this search.
///
/// This is a convenience routine for `search.get_span().start()`.
///
/// When [`Input::is_done`] is `false`, this is guaranteed to return
/// an offset that is less than or equal to [`Input::end`]. Otherwise,
/// the offset is one greater than [`Input::end`].
///
/// # Example
///
/// ```
/// use regex_automata::Input;
///
/// let input = Input::new("foobar");
/// assert_eq!(0, input.start());
///
/// let input = Input::new("foobar").span(2..4);
/// assert_eq!(2, input.start());
/// ```
#[inline]
pub fn start(&self) -> usize {
self.get_span().start
}
/// Return the end position of this search.
///
/// This is a convenience routine for `search.get_span().end()`.
///
/// This is guaranteed to return an offset that is a valid exclusive end
/// bound for this input's haystack.
///
/// # Example
///
/// ```
/// use regex_automata::Input;
///
/// let input = Input::new("foobar");
/// assert_eq!(6, input.end());
///
/// let input = Input::new("foobar").span(2..4);
/// assert_eq!(4, input.end());
/// ```
#[inline]
pub fn end(&self) -> usize {
self.get_span().end
}
/// Return the span for this search configuration.
///
/// If one was not explicitly set, then the span corresponds to the entire
/// range of the haystack.
///
/// When [`Input::is_done`] is `false`, the span returned is guaranteed
/// to correspond to valid bounds for this input's haystack.
///
/// # Example
///
/// ```
/// use regex_automata::{Input, Span};
///
/// let input = Input::new("foobar");
/// assert_eq!(Span { start: 0, end: 6 }, input.get_span());
/// ```
#[inline]
pub fn get_span(&self) -> Span {
self.span
}
/// Return the span as a range for this search configuration.
///
/// If one was not explicitly set, then the span corresponds to the entire
/// range of the haystack.
///
/// When [`Input::is_done`] is `false`, the range returned is guaranteed
/// to correspond to valid bounds for this input's haystack.
///
/// # Example
///
/// ```
/// use regex_automata::Input;
///
/// let input = Input::new("foobar");
/// assert_eq!(0..6, input.get_range());
/// ```
#[inline]
pub fn get_range(&self) -> Range<usize> {
self.get_span().range()
}
/// Return the anchored mode for this search configuration.
///
/// If no anchored mode was set, then it defaults to [`Anchored::No`].
///
/// # Example
///
/// ```
/// use regex_automata::{Anchored, Input, PatternID};
///
/// let mut input = Input::new("foobar");
/// assert_eq!(Anchored::No, input.get_anchored());
///
/// let pid = PatternID::must(5);
/// input.set_anchored(Anchored::Pattern(pid));
/// assert_eq!(Anchored::Pattern(pid), input.get_anchored());
/// ```
#[inline]
pub fn get_anchored(&self) -> Anchored {
self.anchored
}
/// Return whether this search should execute in "earliest" mode.
///
/// # Example
///
/// ```
/// use regex_automata::Input;
///
/// let input = Input::new("foobar");
/// assert!(!input.get_earliest());
/// ```
#[inline]
pub fn get_earliest(&self) -> bool {
self.earliest
}
/// Return true if and only if this search can never return any other
/// matches.
///
/// This occurs when the start position of this search is greater than the
/// end position of the search.
///
/// # Example
///
/// ```
/// use regex_automata::Input;
///
/// let mut input = Input::new("foobar");
/// assert!(!input.is_done());
/// input.set_start(6);
/// assert!(!input.is_done());
/// input.set_start(7);
/// assert!(input.is_done());
/// ```
#[inline]
pub fn is_done(&self) -> bool {
self.get_span().start > self.get_span().end
}
/// Returns true if and only if the given offset in this search's haystack
/// falls on a valid UTF-8 encoded codepoint boundary.
///
/// If the haystack is not valid UTF-8, then the behavior of this routine
/// is unspecified.
///
/// # Example
///
/// This shows where codepoint boundaries do and don't exist in valid
/// UTF-8.
///
/// ```
/// use regex_automata::Input;
///
/// let input = Input::new("☃");
/// assert!(input.is_char_boundary(0));
/// assert!(!input.is_char_boundary(1));
/// assert!(!input.is_char_boundary(2));
/// assert!(input.is_char_boundary(3));
/// assert!(!input.is_char_boundary(4));
/// ```
#[inline]
pub fn is_char_boundary(&self, offset: usize) -> bool {
utf8::is_boundary(self.haystack(), offset)
}
}
impl<'h> core::fmt::Debug for Input<'h> {
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
use crate::util::escape::DebugHaystack;
f.debug_struct("Input")
.field("haystack", &DebugHaystack(self.haystack()))
.field("span", &self.span)
.field("anchored", &self.anchored)
.field("earliest", &self.earliest)
.finish()
}
}
impl<'h, H: ?Sized + AsRef<[u8]>> From<&'h H> for Input<'h> {
fn from(haystack: &'h H) -> Input<'h> {
Input::new(haystack)
}
}
/// A representation of a span reported by a regex engine.
///
/// A span corresponds to the starting and ending _byte offsets_ of a
/// contiguous region of bytes. The starting offset is inclusive while the
/// ending offset is exclusive. That is, a span is a half-open interval.
///
/// A span is used to report the offsets of a match, but it is also used to
/// convey which region of a haystack should be searched via routines like
/// [`Input::span`].
