rustls/record_layer.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
use alloc::boxed::Box;
use core::cmp::min;
use crate::crypto::cipher::{InboundOpaqueMessage, MessageDecrypter, MessageEncrypter};
use crate::error::Error;
use crate::log::trace;
use crate::msgs::message::{InboundPlainMessage, OutboundOpaqueMessage, OutboundPlainMessage};
#[derive(PartialEq)]
enum DirectionState {
/// No keying material.
Invalid,
/// Keying material present, but not yet in use.
Prepared,
/// Keying material in use.
Active,
}
/// Record layer that tracks decryption and encryption keys.
pub(crate) struct RecordLayer {
message_encrypter: Box<dyn MessageEncrypter>,
message_decrypter: Box<dyn MessageDecrypter>,
write_seq_max: u64,
write_seq: u64,
read_seq: u64,
has_decrypted: bool,
encrypt_state: DirectionState,
decrypt_state: DirectionState,
// Message encrypted with other keys may be encountered, so failures
// should be swallowed by the caller. This struct tracks the amount
// of message size this is allowed for.
trial_decryption_len: Option<usize>,
}
impl RecordLayer {
/// Create new record layer with no keys.
pub(crate) fn new() -> Self {
Self {
message_encrypter: <dyn MessageEncrypter>::invalid(),
message_decrypter: <dyn MessageDecrypter>::invalid(),
write_seq_max: 0,
write_seq: 0,
read_seq: 0,
has_decrypted: false,
encrypt_state: DirectionState::Invalid,
decrypt_state: DirectionState::Invalid,
trial_decryption_len: None,
}
}
/// Decrypt a TLS message.
///
/// `encr` is a decoded message allegedly received from the peer.
/// If it can be decrypted, its decryption is returned. Otherwise,
/// an error is returned.
pub(crate) fn decrypt_incoming<'a>(
&mut self,
encr: InboundOpaqueMessage<'a>,
) -> Result<Option<Decrypted<'a>>, Error> {
if self.decrypt_state != DirectionState::Active {
return Ok(Some(Decrypted {
want_close_before_decrypt: false,
plaintext: encr.into_plain_message(),
}));
}
// Set to `true` if the peer appears to getting close to encrypting
// too many messages with this key.
//
// Perhaps if we send an alert well before their counter wraps, a
// buggy peer won't make a terrible mistake here?
//
// Note that there's no reason to refuse to decrypt: the security
// failure has already happened.
let want_close_before_decrypt = self.read_seq == SEQ_SOFT_LIMIT;
let encrypted_len = encr.payload.len();
match self
.message_decrypter
.decrypt(encr, self.read_seq)
{
Ok(plaintext) => {
self.read_seq += 1;
if !self.has_decrypted {
self.has_decrypted = true;
}
Ok(Some(Decrypted {
want_close_before_decrypt,
plaintext,
}))
}
Err(Error::DecryptError) if self.doing_trial_decryption(encrypted_len) => {
trace!("Dropping undecryptable message after aborted early_data");
Ok(None)
}
Err(err) => Err(err),
}
}
/// Encrypt a TLS message.
///
/// `plain` is a TLS message we'd like to send. This function
/// panics if the requisite keying material hasn't been established yet.
pub(crate) fn encrypt_outgoing(
&mut self,
plain: OutboundPlainMessage<'_>,
) -> OutboundOpaqueMessage {
debug_assert!(self.encrypt_state == DirectionState::Active);
assert!(self.next_pre_encrypt_action() != PreEncryptAction::Refuse);
let seq = self.write_seq;
self.write_seq += 1;
self.message_encrypter
.encrypt(plain, seq)
.unwrap()
}
/// Prepare to use the given `MessageEncrypter` for future message encryption.
/// It is not used until you call `start_encrypting`.
pub(crate) fn prepare_message_encrypter(
&mut self,
cipher: Box<dyn MessageEncrypter>,
max_messages: u64,
) {
self.message_encrypter = cipher;
self.write_seq = 0;
self.write_seq_max = min(SEQ_SOFT_LIMIT, max_messages);
self.encrypt_state = DirectionState::Prepared;
}
/// Prepare to use the given `MessageDecrypter` for future message decryption.
/// It is not used until you call `start_decrypting`.
pub(crate) fn prepare_message_decrypter(&mut self, cipher: Box<dyn MessageDecrypter>) {
self.message_decrypter = cipher;
self.read_seq = 0;
self.decrypt_state = DirectionState::Prepared;
}
/// Start using the `MessageEncrypter` previously provided to the previous
/// call to `prepare_message_encrypter`.
pub(crate) fn start_encrypting(&mut self) {
debug_assert!(self.encrypt_state == DirectionState::Prepared);
self.encrypt_state = DirectionState::Active;
}
/// Start using the `MessageDecrypter` previously provided to the previous
/// call to `prepare_message_decrypter`.
pub(crate) fn start_decrypting(&mut self) {
debug_assert!(self.decrypt_state == DirectionState::Prepared);
self.decrypt_state = DirectionState::Active;
}
/// Set and start using the given `MessageEncrypter` for future outgoing
/// message encryption.
pub(crate) fn set_message_encrypter(
&mut self,
cipher: Box<dyn MessageEncrypter>,
max_messages: u64,
) {
self.prepare_message_encrypter(cipher, max_messages);
self.start_encrypting();
}
/// Set and start using the given `MessageDecrypter` for future incoming
/// message decryption.
