nom_language/precedence/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
//! Combinators to parse expressions with operator precedence.

#[cfg(test)]
mod tests;

use nom::error::{ErrorKind, FromExternalError, ParseError};
use nom::{Check, Err, IResult, Input, Mode, OutputM, OutputMode, Parser};

/// An unary operator.
pub struct Unary<V, Q: Ord + Copy> {
  value: V,
  precedence: Q,
}

/// A binary operator.
pub struct Binary<V, Q: Ord + Copy> {
  value: V,
  precedence: Q,
  assoc: Assoc,
}

/// A single evaluation step.
pub enum Operation<P1, P2, P3, O> {
  /// A prefix operation.
  Prefix(P1, O),
  /// A postfix operation.
  Postfix(O, P2),
  /// A binary operation.
  Binary(O, P3, O),
}

/// Associativity for binary operators.
#[derive(Copy, Clone, PartialEq, Eq)]
pub enum Assoc {
  /// Left associative.
  Left,
  /// Right associative.
  Right,
}

/// Element for operator stack.
enum Operator<P1, P2, P3, Q: Ord + Copy> {
  Prefix(P1, Q),
  Postfix(P2, Q),
  Binary(P3, Q, Assoc),
}

impl<P1, P2, P3, Q> Operator<P1, P2, P3, Q>
where
  Q: Ord + Copy,
{
  fn precedence(&self) -> Q {
    match self {
      Operator::Prefix(_, p) => *p,
      Operator::Postfix(_, p) => *p,
      Operator::Binary(_, p, _) => *p,
    }
  }

  fn is_postfix(&self) -> bool {
    match self {
      Operator::Postfix(_, _) => true,
      _ => false,
    }
  }
}

/// Runs the inner parser and transforms the result into an unary operator with the given precedence.
///
/// Intended for use with [precedence].
/// # Arguments
/// * `precedence` The precedence of the operator.
/// * `parser` The parser to apply.
pub fn unary_op<I, O, E, P, Q>(
  precedence: Q,
  mut parser: P,
) -> impl FnMut(I) -> IResult<I, Unary<O, Q>, E>
where
  P: Parser<I, Output = O, Error = E>,
  Q: Ord + Copy,
{
  move |input| match parser.parse(input) {
    Ok((i, value)) => Ok((i, Unary { value, precedence })),
    Err(e) => Err(e),
  }
}

/// Runs the inner parser and transforms the result into a binary operator with the given precedence and associativity.
///
/// Intended for use with [precedence].
/// # Arguments
/// * `precedence` The precedence of the operator.
/// * `assoc` The associativity of the operator.
/// * `parser` The parser to apply.
pub fn binary_op<I, O, E, P, Q>(
  precedence: Q,
  assoc: Assoc,
  mut parser: P,
) -> impl FnMut(I) -> IResult<I, Binary<O, Q>, E>
where
  P: Parser<I, Output = O, Error = E>,
  Q: Ord + Copy,
{
  move |input| match parser.parse(input) {
    Ok((i, value)) => Ok((
      i,
      Binary {
        value,
        precedence,
        assoc,
      },
    )),
    Err(e) => Err(e),
  }
}