///
/// This is basically equivalent to a `std::ops::Range<usize>`, except this
/// type implements `Copy` which makes it more ergonomic to use in the context
/// of this crate. Like a range, this implements `Index` for `[u8]` and `str`,
/// and `IndexMut` for `[u8]`. For convenience, this also impls `From<Range>`,
/// which means things like `Span::from(5..10)` work.
#[derive(Clone, Copy, Eq, Hash, PartialEq)]
pub struct Span {
/// The start offset of the span, inclusive.
pub start: usize,
/// The end offset of the span, exclusive.
pub end: usize,
}
impl Span {
/// Returns this span as a range.
#[inline]
pub fn range(&self) -> Range<usize> {
Range::from(*self)
}
/// Returns true when this span is empty. That is, when `start >= end`.
#[inline]
pub fn is_empty(&self) -> bool {
self.start >= self.end
}
/// Returns the length of this span.
///
/// This returns `0` in precisely the cases that `is_empty` returns `true`.
#[inline]
pub fn len(&self) -> usize {
self.end.saturating_sub(self.start)
}
/// Returns true when the given offset is contained within this span.
///
/// Note that an empty span contains no offsets and will always return
/// false.
#[inline]
pub fn contains(&self, offset: usize) -> bool {
!self.is_empty() && self.start <= offset && offset <= self.end
}
/// Returns a new span with `offset` added to this span's `start` and `end`
/// values.
#[inline]
pub fn offset(&self, offset: usize) -> Span {
Span { start: self.start + offset, end: self.end + offset }
}
}
impl core::fmt::Debug for Span {
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
write!(f, "{}..{}", self.start, self.end)
}
}
impl core::ops::Index<Span> for [u8] {
type Output = [u8];
#[inline]
fn index(&self, index: Span) -> &[u8] {
&self[index.range()]
}
}
impl core::ops::IndexMut<Span> for [u8] {
#[inline]
fn index_mut(&mut self, index: Span) -> &mut [u8] {
&mut self[index.range()]
}
}
impl core::ops::Index<Span> for str {
type Output = str;
#[inline]
fn index(&self, index: Span) -> &str {
&self[index.range()]
}
}
impl From<Range<usize>> for Span {
#[inline]
fn from(range: Range<usize>) -> Span {
Span { start: range.start, end: range.end }
}
}
impl From<Span> for Range<usize> {
#[inline]
fn from(span: Span) -> Range<usize> {
Range { start: span.start, end: span.end }
}
}
impl PartialEq<Range<usize>> for Span {
#[inline]
fn eq(&self, range: &Range<usize>) -> bool {
self.start == range.start && self.end == range.end
}
}
impl PartialEq<Span> for Range<usize> {
#[inline]
fn eq(&self, span: &Span) -> bool {
self.start == span.start && self.end == span.end
}
}
/// A representation of "half" of a match reported by a DFA.
///
/// This is called a "half" match because it only includes the end location (or
/// start location for a reverse search) of a match. This corresponds to the
/// information that a single DFA scan can report. Getting the other half of
/// the match requires a second scan with a reversed DFA.
///
/// A half match also includes the pattern that matched. The pattern is
/// identified by an ID, which corresponds to its position (starting from `0`)
/// relative to other patterns used to construct the corresponding DFA. If only
/// a single pattern is provided to the DFA, then all matches are guaranteed to
/// have a pattern ID of `0`.
#[derive(Clone, Copy, Debug, Eq, Hash, PartialEq)]
pub struct HalfMatch {
/// The pattern ID.
pattern: PatternID,
/// The offset of the match.
///
/// For forward searches, the offset is exclusive. For reverse searches,
/// the offset is inclusive.
offset: usize,
}
impl HalfMatch {
/// Create a new half match from a pattern ID and a byte offset.
#[inline]
pub fn new(pattern: PatternID, offset: usize) -> HalfMatch {
HalfMatch { pattern, offset }
}
/// Create a new half match from a pattern ID and a byte offset.
///
/// This is like [`HalfMatch::new`], but accepts a `usize` instead of a
/// [`PatternID`]. This panics if the given `usize` is not representable
/// as a `PatternID`.
#[inline]
pub fn must(pattern: usize, offset: usize) -> HalfMatch {
HalfMatch::new(PatternID::new(pattern).unwrap(), offset)
}
/// Returns the ID of the pattern that matched.
///
/// The ID of a pattern is derived from the position in which it was
/// originally inserted into the corresponding DFA. The first pattern has
/// identifier `0`, and each subsequent pattern is `1`, `2` and so on.
#[inline]
pub fn pattern(&self) -> PatternID {
self.pattern
}
/// The position of the match.
///
/// If this match was produced by a forward search, then the offset is
/// exclusive. If this match was produced by a reverse search, then the
/// offset is inclusive.
#[inline]
pub fn offset(&self) -> usize {
self.offset
}
}
/// A representation of a match reported by a regex engine.
///
/// A match has two essential pieces of information: the [`PatternID`] that
/// matches, and the [`Span`] of the match in a haystack.
///
/// The pattern is identified by an ID, which corresponds to its position
/// (starting from `0`) relative to other patterns used to construct the
/// corresponding regex engine. If only a single pattern is provided, then all
/// matches are guaranteed to have a pattern ID of `0`.
///
/// Every match reported by a regex engine guarantees that its span has its
/// start offset as less than or equal to its end offset.
#[derive(Clone, Copy, Debug, Eq, Hash, PartialEq)]
pub struct Match {
/// The pattern ID.
pattern: PatternID,
/// The underlying match span.
span: Span,
}
impl Match {
/// Create a new match from a pattern ID and a span.