pub(crate) fn set_message_decrypter(&mut self, cipher: Box<dyn MessageDecrypter>) {
self.prepare_message_decrypter(cipher);
self.start_decrypting();
self.trial_decryption_len = None;
}
/// Set and start using the given `MessageDecrypter` for future incoming
/// message decryption, and enable "trial decryption" mode for when TLS1.3
/// 0-RTT is attempted but rejected by the server.
pub(crate) fn set_message_decrypter_with_trial_decryption(
&mut self,
cipher: Box<dyn MessageDecrypter>,
max_length: usize,
) {
self.prepare_message_decrypter(cipher);
self.start_decrypting();
self.trial_decryption_len = Some(max_length);
}
pub(crate) fn finish_trial_decryption(&mut self) {
self.trial_decryption_len = None;
}
pub(crate) fn next_pre_encrypt_action(&self) -> PreEncryptAction {
self.pre_encrypt_action(0)
}
/// Return a remedial action when we are near to encrypting too many messages.
///
/// `add` is added to the current sequence number. `add` as `0` means
/// "the next message processed by `encrypt_outgoing`"
pub(crate) fn pre_encrypt_action(&self, add: u64) -> PreEncryptAction {
match self.write_seq.saturating_add(add) {
v if v == self.write_seq_max => PreEncryptAction::RefreshOrClose,
SEQ_HARD_LIMIT.. => PreEncryptAction::Refuse,
_ => PreEncryptAction::Nothing,
}
}
pub(crate) fn is_encrypting(&self) -> bool {
self.encrypt_state == DirectionState::Active
}
/// Return true if we have ever decrypted a message. This is used in place
/// of checking the read_seq since that will be reset on key updates.
pub(crate) fn has_decrypted(&self) -> bool {
self.has_decrypted
}
pub(crate) fn write_seq(&self) -> u64 {
self.write_seq
}
pub(crate) fn read_seq(&self) -> u64 {
self.read_seq
}
pub(crate) fn encrypted_len(&self, payload_len: usize) -> usize {
self.message_encrypter
.encrypted_payload_len(payload_len)
}
fn doing_trial_decryption(&mut self, requested: usize) -> bool {
match self
.trial_decryption_len
.and_then(|value| value.checked_sub(requested))
{
Some(remaining) => {
self.trial_decryption_len = Some(remaining);
true
}
_ => false,
}
}
}
/// Result of decryption.
#[derive(Debug)]
pub(crate) struct Decrypted<'a> {
/// Whether the peer appears to be getting close to encrypting too many messages with this key.
pub(crate) want_close_before_decrypt: bool,
/// The decrypted message.
pub(crate) plaintext: InboundPlainMessage<'a>,
}
#[derive(Debug, Eq, PartialEq)]
pub(crate) enum PreEncryptAction {
/// No action is needed before calling `encrypt_outgoing`
Nothing,
/// A `key_update` request should be sent ASAP.
///
/// If that is not possible (for example, the connection is TLS1.2), a `close_notify`
/// alert should be sent instead.
RefreshOrClose,
/// Do not call `encrypt_outgoing` further, it will panic rather than
/// over-use the key.
Refuse,
}
const SEQ_SOFT_LIMIT: u64 = 0xffff_ffff_ffff_0000u64;
const SEQ_HARD_LIMIT: u64 = 0xffff_ffff_ffff_fffeu64;
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_has_decrypted() {
use crate::{ContentType, ProtocolVersion};
struct PassThroughDecrypter;
impl MessageDecrypter for PassThroughDecrypter {
fn decrypt<'a>(
&mut self,
m: InboundOpaqueMessage<'a>,
_: u64,
) -> Result<InboundPlainMessage<'a>, Error> {
Ok(m.into_plain_message())
}
}
// A record layer starts out invalid, having never decrypted.
let mut record_layer = RecordLayer::new();
assert!(matches!(
record_layer.decrypt_state,
DirectionState::Invalid
));
assert_eq!(record_layer.read_seq, 0);
assert!(!record_layer.has_decrypted());
// Preparing the record layer should update the decrypt state, but shouldn't affect whether it
// has decrypted.
record_layer.prepare_message_decrypter(Box::new(PassThroughDecrypter));
assert!(matches!(
record_layer.decrypt_state,
DirectionState::Prepared
));
assert_eq!(record_layer.read_seq, 0);
assert!(!record_layer.has_decrypted());
// Starting decryption should update the decrypt state, but not affect whether it has decrypted.
record_layer.start_decrypting();
assert!(matches!(record_layer.decrypt_state, DirectionState::Active));
assert_eq!(record_layer.read_seq, 0);
assert!(!record_layer.has_decrypted());
// Decrypting a message should update the read_seq and track that we have now performed
// a decryption.
record_layer
.decrypt_incoming(InboundOpaqueMessage::new(
ContentType::Handshake,
ProtocolVersion::TLSv1_2,
&mut [0xC0, 0xFF, 0xEE],
))
.unwrap();
assert!(matches!(record_layer.decrypt_state, DirectionState::Active));
assert_eq!(record_layer.read_seq, 1);
assert!(record_layer.has_decrypted());
// Resetting the record layer message decrypter (as if a key update occurred) should reset
// the read_seq number, but not our knowledge of whether we have decrypted previously.
record_layer.set_message_decrypter(Box::new(PassThroughDecrypter));
assert!(matches!(record_layer.decrypt_state, DirectionState::Active));
assert_eq!(record_layer.read_seq, 0);
assert!(record_layer.has_decrypted());
}
}