/// Parses an expression with operator precedence.
///
/// Supports prefix, postfix and binary operators. Operators are applied in ascending precedence.
///
/// The parser will track its current position inside the expression and call the respective
/// operand/operator parsers. The prefix and postfix parsers are called repeatedly until they fail before
/// execution moves on to the operand or binary parser.
///
/// Expressions are folded as soon as possible. The result will be reused as another operand. After the
/// expression has been read completely any remaining operations are folded and the resulting, single
/// operand is returned as the result.
///
/// It will return `Err(Err:Error((_, ErrorKind::Precedence)))` if:
/// * the `fold` function returns an `Err`.
/// * more than one or no operands remain after the expression has been evaluated completely.
/// * the input does not match the pattern: `prefix* operand postfix* (binary prefix* operand postfix*)*`
///
/// # Arguments
/// * `prefix` Parser for prefix unary operators.
/// * `postfix` Parser for postfix unary operators.
/// * `binary` Parser for binary operators.
/// * `operand` Parser for operands.
/// * `fold` Function that evaluates a single operation and returns the result.
///
/// # Example
/// ```rust
/// # use nom::{Err, error::{Error, ErrorKind}, IResult};
/// use nom_language::precedence::{precedence, unary_op, binary_op, Assoc, Operation};
/// use nom::character::complete::digit1;
/// use nom::combinator::{map_res, fail};
/// use nom::sequence::delimited;
/// use nom::bytes::complete::tag;
/// use nom::branch::alt;
///
/// fn parser(i: &str) -> IResult<&str, i64> {
///   precedence(
///     unary_op(1, tag("-")),
///     fail(),
///     alt((
///       binary_op(2, Assoc::Left, tag("*")),
///       binary_op(2, Assoc::Left, tag("/")),
///       binary_op(3, Assoc::Left, tag("+")),
///       binary_op(3, Assoc::Left, tag("-")),
///     )),
///     alt((
///       map_res(digit1, |s: &str| s.parse::<i64>()),
///       delimited(tag("("), parser, tag(")")),
///     )),
///     |op: Operation<&str, &str, &str, i64>| {
///       use nom_language::precedence::Operation::*;
///       match op {
///         Prefix("-", o) => Ok(-o),
///         Binary(lhs, "*", rhs) => Ok(lhs * rhs),
///         Binary(lhs, "/", rhs) => Ok(lhs / rhs),
///         Binary(lhs, "+", rhs) => Ok(lhs + rhs),
///         Binary(lhs, "-", rhs) => Ok(lhs - rhs),
///         _ => Err("Invalid combination"),
///       }
///     }
///   )(i)
/// }
///
/// assert_eq!(parser("8-2*2"), Ok(("", 4)));
/// assert_eq!(parser("4-(2+2)"), Ok(("", 0)));
/// assert_eq!(parser("3-(2*3)+7+2*2-(2*(2+4))"), Ok(("", -4)));
/// ```
///
/// # Evaluation order
/// This parser reads expressions from left to right and folds operations as soon as possible. This
/// behaviour is only important when using an operator grammar that allows for ambigious expressions.
///
/// For example, the expression `-a++**b` is ambigious with the following precedence.
///
/// | Operator | Position | Precedence | Associativity |
/// |----------|----------|------------|---------------|
/// | **       | Binary   | 1          | Right         |
/// | -        | Prefix   | 2          | N/A           |
/// | ++       | Postfix  | 3          | N/A           |
///
/// The expression can be parsed in two ways: `-((a++)**b)` or `((-a)++)**b`. This parser will always
/// parse it as the latter because of how it evaluates expressions:
/// * It reads, left-to-right, the first two operators `-a++`.
/// * Because the minus takes precedence over the increment it is evaluated immediately `(-a)++`.
/// * It then reads the remaining input and evaluates the increment next in order to preserve its
/// position in the expression \
/// `((-a)++)**b`.
pub fn precedence<I, O, E, E2, F, G, H1, H3, H2, P1, P2, P3, Q>(
  mut prefix: H1,
  mut postfix: H2,
  mut binary: H3,
  mut operand: F,
  mut fold: G,
) -> impl FnMut(I) -> IResult<I, O, E>
where
  I: Clone + PartialEq,
  E: ParseError<I> + FromExternalError<I, E2>,
  F: Parser<I, Output = O, Error = E>,
  G: FnMut(Operation<P1, P2, P3, O>) -> Result<O, E2>,
  H1: Parser<I, Output = Unary<P1, Q>, Error = E>,
  H2: Parser<I, Output = Unary<P2, Q>, Error = E>,
  H3: Parser<I, Output = Binary<P3, Q>, Error = E>,
  Q: Ord + Copy,
{
  move |mut i| {
    let mut operands = Vec::new();
    let mut operators = Vec::new();
    let mut i1 = i.clone();

    'main: loop {
      'prefix: loop {
        match prefix.parse(i1.clone()) {
          Err(Err::Error(_)) => break 'prefix,
          Err(e) => return Err(e),
          Ok((i2, o)) => {
            // infinite loop check: the parser must always consume
            if i2 == i1 {
              return Err(Err::Error(E::from_error_kind(i1, ErrorKind::Precedence)));
            }
            i1 = i2;
            operators.push(Operator::Prefix(o.value, o.precedence));
          }
        }
      }

      let (i2, o) = match operand.parse(i1.clone()) {
        Ok((i, o)) => (i, o),
        Err(Err::Error(e)) => return Err(Err::Error(E::append(i, ErrorKind::Precedence, e))),
        Err(e) => return Err(e),
      };
      i1 = i2;
      operands.push(o);