///
/// This constructor is generic over how a span is provided. While
/// a [`Span`] may be given directly, one may also provide a
/// `std::ops::Range<usize>`.
///
/// # Panics
///
/// This panics if `end < start`.
///
/// # Example
///
/// This shows how to create a match for the first pattern in a regex
/// object using convenient range syntax.
///
/// ```
/// use regex_automata::{Match, PatternID};
///
/// let m = Match::new(PatternID::ZERO, 5..10);
/// assert_eq!(0, m.pattern().as_usize());
/// assert_eq!(5, m.start());
/// assert_eq!(10, m.end());
/// ```
#[inline]
pub fn new<S: Into<Span>>(pattern: PatternID, span: S) -> Match {
let span: Span = span.into();
assert!(span.start <= span.end, "invalid match span");
Match { pattern, span }
}
/// Create a new match from a pattern ID and a byte offset span.
///
/// This constructor is generic over how a span is provided. While
/// a [`Span`] may be given directly, one may also provide a
/// `std::ops::Range<usize>`.
///
/// This is like [`Match::new`], but accepts a `usize` instead of a
/// [`PatternID`]. This panics if the given `usize` is not representable
/// as a `PatternID`.
///
/// # Panics
///
/// This panics if `end < start` or if `pattern > PatternID::MAX`.
///
/// # Example
///
/// This shows how to create a match for the third pattern in a regex
/// object using convenient range syntax.
///
/// ```
/// use regex_automata::Match;
///
/// let m = Match::must(3, 5..10);
/// assert_eq!(3, m.pattern().as_usize());
/// assert_eq!(5, m.start());
/// assert_eq!(10, m.end());
/// ```
#[inline]
pub fn must<S: Into<Span>>(pattern: usize, span: S) -> Match {
Match::new(PatternID::must(pattern), span)
}
/// Returns the ID of the pattern that matched.
///
/// The ID of a pattern is derived from the position in which it was
/// originally inserted into the corresponding regex engine. The first
/// pattern has identifier `0`, and each subsequent pattern is `1`, `2` and
/// so on.
#[inline]
pub fn pattern(&self) -> PatternID {
self.pattern
}
/// The starting position of the match.
///
/// This is a convenience routine for `Match::span().start`.
#[inline]
pub fn start(&self) -> usize {
self.span().start
}
/// The ending position of the match.
///
/// This is a convenience routine for `Match::span().end`.
#[inline]
pub fn end(&self) -> usize {
self.span().end
}
/// Returns the match span as a range.
///
/// This is a convenience routine for `Match::span().range()`.
#[inline]
pub fn range(&self) -> core::ops::Range<usize> {
self.span().range()
}
/// Returns the span for this match.
#[inline]
pub fn span(&self) -> Span {
self.span
}
/// Returns true when the span in this match is empty.
///
/// An empty match can only be returned when the regex itself can match
/// the empty string.
#[inline]
pub fn is_empty(&self) -> bool {
self.span().is_empty()
}
/// Returns the length of this match.
///
/// This returns `0` in precisely the cases that `is_empty` returns `true`.
#[inline]
pub fn len(&self) -> usize {
self.span().len()
}
}
/// A set of `PatternID`s.
///
/// A set of pattern identifiers is useful for recording which patterns have
/// matched a particular haystack. A pattern set _only_ includes pattern
/// identifiers. It does not include offset information.
///
/// # Example
///
/// This shows basic usage of a set.
///
/// ```
/// use regex_automata::{PatternID, PatternSet};
///
/// let pid1 = PatternID::must(5);
/// let pid2 = PatternID::must(8);
/// // Create a new empty set.
/// let mut set = PatternSet::new(10);
/// // Insert pattern IDs.
/// set.insert(pid1);
/// set.insert(pid2);
/// // Test membership.
/// assert!(set.contains(pid1));
/// assert!(set.contains(pid2));
/// // Get all members.
/// assert_eq!(
/// vec![5, 8],
/// set.iter().map(|p| p.as_usize()).collect::<Vec<usize>>(),
/// );
/// // Clear the set.
/// set.clear();
/// // Test that it is indeed empty.
/// assert!(set.is_empty());
/// ```
#[cfg(feature = "alloc")]
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct PatternSet {
/// The number of patterns set to 'true' in this set.
len: usize,
/// A map from PatternID to boolean of whether a pattern matches or not.
///
/// This should probably be a bitset, but it's probably unlikely to matter
/// much in practice.
///
/// The main downside of this representation (and similarly for a bitset)
/// is that iteration scales with the capacity of the set instead of
/// the length of the set. This doesn't seem likely to be a problem in
/// practice.
///
/// Another alternative is to just use a 'SparseSet' for this. It does use
/// more memory (quite a bit more), but that seems fine I think compared
/// to the memory being used by the regex engine. The real hiccup with
/// it is that it yields pattern IDs in the order they were inserted.
/// Which is actually kind of nice, but at the time of writing, pattern
/// IDs are yielded in ascending order in the regex crate RegexSet API.
/// If we did change to 'SparseSet', we could provide an additional
/// 'iter_match_order' iterator, but keep the ascending order one for
/// compatibility.
which: alloc::boxed::Box<[bool]>,
}
#[cfg(feature = "alloc")]
impl PatternSet {
/// Create a new set of pattern identifiers with the given capacity.
///
/// The given capacity typically corresponds to (at least) the number of
/// patterns in a compiled regex object.
