1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
//! Iterators that are sources (produce elements from parameters,
//! not from another iterator).
#![allow(deprecated)]

use std::fmt;
use std::mem;

/// See [`repeat_call`](crate::repeat_call) for more information.
#[derive(Clone)]
#[deprecated(note = "Use std repeat_with() instead", since = "0.8.0")]
pub struct RepeatCall<F> {
    f: F,
}

impl<F> fmt::Debug for RepeatCall<F> {
    debug_fmt_fields!(RepeatCall,);
}

/// An iterator source that produces elements indefinitely by calling
/// a given closure.
///
/// Iterator element type is the return type of the closure.
///
/// ```
/// use itertools::repeat_call;
/// use itertools::Itertools;
/// use std::collections::BinaryHeap;
///
/// let mut heap = BinaryHeap::from(vec![2, 5, 3, 7, 8]);
///
/// // extract each element in sorted order
/// for element in repeat_call(|| heap.pop()).while_some() {
///     print!("{}", element);
/// }
///
/// itertools::assert_equal(
///     repeat_call(|| 1).take(5),
///     vec![1, 1, 1, 1, 1]
/// );
/// ```
#[deprecated(note = "Use std repeat_with() instead", since = "0.8.0")]
pub fn repeat_call<F, A>(function: F) -> RepeatCall<F>
where
    F: FnMut() -> A,
{
    RepeatCall { f: function }
}

impl<A, F> Iterator for RepeatCall<F>
where
    F: FnMut() -> A,
{
    type Item = A;

    #[inline]
    fn next(&mut self) -> Option<Self::Item> {
        Some((self.f)())
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        (usize::max_value(), None)
    }
}

/// Creates a new unfold source with the specified closure as the "iterator
/// function" and an initial state to eventually pass to the closure
///
/// `unfold` is a general iterator builder: it has a mutable state value,
/// and a closure with access to the state that produces the next value.
///
/// This more or less equivalent to a regular struct with an [`Iterator`]
/// implementation, and is useful for one-off iterators.
///
/// ```
/// // an iterator that yields sequential Fibonacci numbers,
/// // and stops at the maximum representable value.
///
/// use itertools::unfold;
///
/// let mut fibonacci = unfold((1u32, 1u32), |(x1, x2)| {
///     // Attempt to get the next Fibonacci number
///     let next = x1.saturating_add(*x2);
///
///     // Shift left: ret <- x1 <- x2 <- next
///     let ret = *x1;
///     *x1 = *x2;
///     *x2 = next;
///
///     // If addition has saturated at the maximum, we are finished
///     if ret == *x1 && ret > 1 {
///         None
///     } else {
///         Some(ret)
///     }
/// });
///
/// itertools::assert_equal(fibonacci.by_ref().take(8),
///                         vec![1, 1, 2, 3, 5, 8, 13, 21]);
/// assert_eq!(fibonacci.last(), Some(2_971_215_073))
/// ```
pub fn unfold<A, St, F>(initial_state: St, f: F) -> Unfold<St, F>
where
    F: FnMut(&mut St) -> Option<A>,
{
    Unfold {
        f,
        state: initial_state,
    }
}

impl<St, F> fmt::Debug for Unfold<St, F>
where
    St: fmt::Debug,
{
    debug_fmt_fields!(Unfold, state);
}

/// See [`unfold`](crate::unfold) for more information.
#[derive(Clone)]
#[must_use = "iterators are lazy and do nothing unless consumed"]
pub struct Unfold<St, F> {
    f: F,
    /// Internal state that will be passed to the closure on the next iteration
    pub state: St,
}

impl<A, St, F> Iterator for Unfold<St, F>
where
    F: FnMut(&mut St) -> Option<A>,
{
    type Item = A;

    #[inline]
    fn next(&mut self) -> Option<Self::Item> {
        (self.f)(&mut self.state)
    }
}

/// An iterator that infinitely applies function to value and yields results.
///
/// This `struct` is created by the [`iterate()`](crate::iterate) function.
/// See its documentation for more.
#[derive(Clone)]
#[must_use = "iterators are lazy and do nothing unless consumed"]
pub struct Iterate<St, F> {
    state: St,
    f: F,
}

impl<St, F> fmt::Debug for Iterate<St, F>
where
    St: fmt::Debug,
{
    debug_fmt_fields!(Iterate, state);
}

impl<St, F> Iterator for Iterate<St, F>
where
    F: FnMut(&St) -> St,
{
    type Item = St;

    #[inline]
    fn next(&mut self) -> Option<Self::Item> {
        let next_state = (self.f)(&self.state);
        Some(mem::replace(&mut self.state, next_state))
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        (usize::max_value(), None)
    }
}

/// Creates a new iterator that infinitely applies function to value and yields results.
///
/// ```
/// use itertools::iterate;
///
/// itertools::assert_equal(iterate(1, |i| i % 3 + 1).take(5), vec![1, 2, 3, 1, 2]);
/// ```
///
/// **Panics** if compute the next value does.
///
/// ```should_panic
/// # use itertools::iterate;
/// let mut it = iterate(25u32, |x| x - 10).take_while(|&x| x > 10);
/// assert_eq!(it.next(), Some(25)); // `Iterate` holds 15.
/// assert_eq!(it.next(), Some(15)); // `Iterate` holds 5.
/// it.next(); // `5 - 10` overflows.
/// ```
///
/// You can alternatively use [`core::iter::successors`] as it better describes a finite iterator.
pub fn iterate<St, F>(initial_value: St, f: F) -> Iterate<St, F>
where
    F: FnMut(&St) -> St,
{
    Iterate {
        state: initial_value,
        f,
    }
}