      'postfix: loop {
        match postfix.parse(i1.clone()) {
          Err(Err::Error(_)) => break 'postfix,
          Err(e) => return Err(e),
          Ok((i2, o)) => {
            // infinite loop check: the parser must always consume
            if i2 == i1 {
              return Err(Err::Error(E::from_error_kind(i1, ErrorKind::Precedence)));
            }

            while operators
              .last()
              .map(|op| op.precedence() <= o.precedence)
              .unwrap_or(false)
            {
              let value = operands.pop().unwrap();
              let operation = match operators.pop().unwrap() {
                Operator::Prefix(op, _) => Operation::Prefix(op, value),
                Operator::Postfix(op, _) => Operation::Postfix(value, op),
                Operator::Binary(op, _, _) => match operands.pop() {
                  Some(lhs) => Operation::Binary(lhs, op, value),
                  None => return Err(Err::Error(E::from_error_kind(i1, ErrorKind::Precedence))),
                },
              };
              let result = match fold(operation) {
                Err(e) => {
                  return Err(Err::Error(E::from_external_error(
                    i,
                    ErrorKind::Precedence,
                    e,
                  )))
                }
                Ok(r) => r,
              };
              operands.push(result);
            }
            i1 = i2;
            operators.push(Operator::Postfix(o.value, o.precedence));
          }
        }
      }

      match binary.parse(i1.clone()) {
        Err(Err::Error(_)) => break 'main,
        Err(e) => return Err(e),
        Ok((i2, o)) => {
          while operators
            .last()
            .map(|op| {
              op.precedence() < o.precedence
                || (o.assoc == Assoc::Left && op.precedence() == o.precedence)
                || (op.is_postfix())
            })
            .unwrap_or(false)
          {
            let value = operands.pop().unwrap();
            let operation = match operators.pop().unwrap() {
              Operator::Prefix(op, _) => Operation::Prefix(op, value),
              Operator::Postfix(op, _) => Operation::Postfix(value, op),
              Operator::Binary(op, _, _) => match operands.pop() {
                Some(lhs) => Operation::Binary(lhs, op, value),
                None => return Err(Err::Error(E::from_error_kind(i1, ErrorKind::Precedence))),
              },
            };
            let result = match fold(operation) {
              Err(e) => {
                return Err(Err::Error(E::from_external_error(
                  i,
                  ErrorKind::Precedence,
                  e,
                )))
              }
              Ok(r) => r,
            };
            operands.push(result);
          }
          operators.push(Operator::Binary(o.value, o.precedence, o.assoc));
          i1 = i2;
        }
      }

      // infinite loop check: either operand or operator must consume input
      if i == i1 {
        return Err(Err::Error(E::from_error_kind(i, ErrorKind::Precedence)));
      }
      i = i1.clone();
    }

    while operators.len() > 0 {
      let value = match operands.pop() {
        Some(o) => o,
        None => return Err(Err::Error(E::from_error_kind(i, ErrorKind::Precedence))),
      };
      let operation = match operators.pop().unwrap() {
        Operator::Prefix(op, _) => Operation::Prefix(op, value),
        Operator::Postfix(op, _) => Operation::Postfix(value, op),
        Operator::Binary(op, _, _) => match operands.pop() {
          Some(lhs) => Operation::Binary(lhs, op, value),
          None => return Err(Err::Error(E::from_error_kind(i, ErrorKind::Precedence))),
        },
      };
      let result = match fold(operation) {
        Ok(r) => r,
        Err(e) => {
          return Err(Err::Error(E::from_external_error(
            i,
            ErrorKind::Precedence,
            e,
          )))
        }
      };
      operands.push(result);
    }

    if operands.len() == 1 {
      return Ok((i1, operands.pop().unwrap()));
    } else {
      return Err(Err::Error(E::from_error_kind(i, ErrorKind::Precedence)));
    }
  }
}