///
/// # Panics
///
/// This panics if the given capacity exceeds [`PatternID::LIMIT`]. This is
/// impossible if you use the `pattern_len()` method as defined on any of
/// the regex engines in this crate. Namely, a regex will fail to build by
/// returning an error if the number of patterns given to it exceeds the
/// limit. Therefore, the number of patterns in a valid regex is always
/// a correct capacity to provide here.
pub fn new(capacity: usize) -> PatternSet {
assert!(
capacity <= PatternID::LIMIT,
"pattern set capacity exceeds limit of {}",
PatternID::LIMIT,
);
PatternSet {
len: 0,
which: alloc::vec![false; capacity].into_boxed_slice(),
}
}
/// Clear this set such that it contains no pattern IDs.
pub fn clear(&mut self) {
self.len = 0;
for matched in self.which.iter_mut() {
*matched = false;
}
}
/// Return true if and only if the given pattern identifier is in this set.
pub fn contains(&self, pid: PatternID) -> bool {
pid.as_usize() < self.capacity() && self.which[pid]
}
/// Insert the given pattern identifier into this set and return `true` if
/// the given pattern ID was not previously in this set.
///
/// If the pattern identifier is already in this set, then this is a no-op.
///
/// Use [`PatternSet::try_insert`] for a fallible version of this routine.
///
/// # Panics
///
/// This panics if this pattern set has insufficient capacity to
/// store the given pattern ID.
pub fn insert(&mut self, pid: PatternID) -> bool {
self.try_insert(pid)
.expect("PatternSet should have sufficient capacity")
}
/// Insert the given pattern identifier into this set and return `true` if
/// the given pattern ID was not previously in this set.
///
/// If the pattern identifier is already in this set, then this is a no-op.
///
/// # Errors
///
/// This returns an error if this pattern set has insufficient capacity to
/// store the given pattern ID.
pub fn try_insert(
&mut self,
pid: PatternID,
) -> Result<bool, PatternSetInsertError> {
if pid.as_usize() >= self.capacity() {
return Err(PatternSetInsertError {
attempted: pid,
capacity: self.capacity(),
});
}
if self.which[pid] {
return Ok(false);
}
self.len += 1;
self.which[pid] = true;
Ok(true)
}
/*
// This is currently commented out because it is unused and it is unclear
// whether it's useful or not. What's the harm in having it? When, if
// we ever wanted to change our representation to a 'SparseSet', then
// supporting this method would be a bit tricky. So in order to keep some
// API evolution flexibility, we leave it out for now.
/// Remove the given pattern identifier from this set.
///
/// If the pattern identifier was not previously in this set, then this
/// does not change the set and returns `false`.
///
/// # Panics
///
/// This panics if `pid` exceeds the capacity of this set.
pub fn remove(&mut self, pid: PatternID) -> bool {
if !self.which[pid] {
return false;
}
self.len -= 1;
self.which[pid] = false;
true
}
*/
/// Return true if and only if this set has no pattern identifiers in it.
pub fn is_empty(&self) -> bool {
self.len() == 0
}
/// Return true if and only if this set has the maximum number of pattern
/// identifiers in the set. This occurs precisely when `PatternSet::len()
/// == PatternSet::capacity()`.
///
/// This particular property is useful to test because it may allow one to
/// stop a search earlier than you might otherwise. Namely, if a search is
/// only reporting which patterns match a haystack and if you know all of
/// the patterns match at a given point, then there's no new information
/// that can be learned by continuing the search. (Because a pattern set
/// does not keep track of offset information.)
pub fn is_full(&self) -> bool {
self.len() == self.capacity()
}
/// Returns the total number of pattern identifiers in this set.
pub fn len(&self) -> usize {
self.len
}
/// Returns the total number of pattern identifiers that may be stored
/// in this set.
///
/// This is guaranteed to be less than or equal to [`PatternID::LIMIT`].
///
/// Typically, the capacity of a pattern set matches the number of patterns
/// in a regex object with which you are searching.
pub fn capacity(&self) -> usize {
self.which.len()
}
/// Returns an iterator over all pattern identifiers in this set.
///
/// The iterator yields pattern identifiers in ascending order, starting
/// at zero.
pub fn iter(&self) -> PatternSetIter<'_> {
PatternSetIter { it: self.which.iter().enumerate() }
}
}
/// An error that occurs when a `PatternID` failed to insert into a
/// `PatternSet`.
///
/// An insert fails when the given `PatternID` exceeds the configured capacity
/// of the `PatternSet`.
///
/// This error is created by the [`PatternSet::try_insert`] routine.
#[cfg(feature = "alloc")]
#[derive(Clone, Debug)]
pub struct PatternSetInsertError {
attempted: PatternID,
capacity: usize,
}
#[cfg(feature = "std")]
impl std::error::Error for PatternSetInsertError {}
#[cfg(feature = "alloc")]
impl core::fmt::Display for PatternSetInsertError {
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
write!(
f,
"failed to insert pattern ID {} into pattern set \
with insufficiet capacity of {}",
self.attempted.as_usize(),
self.capacity,
)
}
}
/// An iterator over all pattern identifiers in a [`PatternSet`].
///
/// The lifetime parameter `'a` refers to the lifetime of the pattern set being
/// iterated over.
///
/// This iterator is created by the [`PatternSet::iter`] method.
#[cfg(feature = "alloc")]
#[derive(Clone, Debug)]
pub struct PatternSetIter<'a> {
it: core::iter::Enumerate<core::slice::Iter<'a, bool>>,
}
#[cfg(feature = "alloc")]
impl<'a> Iterator for PatternSetIter<'a> {
type Item = PatternID;
fn next(&mut self) -> Option<PatternID> {
while let Some((index, &yes)) = self.it.next() {
if yes {
// Only valid 'PatternID' values can be inserted into the set
// and construction of the set panics if the capacity would
// permit storing invalid pattern IDs. Thus, 'yes' is only true
// precisely when 'index' corresponds to a valid 'PatternID'.
return Some(PatternID::new_unchecked(index));
}
}
None
}
fn size_hint(&self) -> (usize, Option<usize>) {
self.it.size_hint()
}
}
#[cfg(feature = "alloc")]
impl<'a> DoubleEndedIterator for PatternSetIter<'a> {
fn next_back(&mut self) -> Option<PatternID> {
while let Some((index, &yes)) = self.it.next_back() {
if yes {
// Only valid 'PatternID' values can be inserted into the set
// and construction of the set panics if the capacity would
// permit storing invalid pattern IDs. Thus, 'yes' is only true
// precisely when 'index' corresponds to a valid 'PatternID'.
return Some(PatternID::new_unchecked(index));
}
}
None
}
}
/// The type of anchored search to perform.
///
/// This is *almost* a boolean option. That is, you can either do an unanchored
/// search for any pattern in a regex, or you can do an anchored search for any
/// pattern in a regex.
///
/// A third option exists that, assuming the regex engine supports it, permits
/// you to do an anchored search for a specific pattern.
///
/// Note that there is no way to run an unanchored search for a specific
/// pattern. If you need that, you'll need to build separate regexes for each
/// pattern.
///
/// # Errors
///
/// If a regex engine does not support the anchored mode selected, then the
/// regex engine will return an error. While any non-trivial regex engine
/// should support at least one of the available anchored modes, there is no
/// singular mode that is guaranteed to be universally supported. Some regex
/// engines might only support unanchored searches (DFAs compiled without
/// anchored starting states) and some regex engines might only support
/// anchored searches (like the one-pass DFA).
///
/// The specific error returned is a [`MatchError`] with a
/// [`MatchErrorKind::UnsupportedAnchored`] kind. The kind includes the
/// `Anchored` value given that is unsupported.
///
/// Note that regex engines should report "no match" if, for example, an
/// `Anchored::Pattern` is provided with an invalid pattern ID _but_ where
/// anchored searches for a specific pattern are supported. This is smooths out
/// behavior such that it's possible to guarantee that an error never occurs
/// based on how the regex engine is configured. All regex engines in this
/// crate report "no match" when searching for an invalid pattern ID, but where
/// searching for a valid pattern ID is otherwise supported.
///
/// # Example
///
/// This example shows how to use the various `Anchored` modes to run a
/// search. We use the [`PikeVM`](crate::nfa::thompson::pikevm::PikeVM)
/// because it supports all modes unconditionally. Some regex engines, like
/// the [`onepass::DFA`](crate::dfa::onepass::DFA) cannot support unanchored
/// searches.
///
/// ```
/// # if cfg!(miri) { return Ok(()); } // miri takes too long
/// use regex_automata::{
/// nfa::thompson::pikevm::PikeVM,
/// Anchored, Input, Match, PatternID,
/// };
///
/// let re = PikeVM::new_many(&[
/// r"Mrs. \w+",
/// r"Miss \w+",
/// r"Mr. \w+",
/// r"Ms. \w+",
/// ])?;
/// let mut cache = re.create_cache();
/// let hay = "Hello Mr. Springsteen!";
///
/// // The default is to do an unanchored search.
/// assert_eq!(Some(Match::must(2, 6..21)), re.find(&mut cache, hay));
/// // Explicitly ask for an unanchored search. Same as above.
/// let input = Input::new(hay).anchored(Anchored::No);
/// assert_eq!(Some(Match::must(2, 6..21)), re.find(&mut cache, hay));
///
/// // Now try an anchored search. Since the match doesn't start at the
/// // beginning of the haystack, no match is found!
/// let input = Input::new(hay).anchored(Anchored::Yes);
/// assert_eq!(None, re.find(&mut cache, input));
///
/// // We can try an anchored search again, but move the location of where
/// // we start the search. Note that the offsets reported are still in
/// // terms of the overall haystack and not relative to where we started
/// // the search.
/// let input = Input::new(hay).anchored(Anchored::Yes).range(6..);
/// assert_eq!(Some(Match::must(2, 6..21)), re.find(&mut cache, input));
///
/// // Now try an anchored search for a specific pattern. We specifically
/// // choose a pattern that we know doesn't match to prove that the search
/// // only looks for the pattern we provide.
/// let input = Input::new(hay)
/// .anchored(Anchored::Pattern(PatternID::must(1)))
/// .range(6..);
/// assert_eq!(None, re.find(&mut cache, input));
///
/// // But if we switch it to the pattern that we know matches, then we find
/// // the match.
/// let input = Input::new(hay)
/// .anchored(Anchored::Pattern(PatternID::must(2)))
/// .range(6..);
/// assert_eq!(Some(Match::must(2, 6..21)), re.find(&mut cache, input));
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub enum Anchored {
/// Run an unanchored search. This means a match may occur anywhere at or
/// after the start position of the search.
///
/// This search can return a match for any pattern in the regex.
No,
/// Run an anchored search. This means that a match must begin at the
/// start position of the search.
///
/// This search can return a match for any pattern in the regex.
Yes,
/// Run an anchored search for a specific pattern. This means that a match
/// must be for the given pattern and must begin at the start position of
/// the search.
Pattern(PatternID),
}
impl Anchored {
/// Returns true if and only if this anchor mode corresponds to any kind of
/// anchored search.