/// Applies a parser multiple times separated by another parser.
///
/// It is similar to [`separated_list1`][nom::multi::separated_list1] but instead of collecting
/// into a vector, you have a callback to build the output.
///
/// In a LALR grammar a left recursive operator is usually built with a rule syntax such as:
///  * A := A op B | B
///
/// If you try to parse that wth [`alt`][nom::branch::alt] it will fail with a stack overflow
/// because the recusion is unlimited. This function solves this problem by converting the recusion
/// into an iteration.
///
/// Compare with a right recursive operator, that in LALR would be:
///  * A := B op A | B
/// Or equivalently:
///  * A := B (op A)?
///
///  That can be written in `nom` trivially.
///
/// This stops when either parser returns an error and returns the last built value. to instead chain an error up, see
/// [`cut`][nom::combinator::cut].
///
/// # Arguments
/// * `child` The parser to apply.
/// * `operator` Parses the operator between argument.
/// * `init` A function returning the initial value.
/// * `fold` The function that combines a result of `f` with
///       the current accumulator.
/// ```rust
/// # #[macro_use] extern crate nom;
/// # use nom::{Err, error::ErrorKind, Needed, IResult, Parser};
/// use nom_language::precedence::left_assoc;
/// use nom::branch::alt;
/// use nom::sequence::delimited;
/// use nom::character::complete::{char, digit1};
///
/// fn add(i: &str) -> IResult<&str, String> {
///     left_assoc(mult, char('+'), |a, o, b| format!("{o}{a}{b}")).parse(i)
/// }
/// fn mult(i: &str) -> IResult<&str, String> {
///     left_assoc(single, char('*'), |a, o, b| format!("{o}{a}{b}")).parse(i)
/// }
/// fn single(i: &str) -> IResult<&str, String> {
///     alt((
///         digit1.map(|x: &str| x.to_string()),
///         delimited(char('('), add, char(')'))
///     )).parse(i)
/// }
///
/// assert_eq!(single("(1+2*3)"), Ok(("", String::from("+1*23"))));
/// assert_eq!(single("((1+2)*3)"), Ok(("", String::from("*+123"))));
/// assert_eq!(single("(1*2+3)"), Ok(("", String::from("+*123"))));
/// assert_eq!(single("((1+2*3)+4)"), Ok(("", String::from("++1*234"))));
/// assert_eq!(single("(1+(2*3+4))"), Ok(("", String::from("+1+*234"))));
/// ```
pub fn left_assoc<I, E, O, OP, G, F, B>(
  child: F,
  operator: G,
  builder: B,
) -> impl Parser<I, Output = O, Error = E>
where
  I: Clone + Input,
  E: ParseError<I>,
  F: Parser<I, Output = O, Error = E>,
  G: Parser<I, Output = OP, Error = E>,
  B: FnMut(O, OP, O) -> O,
{
  LeftAssoc {
    child,
    operator,
    builder,
  }
}

/// Parser implementation for the [`separated_list1`][nom::multi::separated_list1] combinator
pub struct LeftAssoc<F, G, B> {
  child: F,
  operator: G,
  builder: B,
}

impl<I, E, O, OP, G, F, B> Parser<I> for LeftAssoc<F, G, B>
where
  I: Clone + Input,
  E: ParseError<I>,
  F: Parser<I, Output = O, Error = E>,
  G: Parser<I, Output = OP, Error = E>,
  B: FnMut(O, OP, O) -> O,
{
  type Output = O;
  type Error = E;

  fn process<OM: OutputMode>(
    &mut self,
    mut i: I,
  ) -> nom::PResult<OM, I, Self::Output, Self::Error> {
    let (i1, mut res) = self.child.process::<OM>(i)?;
    i = i1;

    loop {
      let len = i.input_len();
      match self
        .operator
        .process::<OutputM<OM::Output, Check, OM::Incomplete>>(i.clone())
      {
        Err(Err::Error(_)) => return Ok((i, res)),
        Err(Err::Failure(e)) => return Err(Err::Failure(e)),
        Err(Err::Incomplete(e)) => return Err(Err::Incomplete(e)),
        Ok((i1, op)) => {
          match self
            .child
            .process::<OutputM<OM::Output, Check, OM::Incomplete>>(i1.clone())
          {
            Err(Err::Error(_)) => return Ok((i, res)),
            Err(Err::Failure(e)) => return Err(Err::Failure(e)),
            Err(Err::Incomplete(e)) => return Err(Err::Incomplete(e)),
            Ok((i2, rhs)) => {
              // infinite loop check: the parser must always consume
              if i2.input_len() == len {
                return Err(Err::Error(OM::Error::bind(|| {
                  <F as Parser<I>>::Error::from_error_kind(i, ErrorKind::SeparatedList)
                })));
              }
              // there is no combine() with 3 arguments, fake it with a tuple and two calls
              let op_rhs = OM::Output::combine(op, rhs, |op, rhs| (op, rhs));
              res = OM::Output::combine(res, op_rhs, |lhs, (op, rhs)| (self.builder)(lhs, op, rhs));
              i = i2;
            }
          }
        }
      }
    }
  }
}