///
/// # Example
///
/// This examples shows that both `Anchored::Yes` and `Anchored::Pattern`
/// are considered anchored searches.
///
/// ```
/// use regex_automata::{Anchored, PatternID};
///
/// assert!(!Anchored::No.is_anchored());
/// assert!(Anchored::Yes.is_anchored());
/// assert!(Anchored::Pattern(PatternID::ZERO).is_anchored());
/// ```
#[inline]
pub fn is_anchored(&self) -> bool {
matches!(*self, Anchored::Yes | Anchored::Pattern(_))
}
/// Returns the pattern ID associated with this configuration if it is an
/// anchored search for a specific pattern. Otherwise `None` is returned.
///
/// # Example
///
/// ```
/// use regex_automata::{Anchored, PatternID};
///
/// assert_eq!(None, Anchored::No.pattern());
/// assert_eq!(None, Anchored::Yes.pattern());
///
/// let pid = PatternID::must(5);
/// assert_eq!(Some(pid), Anchored::Pattern(pid).pattern());
/// ```
#[inline]
pub fn pattern(&self) -> Option<PatternID> {
match *self {
Anchored::Pattern(pid) => Some(pid),
_ => None,
}
}
}
/// The kind of match semantics to use for a regex pattern.
///
/// The default match kind is `LeftmostFirst`, and this corresponds to the
/// match semantics used by most backtracking engines, such as Perl.
///
/// # Leftmost first or "preference order" match semantics
///
/// Leftmost-first semantics determine which match to report when there are
/// multiple paths through a regex that match at the same position. The tie is
/// essentially broken by how a backtracker would behave. For example, consider
/// running the regex `foofoofoo|foofoo|foo` on the haystack `foofoo`. In this
/// case, both the `foofoo` and `foo` branches match at position `0`. So should
/// the end of the match be `3` or `6`?
///
/// A backtracker will conceptually work by trying `foofoofoo` and failing.
/// Then it will try `foofoo`, find the match and stop there. Thus, the
/// leftmost-first match position is `6`. This is called "leftmost-first" or
/// "preference order" because the order of the branches as written in the
/// regex pattern is what determines how to break the tie.
///
/// (Note that leftmost-longest match semantics, which break ties by always
/// taking the longest matching string, are not currently supported by this
/// crate. These match semantics tend to be found in POSIX regex engines.)
///
/// This example shows how leftmost-first semantics work, and how it even
/// applies to multi-pattern regexes:
///
/// ```
/// use regex_automata::{
/// nfa::thompson::pikevm::PikeVM,
/// Match,
/// };
///
/// let re = PikeVM::new_many(&[
/// r"foofoofoo",
/// r"foofoo",
/// r"foo",
/// ])?;
/// let mut cache = re.create_cache();
/// let got: Vec<Match> = re.find_iter(&mut cache, "foofoo").collect();
/// let expected = vec![Match::must(1, 0..6)];
/// assert_eq!(expected, got);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// # All matches
///
/// The `All` match semantics report any and all matches, and generally will
/// attempt to match as much as possible. It doesn't respect any sort of match
/// priority at all, so things like non-greedy matching don't work in this
/// mode.
///
/// The fact that non-greedy matching doesn't work generally makes most forms
/// of unanchored non-overlapping searches have unintuitive behavior. Namely,
/// unanchored searches behave as if there is a `(?s-u:.)*?` prefix at the
/// beginning of the pattern, which is specifically non-greedy. Since it will
/// be treated as greedy in `All` match semantics, this generally means that
/// it will first attempt to consume all of the haystack and is likely to wind
/// up skipping matches.
///
/// Generally speaking, `All` should only be used in two circumstances:
///
/// * When running an anchored search and there is a desire to match as much as
/// possible. For example, when building a reverse regex matcher to find the
/// start of a match after finding the end. In this case, the reverse search
/// is anchored to the end of the match found by the forward search.
/// * When running overlapping searches. Since `All` encodes all possible
/// matches, this is generally what you want for an overlapping search. If you
/// try to use leftmost-first in an overlapping search, it is likely to produce
/// counter-intuitive results since leftmost-first specifically excludes some
/// matches from its underlying finite state machine.
///
/// This example demonstrates the counter-intuitive behavior of `All` semantics
/// when using a standard leftmost unanchored search:
///
/// ```
/// use regex_automata::{
/// nfa::thompson::pikevm::PikeVM,
/// Match, MatchKind,
/// };
///
/// let re = PikeVM::builder()
/// .configure(PikeVM::config().match_kind(MatchKind::All))
/// .build("foo")?;
/// let hay = "first foo second foo wat";
/// let mut cache = re.create_cache();
/// let got: Vec<Match> = re.find_iter(&mut cache, hay).collect();
/// // Notice that it completely skips the first 'foo'!
/// let expected = vec![Match::must(0, 17..20)];
/// assert_eq!(expected, got);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// This second example shows how `All` semantics are useful for an overlapping
/// search. Note that we use lower level lazy DFA APIs here since the NFA
/// engines only currently support a very limited form of overlapping search.
///
/// ```
/// use regex_automata::{
/// hybrid::dfa::{DFA, OverlappingState},
/// HalfMatch, Input, MatchKind,
/// };
///
/// let re = DFA::builder()
/// // If we didn't set 'All' semantics here, then the regex would only
/// // match 'foo' at offset 3 and nothing else. Why? Because the state
/// // machine implements preference order and knows that the 'foofoo' and
/// // 'foofoofoo' branches can never match since 'foo' will always match
/// // when they match and take priority.
/// .configure(DFA::config().match_kind(MatchKind::All))
/// .build(r"foo|foofoo|foofoofoo")?;
/// let mut cache = re.create_cache();
/// let mut state = OverlappingState::start();
/// let input = Input::new("foofoofoo");
/// let mut got = vec![];
/// loop {
/// re.try_search_overlapping_fwd(&mut cache, &input, &mut state)?;
/// let m = match state.get_match() {
/// None => break,
/// Some(m) => m,
/// };
/// got.push(m);
/// }
/// let expected = vec![
/// HalfMatch::must(0, 3),
/// HalfMatch::must(0, 6),
/// HalfMatch::must(0, 9),
/// ];
/// assert_eq!(expected, got);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[non_exhaustive]
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub enum MatchKind {
/// Report all possible matches.
All,
/// Report only the leftmost matches. When multiple leftmost matches exist,
/// report the match corresponding to the part of the regex that appears
/// first in the syntax.
LeftmostFirst,
// There is prior art in RE2 that shows that we should be able to add
// LeftmostLongest too. The tricky part of it is supporting ungreedy
// repetitions. Instead of treating all NFA states as having equivalent
// priority (as in 'All') or treating all NFA states as having distinct
// priority based on order (as in 'LeftmostFirst'), we instead group NFA
// states into sets, and treat members of each set as having equivalent
// priority, but having greater priority than all following members
// of different sets.
//
// However, it's not clear whether it's really worth adding this. After
// all, leftmost-longest can be emulated when using literals by using
// leftmost-first and sorting the literals by length in descending order.
// However, this won't work for arbitrary regexes. e.g., `\w|\w\w` will
// always match `a` in `ab` when using leftmost-first, but leftmost-longest
// would match `ab`.
}
impl MatchKind {
#[cfg(feature = "alloc")]
pub(crate) fn continue_past_first_match(&self) -> bool {
*self == MatchKind::All
}
}
impl Default for MatchKind {
fn default() -> MatchKind {
MatchKind::LeftmostFirst
}
}
/// An error indicating that a search stopped before reporting whether a
/// match exists or not.
///
/// To be very clear, this error type implies that one cannot assume that no
/// matches occur, since the search stopped before completing. That is, if
/// you're looking for information about where a search determined that no
/// match can occur, then this error type does *not* give you that. (Indeed, at
/// the time of writing, if you need such a thing, you have to write your own
/// search routine.)
///
/// Normally, when one searches for something, the response is either an
/// affirmative "it was found at this location" or a negative "not found at
/// all." However, in some cases, a regex engine can be configured to stop its
/// search before concluding whether a match exists or not. When this happens,
/// it may be important for the caller to know why the regex engine gave up and
/// where in the input it gave up at. This error type exposes the 'why' and the
/// 'where.'
///
/// For example, the DFAs provided by this library generally cannot correctly
/// implement Unicode word boundaries. Instead, they provide an option to
/// eagerly support them on ASCII text (since Unicode word boundaries are
/// equivalent to ASCII word boundaries when searching ASCII text), but will
/// "give up" if a non-ASCII byte is seen. In such cases, one is usually
/// required to either report the failure to the caller (unergonomic) or
/// otherwise fall back to some other regex engine (ergonomic, but potentially
/// costly).
///
/// More generally, some regex engines offer the ability for callers to specify
/// certain bytes that will trigger the regex engine to automatically quit if
/// they are seen.
///
/// Still yet, there may be other reasons for a failed match. For example,
/// the hybrid DFA provided by this crate can be configured to give up if it
/// believes that it is not efficient. This in turn permits callers to choose a
/// different regex engine.
///
/// (Note that DFAs are configured by default to never quit or give up in this
/// fashion. For example, by default, a DFA will fail to build if the regex
/// pattern contains a Unicode word boundary. One needs to opt into the "quit"
/// behavior via options, like
/// [`hybrid::dfa::Config::unicode_word_boundary`](crate::hybrid::dfa::Config::unicode_word_boundary).)
///
/// There are a couple other ways a search
/// can fail. For example, when using the
/// [`BoundedBacktracker`](crate::nfa::thompson::backtrack::BoundedBacktracker)
/// with a haystack that is too long, or trying to run an unanchored search
/// with a [one-pass DFA](crate::dfa::onepass).
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct MatchError(
#[cfg(feature = "alloc")] alloc::boxed::Box<MatchErrorKind>,
#[cfg(not(feature = "alloc"))] MatchErrorKind,
);
impl MatchError {
/// Create a new error value with the given kind.
///
/// This is a more verbose version of the kind-specific constructors,
/// e.g., `MatchError::quit`.
pub fn new(kind: MatchErrorKind) -> MatchError {
#[cfg(feature = "alloc")]
{
MatchError(alloc::boxed::Box::new(kind))
}
#[cfg(not(feature = "alloc"))]
{
MatchError(kind)
}
}
/// Returns a reference to the underlying error kind.
pub fn kind(&self) -> &MatchErrorKind {
&self.0
}
/// Create a new "quit" error. The given `byte` corresponds to the value
/// that tripped a search's quit condition, and `offset` corresponds to the
/// location in the haystack at which the search quit.
///
/// This is the same as calling `MatchError::new` with a
/// [`MatchErrorKind::Quit`] kind.
pub fn quit(byte: u8, offset: usize) -> MatchError {
MatchError::new(MatchErrorKind::Quit { byte, offset })
}
/// Create a new "gave up" error. The given `offset` corresponds to the
/// location in the haystack at which the search gave up.
///
/// This is the same as calling `MatchError::new` with a
/// [`MatchErrorKind::GaveUp`] kind.
pub fn gave_up(offset: usize) -> MatchError {
MatchError::new(MatchErrorKind::GaveUp { offset })
}
/// Create a new "haystack too long" error. The given `len` corresponds to
/// the length of the haystack that was problematic.
///
/// This is the same as calling `MatchError::new` with a
/// [`MatchErrorKind::HaystackTooLong`] kind.
pub fn haystack_too_long(len: usize) -> MatchError {
MatchError::new(MatchErrorKind::HaystackTooLong { len })
}
/// Create a new "unsupported anchored" error. This occurs when the caller
/// requests a search with an anchor mode that is not supported by the
/// regex engine.
///
/// This is the same as calling `MatchError::new` with a
/// [`MatchErrorKind::UnsupportedAnchored`] kind.
pub fn unsupported_anchored(mode: Anchored) -> MatchError {
MatchError::new(MatchErrorKind::UnsupportedAnchored { mode })
}
}
/// The underlying kind of a [`MatchError`].
///
/// This is a **non-exhaustive** enum. That means new variants may be added in
/// a semver-compatible release.
#[non_exhaustive]
#[derive(Clone, Debug, Eq, PartialEq)]
pub enum MatchErrorKind {
/// The search saw a "quit" byte at which it was instructed to stop
/// searching.
Quit {
/// The "quit" byte that was observed that caused the search to stop.
byte: u8,
/// The offset at which the quit byte was observed.
offset: usize,
},
/// The search, based on heuristics, determined that it would be better
/// to stop, typically to provide the caller an opportunity to use an
/// alternative regex engine.
///
/// Currently, the only way for this to occur is via the lazy DFA and
/// only when it is configured to do so (it will not return this error by
/// default).
GaveUp {
/// The offset at which the search stopped. This corresponds to the
/// position immediately following the last byte scanned.
offset: usize,
},
/// This error occurs if the haystack given to the regex engine was too
/// long to be searched. This occurs, for example, with regex engines
/// like the bounded backtracker that have a configurable fixed amount of
/// capacity that is tied to the length of the haystack. Anything beyond
/// that configured limit will result in an error at search time.
HaystackTooLong {
/// The length of the haystack that exceeded the limit.
len: usize,
},
/// An error indicating that a particular type of anchored search was
/// requested, but that the regex engine does not support it.
///
/// Note that this error should not be returned by a regex engine simply
/// because the pattern ID is invalid (i.e., equal to or exceeds the number
/// of patterns in the regex). In that case, the regex engine should report
/// a non-match.
UnsupportedAnchored {
/// The anchored mode given that is unsupported.
mode: Anchored,
},
}
#[cfg(feature = "std")]
impl std::error::Error for MatchError {}
impl core::fmt::Display for MatchError {
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
match *self.kind() {
MatchErrorKind::Quit { byte, offset } => write!(
f,
"quit search after observing byte {:?} at offset {}",
DebugByte(byte),
offset,
),
MatchErrorKind::GaveUp { offset } => {
write!(f, "gave up searching at offset {}", offset)
}
MatchErrorKind::HaystackTooLong { len } => {
write!(f, "haystack of length {} is too long", len)
}
MatchErrorKind::UnsupportedAnchored { mode: Anchored::Yes } => {
write!(f, "anchored searches are not supported or enabled")
}
MatchErrorKind::UnsupportedAnchored { mode: Anchored::No } => {
write!(f, "unanchored searches are not supported or enabled")
}
MatchErrorKind::UnsupportedAnchored {
mode: Anchored::Pattern(pid),
} => {
write!(
f,
"anchored searches for a specific pattern ({}) are \
not supported or enabled",
pid.as_usize(),
)
}
}
}
}
#[cfg(test)]
mod tests {
use super::*;
// We test that our 'MatchError' type is the size we expect. This isn't an
// API guarantee, but if the size increases, we really want to make sure we
// decide to do that intentionally. So this should be a speed bump. And in
// general, we should not increase the size without a very good reason.
//
// Why? Because low level search APIs return Result<.., MatchError>. When
// MatchError gets bigger, so to does the Result type.
//
// Now, when 'alloc' is enabled, we do box the error, which de-emphasizes
// the importance of keeping a small error type. But without 'alloc', we
// still want things to be small.
#[test]
fn match_error_size() {
let expected_size = if cfg!(feature = "alloc") {
core::mem::size_of::<usize>()
} else {
2 * core::mem::size_of::<usize>()
};
assert_eq!(expected_size, core::mem::size_of::<MatchError>());
}
// Same as above, but for the underlying match error kind.
#[cfg(target_pointer_width = "64")]
#[test]
fn match_error_kind_size() {
let expected_size = 2 * core::mem::size_of::<usize>();
assert_eq!(expected_size, core::mem::size_of::<MatchErrorKind>());
}
#[cfg(target_pointer_width = "32")]
#[test]
fn match_error_kind_size() {
let expected_size = 3 * core::mem::size_of::<usize>();
assert_eq!(expected_size, core::mem::size_of::<MatchErrorKind>());
}
#[test]
fn incorrect_asref_guard() {
struct Bad(std::cell::Cell<bool>);
impl AsRef<[u8]> for Bad {
fn as_ref(&self) -> &[u8] {
if self.0.replace(false) {
&[]
} else {
&[0; 1000]
}
}
}
let bad = Bad(std::cell::Cell::new(true));
let input = Input::new(&bad);
assert!(input.end() <= input.haystack().len());
}
}